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Abstract. A locally conformally Kähler (LCK) manifold is a complex man-

ifold M admitting a Kähler covering M̃ , such that its monodromy acts on
this covering by homotheties. A compact LCK manifold is called LCK with
potential if its covering admits an automorphic Kähler potential. It is known
that in this case M̃ is an algebraic cone, that is, the set of all non-zero vec-
tors in the total space of an anti-ample line bundle over a projective orbifold.
We start with an algebraic cone C, and show that the set of Kähler met-
rics with potential which could arise from an LCK structure is in bijective
correspondence with the set of pseudoconvex shells, that is, pseudoconvex hy-
persurfaces in C meeting each orbit of the associated R>0-action exactly once

and transversally. This is used to produce explicit LCK and Vaisman metrics
on Hopf manifolds, generalizing earlier work by Gauduchon-Ornea, Belgun and
Kamishima-Ornea.

1. Introduction

1.1. Constructions of LCK metrics.

Definition 1.1. A locally conformally Kähler (LCK) manifold is a complex

manifold M , dimM > 1, admitting a Kähler covering (M̃, ω̃), with the deck trans-

form group acting on (M̃, ω̃) by holomorphic homotheties.

For equivalent definitions and examples, see [DO] or [OV7].
A (linear) Hopf manifold H is a quotient of Cn\0 by an action of Z generated

by a linear map A : C
n −→ C

n, with all eigenvalues satisfying |αi| < 1. It is easy
to see that the Hopf manifold is diffeomorphic to S1 × S2n−1. Since b1(H) = 1
(an odd number), H is non-Kähler. In fact, this manifold is probably the earliest
example of a non-Kähler complex manifold known in mathematics.

However, any Hopf manifold is locally conformally Kähler. This observation
originated in works of Izu Vaisman in the 1970s; Vaisman defined and studied a
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326 L. ORNEA AND M. VERBITSKY

strictly smaller class of manifolds, called by him “generalized Hopf”. Now these
manifolds are known as “Vaisman manifolds”, because the name “generalized Hopf
manifold” was already used by Brieskorn and van de Ven (see [BV]) for some
products of homotopy spheres which do not bear Vaisman’s structure. Besides,
now it is known that not all Hopf manifolds belong to this smaller class.

These constructions are non-elementary. In fact, even the existence of locally
conformally Kähler metrics on many Hopf surfaces is quite non-trivial. A clean but
complicated argument was given in [GO], where such metrics were constructed in
dimension 2; when the map A is diagonal, the constructed metric is Vaisman. For
non-diagonal A the construction was much less explicit; in fact, the LCK metric on
these Hopf surfaces was obtained only by deformation.

In the present paper we use the formalism of “locally conformally Kähler metrics
with potential”, which we built in previous papers (e.g. [OV5]), to obtain an
explicit, computation-free and extremely simple construction of LCK metrics on
manifolds which are obtained as Z-quotients of algebraic varieties. This gives,
among other things, an explicit (i.e. not by deformations) construction of an LCK
metric on a non-diagonal Hopf manifold (compare also with Belgun’s construction
in [B, pp. 25–26]).

1.2. LCK manifolds. This section contains the definitions to be used in the paper.
Unless otherwise stated, we only refer to compact, connected manifolds (although
the definitions work also for non-compact manifolds).

Definition 1.2. A complex Hermitian manifold (M,J, g) is locally conformally
Kähler if its fundamental two-form ω := g ◦ J satisfies

dω = θ ∧ ω, dθ = 0;

here θ is called the Lee form.

This definition is equivalent to the one given above.
A particular subclass of LCK manifolds is described in the following.

Definition 1.3. A Vaisman manifold is an LCK manifold whose Lee form is
parallel with respect to the Levi-Civita connection of g.

Compact Vaisman manifolds are equipped with a Riemannian submersion (a
suspension in fact) to the circle with the fibers isometric to a Sasakian manifold N ;
see [OV1] (and see [BG] for an introduction to Sasakian geometry). Their universal
coverings are Riemannian cones N × R

>0 on which the deck transform group,
isomorphic to Z, acts by (x, t) �→ (ϕ(x), qt), where ϕ is a Sasakian automorphism
of N and q ∈ N. The diagonal Hopf manifold is a typical example; see §1.3. On the
other hand, it is known, [B], that non-diagonal Hopf surfaces can never be Vaisman
(although they are LCK; see [GO,OV5]).

