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LINGUISTIC AND PROGRAM TOOLS FOR DEBUGGING AND TESTING OF
SIMULATION MODELS OF COMPUTER NETWORKS

Elena Zamyatina, Alexander Mikov, Roman Mikheev

Abstract: This paper focuses on the problem of validation and verification of computer network simulation
models. Authors propose to use special linguistic and program tools of CAD system TriadNS in this case. First of
all it should be noted that TRiadNS is a computer system which was developed for computer network design.
Simulation is the main method for investigation of designed computer networks. But it is very important to have a
credible simulation result. It is necessary for target users to have sufficient confidence that results generated by a
simulation run reflect real world operation to a large degree. Authors observe the specifications of the simulation
model in TriadNS.Net, consider the program tools for simulation model analysis (information procedures and
conditions of simulation) and propose to use them for simulation model validation and verification, debugging and
testing. Besides, the authors suggest program tools including the intellectual agents and ontology for localization
of mistakes determined during verification and validation processes. Moreover the authors show how the specific
features of hierarchical simulation models in TRIADNS make the process of testing and debugging of simulation
models flexible.
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Introduction

The role of computer networks is rather high nowadays. Computer networks are widely used in distributed
processing of information. The evidence of this is the widespread of corporate information systems, Grid-
technologies, cloud computing. One more example - social networking without which many people do not realize
their life.

Widespread computer networks impose demands for speed and reliable information transmission, for efficient
processing of information. For this reason, it becomes necessary to study the traffic, new efficient protocols, new
algorithms (for example, routing algorithms), to study new devices and control algorithms for these devices, to
investigate new types of computer networks and sufficient principles of it functioning.

Analytical methods are not always possible to apply for the study of computer networks because of the
complexity of this object of research. The field experiments do not give the opportunity to explore all aspects of
the designed network. So the researchers have to use the methods and software tools for simulation. More
precisely, it is efficient to apply the linguistic and program tools of network simulation. There is a large number of
such software [Salmon S., 2011].

The primary purpose of this paper is to discuss one of the approaches of scientific information quality enhancing.
It is well known that qualifying standards are rather high for scientific information received during some scientific



2 ITHEA IJ and IBS Sample Sheet 2013

experiment. The validity of scientific information means a high degree of conformity between scientific results and
a problem to be solved. It is very important to apply the proper method, to find a corresponding approach, to
create a respective mathematic model. And it is actual for simulation and simulation model too. [Cokonos
B.B.,2005]. The problems of validity are coupled with problems of debugging and testing.

Some authors [Bagrodia, 1999] picked up such problems of network simulation model validity as simulator
validation, protocol validation («does the simulation model of a given network protocol faithfully replicate details of
the protocol based on its specification or implementation», is, for example, TCP model provided by NS library
correct with respect to actual TCP implementations), system validation (the simulation of physical resources using
in order to identify bottlenecks, such as processing delays and overheads), scenario validation (the degree of
sensitivity of results to minor (or major) variations in the critical parameters of the assumed scenario) and so on.

Authors suggest linguistic and program tools for simulation model validation, more precisely, debugging and
testing. These tools and an expert component for mistake localization are considered below. Authors suggest
using a linguistic constructions “information procedures” and “conditions of simulation” for debugging and testing.
First of all let us consider what is meant by the terms “validation” and “verification”.

Verification and Validation

The simulation model is a representation or abstraction of something such as entity, or a system. So a model
can't be perfect because it is an abstraction. But we intend to build a credible simulation model and to receive the
credible results of simulation. Both the modelers and users of simulation model are interested in reliable
simulation results because it is very important to accept the right decision.

Verification and validation (V&V) are considered usually as a single process of M&S (Modeling and Simulation)
but it is not accurate reasoning because each of them purposes on the different aim.