A still wider subclass is the following.

Definition 1.4. An LCK manifold M which admits a Kähler covering (M̃, ω̃)
with the Kähler form ω̃ having a global, automorphic potential is called an LCK
manifold with potential. Here, by an automorphic potential we understand
a function ψ : M̃ −→ R satisfying ddcψ = ω̃, with the monodromy of M̃ mapping
ψ to const ·ψ.
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LCK METRICS OBTAINED FROM PSEUDOCONVEX SHELLS 327

All Vaisman manifolds are LCK with potential (given by the squared norm of
the Lee form with respect to the Kähler metric). As for Vaisman manifolds, the
monodromy of LCK with potential manifolds is isomorphic to Z. And hence this
subclass is strict, as shown by the example of the LCK Inoue surfaces and of the
LCK Oeljeklaus-Toma manifolds (see [OT]).

We now discuss the possibility that a Vaisman metric can be conformal with an
LCK metric with potential.

We showed in [OV5, Lemma 5.1] that the Kähler form of an LCK metric with
potential satisfies the equation

ω = −dcθ + θ ∧ I(θ).

As the Lee form is d logϕ, where ϕ is the potential, this motivates the following.

Definition 1.5. An LCK form ω admits LCK potential if for some function μ
one has ω = ddcμ+ dμ ∧ dcμ.

Lemma 1.6. Let (M, I, ω) be an LCK manifold with potential, such that (M, I, ω′ =
fω) admits LCK potential, f ∈ C∞(M). Then f = const.

Proof. Let ψ, ψ′ be the potentials for ω, ω′, considered as automorphic functions on
the Z-covering M̃ of M . Then the Kähler form ω̃ = ψω is conformally equivalent,
and hence proportional to the Kähler form ω̃′ = ψ′ω′. This gives ψf = constψ′.
Normalizing the constants, we may assume that ψf = ψ′. Then ddcψ = ω̃ = ω̃′ =
ddc(ψf), which gives ddcf = −df ∧ dcψ − dψdcf . The function f is Z-invariant,

hence it attains its maximum somewhere on M̃ . However, the second order elliptic

operator f
D�→ ddcf + df ∧ dcψ + dψ ∧ dcf satisfies conditions of Hopf maximum

principle, hence a solution of D(f) = 0 which has a local maximum is necessarily
constant. �

This implies the following result essentially stating that if the metric given by
a potential is conformally equivalent to a Vaisman metric, it is already Vaisman
itself.

Corollary 1.7. Let (M, I, ω) be a Vaisman manifold, such that (M, I, fω) admits
LCK potential. Then f = const.

In this paper we shall be concerned with the linear Hopf manifolds. These are
quotients of Cn \{0} by the cyclic group generated by a linear operator with eigen-
values strictly smaller than 1 in absolute value. It is known that Hopf manifolds
are LCK with potential (see [OV5]) and Vaisman if the operator is diagonal.

1.3. Survey of the literature. There are several papers where explicit con-
structions of LCK metrics on diagonal Hopf manifolds appear. The first is [Va],

where the metric (therein named after W. Boothby)

∑
dzi ⊗ dzi

|
∑

zizi|2
was considered

on Cn \ {0}/〈zi �→ 2zi〉.
It took more than twenty years to pass from operators A = α · In, α ∈ C, to

diagonal operators with complex non-equal eigenvalues. In [GO], an LCK metric
was constructed on diagonal Hopf surfaces Hα,β := C2 \ {0}/〈(u, v) �→ (αu, βv)〉.
The construction is based on finding a Kähler potential on C2 \ {0} in terms of
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328 L. ORNEA AND M. VERBITSKY

α, β, but the formula is only implicit. This procedure was generalized in [B]. The
construction of Vaisman metrics in the present paper can also be considered as a
generalization of [GO] to arbitrary dimensions.

In [KO] a construction was done for LCK metrics on Cn \ {0}/〈zi �→ αizi〉,
starting from a deformation of the standard Sasakian structure of S2n−1 according
to the S1 action with weights αi (cf. also [GO, Section 3]). The paper [KO] also
contains a very useful criterion to decide when a conformal class of LCK metrics
on a complex manifold contains a Vaisman representative, in terms of the existence
of a holomorphic flow which lifts to a non-trivial flow of homotheties of the Kähler
covering.

A different construction on the same manifold, explicitly writing a Kähler po-
tential on Cn \ {0}, appeared in [Ve] and since then it was cited in almost all of our
subsequent papers. However, as observed by Matei Toma and Ryushi Goto, that
metric is singular.

To correct this error we provide here a general construction of LCK metrics on
Hopf manifolds. Our approach works for LCK manifolds with potential, giving a
complete list of LCK metrics with potential in terms of a pseudoconvex shell in the
covering Definition 2.14.

For the time being, we don’t know whether is it possible or not to write a formula
for a potential for an LCK metric on a Hopf manifold; in the present paper, as well
as in [GO], the potential is written as a solution of a certain differential equation.

2. Algebraic cones and LCK manifolds with potential

2.1. Algebraic cones.

Definition 2.1. A closed algebraic cone is an affine variety C admitting a
C∗-action τ with a unique fixed point x0 (called the origin), which satisfies the
following.

1. C is smooth outside of x0.
2. τ acts on the Zariski tangent space Tx0

C diagonally, with all eigenvalues
|αi| < 1.

An open algebraic cone is a closed algebraic cone with the origin removed:
C \ {x0}.

Definition 2.2. Let X be a projective orbifold, and let L be an ample line bundle
on X. Assume that the total space of L is smooth outside of the zero divisor.
The algebraic cone C(X,L) of X,L is the total space of non-zero vectors in
L∗. A cone structure on C(X,L) is the C

∗-action arising this way (by fiberwise
multiplication).

In [OV3, Section 4], it was shown that any open algebraic cone C is isomorphic
to C(X,L), for appropriate X and L. This was shown by the following argument.
Given the algebraic cone C, one obtains X as the quotient of C by C∗, and then
the cone C is naturally identified with the total space of a principal C∗-bundle L1.
Ampleness of this bundle follows, because the corresponding closed algebraic cone
Cc is an affine variety, and algebraic functions on Cc are identified with the section
of the line bundle L associated with L1.
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Definition 2.3. Let γ be an automorphism of a closed algebraic cone. It is called
a holomorphic contraction if for any compact subset K ⊂ C, and any open
neighborhood U of the origin, there exists a number N sufficiently big such that
γN (K) ⊂ U .

Definition 2.4. Let C be a closed algebraic cone, and ρ : R>0 −→ Aut(C) an
R>0-action. We say that R>0 acts by holomorphic contractions if ρ(t) is a
holomorphic contraction for all t < 1.

Example 2.5. Let C = C
n = C(CPn−1,O(1)). Then any linear automorphism of

C with all eigenvalues |αi| < 1 acts on C by holomorphic contractions.

Example 2.6. Let ρ := τ
∣∣
R>0

be the action of R>0 on an algebraic cone provided

by the cone structure, R>0 ⊂ C
∗. Since ρ acts on the tangent space TcC to the

origin with eigenvalues smaller than 1, it acts on C by holomorphic contractions
([OV5, Theorem 3.3]).

Remark 2.7. As shown in [OV5, Theorem 3.3], the quotient of an algebraic cone
by a contraction is an LCK manifold with potential, and, conversely, any LCK
manifold with potential is obtained by taking the quotient of an open algebraic
cone by a holomorphic contraction. Such a contraction, being a priori a Z-action,
can be extended to an R>0-action by holomorphic contractions.

Further on, we use the following version of this result.

Theorem 2.8. Let M be a locally conformally Kähler manifold with potential.
Then M̃ , as a complex manifold, is isomorphic to an open algebraic cone C,
equipped with an action ρ of R>0 by holomorphic contractions, and the quotient
M̃/〈ρ(2n)〉 is isomorphic (as a complex manifold) to M .