The aim of verification is to be sure that simulation model implementation is proper, to determine whether it
corresponds to conceptual description and specification. Simulation model verification “is substantiating that the
model is transformed from one form into another, as intended, with sufficient accuracy. Model verification deals
with building the model right [Balci O,1998].

The aim of validation is to determine the degree to which a model is an accurate representation of a real system
from the perspective of intended use of the model. Model validation “is substantiating that the model, within its
domain of applicability, behaves with satisfactory accuracy consistent with the M&S objectives. Model validation
deals with building the right model [Balci O,1998] .

In addition we must say about model debugging and testing. Model debugging supposes the detection of
mistakes, its localization and elimination. Simulation model testing “is ascertaining whether inaccuracies or errors
exist in the model[Balci 0,1998].

We can mention one more definition coupled with verification and validation. It is accreditation — a statement of
M&S sponsors that simulation results are intended for use. Accreditation is “the official certification that a model
or simulation is acceptable for use for a specific purpose” [Balci 0,2002].

Related works

V&V is well known problem. It is discussed in many papers. So one may become acquainted with these problems
thanks to numerous publications of [Balci 0.,1998,2002],[Law A.,2004], [Sargent R.,2005,2007] and the other
authors.
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These papers present different paradigms of verification and validation, define different stages, give
recommendations and consider methods but most of them don’t show how to do it.

Structural and Operational validity in TRIADNS

Let us consider the simulation model validation more precisely. It is well known that V&V must be fulfilled on
different levels (input data, simulation model elements, simulation model subsystems and its interconnections).

The testing of simulation model adequacy and accuracy includes it's structure testing (one must determine
whether the structure of the simulation model, a list of objects and their interconnections correspond to
investigator's intentions, let us name this type of validity as the structural one), primitive functions testing,
behavior testing (one must examine whether the simulation model functionality corresponds to investigator's
concepts. Let us name this type of validity as an operational one). Moreover, simulation model validation has to
be executed at each stage of simulation model design. It is necessary to return to the previous stage if the
process of simulation model validation shows some errors.

Structural simulation model validity may be fulfilled by functions and procedures of Triad-model structure layer.
These functions and procedures may test the topological specification of a simulation model in particular.
Operational validation is defined as the process of confirming that simulation results closely approximate real
world results. The operational validity may be carried out by the information procedures. Information procedures
allow to determine whether any value of simulation model variables at some concrete moment of simulation time
is equal to the specific one in right (valid) model and so on. (We shell discuss the information procedures
possibilities more precisely below). [f it is not so (the values are not equal) then the cognitive agents will define
the type of mistake using specific ontology and localize it following some rules which use knowledge about
simulation model structure and behavior. Let us consider the specification of simulation model in Triad. We must
remind that CAD TRIADNS [3amatuHa E.B.,2012] is intended for computer network design and analyses and
therefore it has some specifications.

Simulation Model Representation in TRIADNS

Program model in Triad.Net is represented by several objects functioning according to some scenario and
interacting with one another by sending messages. Program model [Mikov A.,1995] is u={STR, ROUT, MES}
and it consists of three layers, where STR is a layer of structures, ROUT - a layer of routines and MES - a layer
of messages appropriately. The layer of structure is dedicated to describe objects and their interconnections, but
the layer of routines presents their behavior. Each object can send a message to another object. So, each object
has the input and output poles (Pin — input poles are used to send the messages, Pout — output poles serve to
receive the messages). One level of the structure is presented by graph P = {U, V, W}. P-graph is named as
graph with poles. A set of nodes V presents a set of programming objects, W — a set of connections between
them, U — a set of external poles. The internal poles are used for information exchange within the same structure
level; in contrast, the set of external poles serves to send messages to the objects situated on higher or
underlying levels of description. Special statement out <message> through <name of pole> is used to send the
messages.

One can describe the structure of a system to be simulated using such a linguistic construction:

structure <name of structure> def (<a list of generic parameters>) (<a list of input and output parameters>) <a
list of variables description> <statements>) endstr

Special algorithms (named “routine”) define the behavior of an object. It is associated with particular node of
graph P ={U, V, W}. Each routine is specified by a set of events (E-set), the linearly ordered set of time moments
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(T-set), and a set of states {Q-set}. State is specified by the local variable values. Local variables are defined in
routine. The state is changed if an event occurs only. One event schedules another event. Routine (as an object)
has input and output poles (Prinand Proy). An input pole serves to receive messages, output — to send them. One
can pick out input event ein. All the input poles are processed by an input event, an output poles — by the other
(usual) event.

routine<ums>(<a list of generic parameters>)(<a list of input and output formal parameters>) initial <a sequence
of a statements> endi

event <a sequence of a statements> ende

event <a name of an event> <a sequence of statements> ende ...

event<a name of an event><a sequence of a statements> ende endrout

There are two possibilities to build a simulation model of a computer network: via text or graphical editor.

Let us present a simulation model in Triad (one can pick it out at fig.1.). Here is a fragment of computer network.
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Fig.1. A fragment of computer network

Computer system consists of some workstations and routers and provides message sending and receiving. The
structure of simulation model may be described by graph constant dcycler, three of these graph constants are
connected with 3 nodes associated with work stations. Eight nodes represent workstations Hst[i]. These nodes
are added in cycle. Each router is intended to fulfill the same algorithm. So designer defines the same routine
Router (appropriate program module is saved in data base) for each router (node Rout[i] of structure) and the
same routine Host to each workstation (node Hst[i]).

A program model in Triad.Net isn't static. Triad language includes the special type of variables — type “model”.
There are several operations with the variable type “model”. The operations are defined for the model in general
and for each layer. For example, one may add or delete a node, add or delete an edge (arc), poles, union or
intersection of graphs. Routine layer permits to add or delete any event, layer of messages — to add or delete
types or selectors. Besides, one or another routine can be assigned to the node in structure layer (using some
rules). As a result the behavior of the object associated with this node would be changed.

Type Router,Host; integer i;
M:=dcycle(Rout[5]<Pol>[5]);
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M:=M+node (Hst[11]<Pol>);
fori:=1 by 1to5do
M.Rout[i]=>Router;
M:=M+edge(Rout[i].Pol[1] — Hst[i]);
endf
fori:=1 by 1to3 do
M:=M+edge(Rout[i].Pol[2] — Hst[2*i-1]);
endf;
fori:=0 by 1 to11 do M.Hst[i]=>Host; endf;

Algorithm of investigation

The objects of simulation model are managed by the special algorithm during the simulation run. Let us name it
as “simulation algorithm” (CAD system Triad has distributed version and corresponding algorithm for distributed
objects of simulation model too) [Mukos,2009]. CAD system Triad includes analyses subsystem implementing the
algorithm of investigation - special algorithm for data (the results of simulation run) collection and processing.

The analysis subsystem includes special objects of two types: information procedures and conditions of
simulation. Information procedures are “connected” to nodes or, more precisely, to routines, which describe the
behavior of particular nodes during simulation experiment. Information procedures inspect the execution process
and play a role of monitors of test desk.

Conditions of simulation are special linguistic constructions defining the algorithm of investigation because the
corresponding linguistic construction includes a list of information procedures which are necessary for
investigator.

The algorithm of investigation is detached from the simulation model. Hence it is possible to change the algorithm
of investigation if investigator would be interested in the other specifications of simulation model. For this one
need to change the conditions of simulation. But the simulation model remains invariant. We may remind that it is
not possible in some simulation systems.

One can describe the information procedure as so:

information procedure<name>(<a list of generic parameters>)(<input and output formal parameters>)
initial <a sequence of statements> endi

<a sequence of statements>processing <a sequence of statements>...endinf

It is possible to examine the value of local variables, the event occurrence and the value of messages which were
sent or received. A part of linguistic construction ‘processing’ defines the final processing of data being collected
during simulation run (mean, variance and so on).