Proof. In [OV6, Theorem 2.1], it is shown that M can be deformed into a Vaisman

manifold. From its proof it is apparent that this deformation preserves M̃ (in fact,

only the Z-action is deformed). Therefore, M̃ is a covering of a Vaisman manifold.
Then, it is an algebraic cone, as follows from [OV2, Proposition 4.6]. �

2.2. CR-geometry and Sasakian manifolds. In this subsection, we introduce
the Sasakian manifolds and some related notions of CR-geometry. We follow [OV3].

Definition 2.9. A CR-structure (Cauchy-Riemann structure) on a manifold M
is a subbundle H ⊂ TM ⊗ C of the complexified tangent bundle, which is closed
under commutator: [H,H] ⊂ H and satisfies H ∩H = 0.

A function f : M → C is CR-holomorphic if DV f = 0 for any vector field
V ∈ H .

On a CR manifold (M,H), the bundleH⊕H is preserved by complex conjugation
and hence it is obtained as a complexification of a real subbundle HR. Then IH :=
−
√
−1IdH defines a complex structure on HR and H is its

√
−1-eigenspace of its

extension to the complexification HR ⊗ C.
If codimTMHR = 1, and the Frobenius tensor L : HR×HR → TM/HR, L(X,Y ) =

[X,Y ] mod HR is non-degenerate, then (M,H) is a CR contact manifold and
HR is its contact structure (or distribution). In this context, L is called the Levi
form.

As L vanishes on H and H , L is (1, 1) with respect to IH .
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330 L. ORNEA AND M. VERBITSKY

Definition 2.10. A contact CR-manifold (M,HR, IH) is called pseudoconvex if
the Levi form is positive or negative, depending on the choice of orientation. If this
form is also sign-definite, then (M,HR, IH) is called strictly pseudoconvex.

Definition 2.11. Let S be a CR-manifold. A CR-holomorphic vector field v ∈ TS
is called transversal if it is transversal to the CR-distribution HR ⊂ TS.

Theorem 2.12 ([OV3, Theorem 1.2]). Let M be a compact pseudoconvex contact
CR-manifold. Then the following conditions are equivalent.

(i) M admits a Sasakian metric, compatible with the CR-structure.
(ii) M admits a proper, transversal CR-holomorphic S1-action.
(iii) M admits a nowhere degenerate, transversal CR-holomorphic vector field.

Theorem 2.13 ([OV3, Theorem 1.3]). Let M be a compact, strictly pseudocon-
vex CR-manifold admitting a proper, transversal CR-holomorphic S1-action. Then
M admits a unique (up to an automorphism) S1-invariant CR-embedding into an
algebraic cone (C, τ ). Moreover, a Sasakian metric on M can be induced from a
Kähler metric ω̃ on this cone, which is automorphic in the following sense: for
some constant c > 1, one has τ (t)∗ω̃ = |t|cω̃.

2.3. Pseudoconvex shells in algebraic cones.

Definition 2.14. Let C be an algebraic cone, equipped with an action ρ of R>0 by
holomorphic contractions. A pseudoconvex shell in C is a strictly pseudoconvex
submanifold in C, intersecting each orbit of ρ exactly once and transversally.

Remark 2.15. The flow ρ transforms a pseudoconvex shell into another pseudocon-
vex shell, biholomorphic with the first one. And hence if one shell is intersected
transversally, then all of the transformed ones are intersected transversally too.

Remark 2.16. Please note that the action of ρ may bear no relation to the cone
action τ : C∗ −→ Aut(C).

Example 2.17. In Cn \ {0}, take S to be a small round sphere centered in 0 and
take ρ to be a flow exp(tA) generated by an upper triangular matrix A with small
norm. Then the flow intersects S transversally. This argument (for n = 2) was
used by F. Belgun to produce an LCK metric on Hopf surfaces.