Let us present the linguistic construction conditions of simulation:

Conditions of simulation<name>(<a list of generic parameters>)(<input and output formal parameters>) initial
<a sequence of statements> endi <a list of information procedures> <a sequence of statements> processing <a
sequence of statements>...endcond

The linguistic construction conditions of simulation describes the algorithm of investigation which defines not
only the list of information procedures but the final processing of some information procedure and checks if
conditions of simulation correspond to the end of simulation.
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actual generic parameters>)[<a list of input and output actual parameters>]

Simulation run is initialized after simulation statement processing. One can pay an attention to the fact that the

several models may be simulated under the same conditions of simulation simultaneously.
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The subsystem of visualization represents the results of simulation. One can see the representation of the results

of simulation run at fig.3.
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Fig.2. The form for information procedure
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Fig.3. The results of simulation

Information procedures for simulation model validation

First of all let us discuss error detection in TRIADNS. Primarily we shall consider the types of errors which may be

recognized by the information procedures. There are the following types of errors:

— incorrect temporary delays,

—  wrong messages transfer,

— semantic incorrectness of signal conversion,

— semantic incorrectness of data exchange,

— invalid management of simulation model functioning,

— semantic incorrectness of changing of states of simulation model,
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— forbidden simulation model states.

It is advisable to determine the correctness of the following values for simulation model being represented above:
time slice between sending of message from one workstation and receiving of message by another one (this time
slice must be less than some limiting value). Moreover it is important to be sure that the value of received
message is valid and it is received by the correct input of workstation.

Information procedures are convenient not only for simulation model analyses but for simulation model debugging
and validation too. CAD system TriadNS (and CAD system Triad too) has a set of standard information
procedures for temporary delays recognition.

The information procedures using for debugging and testing are defined so: DB={P,I,A}, where P is an algorithm
representing information procedure action, | — a set of input parameters of this information procedures, where |=
Ipulevly, Ip - a set of input parameters and the type of this parameter is pole, Iv — a set of input parameters and
the types of these parameters coincide with the types of local variables, le — a set of parameters with type event.
Some information procedures may monitor one element of simulation model.
These procedures serve as a basis of knowledge based debugger. Information procedure more_interval (t) [e1,
e2], for example, is able to fix time slice between two events e1 (maybe it is the event of message sending) and
e2 (the event of message termination).
Invalid temporary delays may be recognized by information procedures all_events(e) ( this procedure defines the
particular beginning of event and its termination), all_changes(var) (procedure defines each instant of the time
when indicated variable is changed) and so on.
Investigator may use information procedure schedule_event (e) (the names of all registered events which
preceded the indicated one); inspect_change (e) (the values of all variables which were changed before the event
e occurrence, event e is an actual argument of procedure).
So we named some standard information procedures. But an investigator may use linguistic constructions
(information procedure and conditions of debugging) for specific occasions of debugging and so he will share the
debugger functionality.
Let us consider the example of information procedure for the detection of the sequence of events arrival:
information procedure event_sequence (in ref event E1,E2,E3;out Boolean arrived)
initial interlock (E2,E3); Arrived := false;

case of e1:available(e2);

e2:available( E3):
€3:ARRIVED:=true;

endc
endinf
So investigator may detect the arrival of the sequence of events E1—E2—E3. The statement interlock provides
input parameter blocking (event E1 in this case). It means that information procedure doesn’t watch parameters
being marked in interlock statement. The statement available allows beginning the marked parameter monitoring
again.
Another example concerns the problem of forbidden states of simulation model detection. Only such linguistic and

programming tool as information procedure may detect this error because only information procedure may
determine the value of local variables of different routines at the same moment of simulation time during
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simulation experiment and may compare these values. Simulation model editor and information procedures for
data collection and model monitoring are presented at fig.4.
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Fig. 4. Simulation model editor and information procedures for algorithm of investigation and debugging

Knowledge based debugger

Thus we have discussed the problem of error debugging and testing and consider the linguistic and program tools
in Triad intending to solve these problems. We briefly presented information procedures, its linguistic construction
and examples of applying these tools for simulation model monitoring during the simulation run. Special linguistic
construction conditions of debugging contains a list of the information procedures which are intended for
simulation model monitoring and error detection. The construction conditions of debugging are a part of simulate
statement. Debugger starts its work when simulation model begins to fulfill the simulate statement.
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Fig. 5. Graph representation of the simulation model structure



ITHEA IJ and IBS Sample Sheet 2013 9

Let us consider such a situation: we want to be sure in data transfer correctness from the workstation
Hst[1].Pol[1] (Pol[1]-it is an output polus) to workstation Hst[10].Pol[1] (fig.5). The example of simulate statement
one can see below:

simulate M on Checker (M.Hst[1].Pol[1], M.Hst[10].Pol[1])

Corresponding linguistic construction conditions of debugging is represented below:

conditions of debugging Checker (input real a,b; output boolean answer) (...Check_Value(1.0,1.0) (input
ia,ib; output ianswer);...).

The simulation run has to be terminated because of error detection. It is necessary to localize error and neutralize
it. Error localization and neutralization is knowledge based.

Information procedures are convenient not only for simulation model analyses but for simulation model debugging
and validation too.

Let us return to the example (fig. 5). We shall suppose that the routine associated with node Hst[1] sends a signal
to routine associated with HST[10]. Let debugger detects invalid signal received at input of this routine. So this
invalid signal may be the result of invalid processing in routines Rout[1], Rout[2], Rout[3], Rout[4]. Moreover it is
advisable to check the sequence of events and temporary delays validity.

So the mistake localization may develop according to different scenarios (may conform to different rules). These
rules are contained in knowledge base. More precisely cognitive agents for each type of the mistake with
appropriate rules are used for mistake localization. Debugger needs additional information: simulation model
structure which is represented by P = {U, V, W}. This information is necessary to define the path message
transfer. Besides, the information mentioned above is helpful to use the graph of scheduled events in order to
determine the sequence of events participating in message processing (it is presented on fig.6). Debugger may
use such additional information as graph of calculations. This graph provides the determination of sequence of
local variables processing.
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ee

Fig. 6 Graph of scheduled events

Expert system for mistake localization includes a set of procedures for debugging, knowledge base with rules
‘if....then ..." using all additional information mentioned above. Besides, it includes inference engine, explanation
module, editor for rules and meta rules. A set of procedures for localization of mistakes may be extended
because an investigator may create new information procedures using appropriate linguistic tools.

It is necessary to tell about ontology which may be used for mistake detection. Debugger will form request to
ontology if the mistake of the specific type is detected. Appropriate cognitive agent with specific rules needed for
an algorithm of processing mistake of specific type will be started. If there are some paths of an algorithm then
some cognitive agents will be started.
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Conclusion

So the authors presented the linguistic and program tools of CAD Triad.Net system needed not only for design of
model but for its monitoring, data collections, analyses, validation and verification. The authors consider the
linguistic and intellectual program tools for simulation model verification and validation more precisely. The
appropriate linguistic tools - information procedures - are under discussion.

The architecture of the debugger is presented. The debugger is used not only to detect mistakes in the
simulation model but to localize them. The debugger detects mistakes using information procedures and
determines the appropriate rules of localization thanks to ontology. Proper cognitive agents which act in
accordance with these specific rules start to localize mistakes. So the authors suggest solving the problem of
validation and verification using multiagent approach and ontology.

So presented approach permits to automate simulation model verification and validation. The process of mistake
detection becomes more effective and more flexible, but this investigations are under consideration of authors
nowadays.
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