Remark 2.18. Transversality of the flow is not always granted. In the case of a
non-diagonalizable linear contraction A := A0 + N on Cn \ {0} (where A0 is the
diagonal part and N is the nilpotent part), the round spheres (independently on
the radius) are transversal to the orbits of ρt = exp(tA) if and only if N is small
enough. Therefore, the argument of F. Belgun is wrong as stated in [B, Proposition
11].1 However, Belgun’s argument is easy to rectify. We may suppose A is in Jordan
normal form, hence upper triangular, A = Ass + An, where Ass is the semisimple
part and An the nilpotent matrix with entries equal to 1 and 0 in superdiagonal
part and 0 everywhere else . It is easy to see that Aε = Ass + εAn is conjugate to
A for each ε �= 0. Choosing ε small enough, we obtain an upper triangular matrix
with an arbitrarily small upper triangular part; its exponential flow intersects the
small spheres transversally.

1This remark is due to the anonymous referee.
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LCK METRICS OBTAINED FROM PSEUDOCONVEX SHELLS 331

Theorem 2.19. Let M = C/〈ρ(q)〉 where (C, τ ) is an algebraic cone, equipped
with the action ρ of R>0 by holomorphic contractions and q > 1. Let �r be the
infinitesimal generator of ρ and let S be a pseudoconvex shell in C. Then for each
λ ∈ R there exists a unique function ϕλ such that Lie�r ϕλ = λϕ and ϕλ

∣∣
S

= 1.
Moreover, such ϕλ is plurisubharmonic for sufficiently big λ >> 0. Conversely, any
LCK manifold with potential admits a metric obtained this way.

Proof. For each ρ-orbit and each ρ-equivariant potential ϕ, one has:

ρ(t) · ϕλ = etλϕλ, t ∈ R
>0.

Let S be a pseudoconvex shell in C. Then S × R>0 ∼−→ C, as orbits intersect the
shell only once. Hence for any s ∈ S and for any t ∈ R

>0 we have:

(2.1) ϕλ(ρ(t) · s) = eλt,

and this equation uniquely defines ϕλ. The problem is to prove that ddcϕλ > 0
and this is not automatic for ϕλ, but it holds for some power of it.

Now let B := eR�r · (TS∩ I(TS)) ⊂ TC be the subbundle obtained by translating
TS ∩ I(TS) with all et�r. Then, by construction, ddcϕλ

∣∣
B

is the Levi form of B and
hence it is positive definite.

It will now suffice to show that ddcϕ2aλ

∣
∣
S
= ddcϕ2a

λ

∣
∣
S
> 0 for sufficiently big a.

But

ddcϕ2a
λ = ϕ2a−2

λ

(
2aϕλ · ddcϕλ + 2a(2a− 1)dϕλ ∧ dcϕλ

)
.

As the shell S is compact, the result is implied by the following elementary linear
algebra lemma.

Lemma 2.20. Let h1, h2 be pseudo-Hermitian forms on a complex vector space V

and let W ⊂ V be a codimension 1 subspace. Assume that h1

∣∣
W

and h2

∣
∣∣
V/W

are

strictly positive (that is, positive definite), and h2

∣
∣
W

= 0. Then there exists u0 ∈ R,
depending continuously on h1, h2, such that hu := h1 + uh2 is positive definite for
any u > u0.

The direct part of the theorem now follows by applying Lemma 2.20 (whose
proof we postpone) to V = TM , W = B, h1 = ϕλdd

cϕλ, h2 = dϕλ ∧ dcϕλ.
For the converse, let ϕλ be any automorphic potential, thus satisfying (γk)∗ =

eλϕλ, and let �r be the holomorphic vector field which is the logarithm of the
monodromy action. Then let ρ(t) = e−tλ

(
et�r

)∗
be the corresponding endomorphism

of C∞(M). Then ρ(k + t)(ϕλ) = ρ(t)ϕλ and hence the orbit of ρ through ϕ is
compact. We then average ρ(t)ϕ on R and obtain a ρ(t)-invariant Kähler potential
ϕλ0. This ϕλ0 is obtained from a pseudoconvex shell S = ϕ−1

λ0 (1) and from �r as in
the direct part of the theorem.

Let us now give the proof of Lemma 2.20. For simplicity, we work in the real
setting, and we consider h1, h2 as bilinear symmetric forms. Let y ∈ V be a vector
such that h2(y, y) = 1. Then any x ∈ V can be written as x = ay + z, for some
z ∈ W . This translates to:

hu(x, x) = ua2 + a2h1(y, y) + h1(z, z) + 2ah1(z, y),

which we view as a polynomial in a. This one is positive definite for all a if and
only if

(2.2) (h1(z, y))
2 − (u+ h1(y, y)) · h1(z, z) < 0.
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332 L. ORNEA AND M. VERBITSKY

Choose y′ ∈ W such that h1(z, y
′) = h1(z, y) for all z ∈ W and let u > u0 :=

h1(y
′, y′)− h1(y, y). Then (2.2) becomes

(h1(z, y
′))2 − h1(y

′, y′)h1(z, z) < 0,

which is satisfied by the Cauchy-Buniakovski-Schwarz inequality, as h1 is positive
definite on W . �

Example 2.21. Let A be a linear operator on C
n with eigenvalues of absolute

values strictly smaller than 1. Let C = Cn \ {0} and let ρ(t) = et logA. Take a
sphere S = S2n−1 ⊂ Cn; it is easy to see that S is a pseudoconvex shell. Applying
Theorem 2.19, we obtain an automorphic potential ϕ on Cn\0, giving an LCK
metric on M = (Cn\0)/〈A〉.

Remark 2.22. When n = 2 and A is diagonal, the same potential was obtained in
[GO].

In particular, we recover the result proved in [GO,KO,OV5] that all Hopf man-
ifolds (Cn \ {0})/〈A〉 are LCK.

2.4. Vaisman metrics and pseudoconvex shells.

Remark 2.23. Vaisman manifolds are LCK with potential and hence they have
canonical pseudoconvex shells (levels of the potential).

Definition 2.24. Let (M, I, g) be a Vaisman manifold, let (C, ρ) be the associated
algebraic cone, equipped with the action ρ of R>0 by holomorphic contractions,
and let S be its pseudoconvex shell. The Reeb field of M is the CR-holomorphic
vector field Iθ� ∈ TS obtained from ρ by complex conjugation.

Remark 2.25. For Vaisman manifolds, the Reeb field is always transversal ([OV3]).

Proposition 2.26. Let v ∈ TS be a CR-holomorphic vector field on S, where S is
a pseudoconvex shell in an algebraic cone C. Then v can be uniquely extended to a
holomorphic vector field on the whole of C.2

Proof. Let OS , respectively OS◦ , be the ring of CR-holomorphic functions on S,
respectively on the interior S◦ of the shell S. By the solution of the Neumann
problem, L2(OS) = L2(OS◦) and hence, if we restrict to bounded functions, OS◦ =
OS as rings. Since vector fields on S and S◦ are derivations of the above rings, the
result follows. �

Theorem 2.27. Let (M, I, g) be an LCK manifold obtained (as in Theorem 2.19)
from an algebraic cone C and a pseudoconvex shell S, and let γ : Z−→ Aut(C)
be the deck transform map. Then the Hermitian manifold (M, I, g) is conformally
equivalent to a Vaisman one if and only if S admits a transversal CR-holomorphic
vector field ξ, such that its holomorphic extension to C is γ(1)-invariant and
exp(−Iξ) · γ(1) preserves S.

2This is called the holomorphic extension of v.
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LCK METRICS OBTAINED FROM PSEUDOCONVEX SHELLS 333

Proof. Let g be conformal with a Vaisman metric. By Corollary 1.7, we may
suppose (M, I, g) itself is Vaisman. Then ξ = Iθ� is an isometry of the LCK
metric. The Kähler metric on C is ddcϕ, with ϕ given by the equation

etθ
�

(S) = ϕ−1(t),

where S is the level set of ϕ. Then S is Sasakian and Iθ� is the Reeb field of the
underlying contact structure, hence it is transversal by definition. By construction,
M = C/〈γ(1)〉, and the extension of ξ to C is the lift to C and is γ(1) invariant
by definition. We have checked all the conditions of Theorem 2.27, except the last
one: exp(−Iξ) · γ(1)(S) = S.

The Lee field −Iξ=θ� acts by homotheties on the potential ϕ, hence Lieexp(−Iξ) ϕ
= cϕ for some contant c. The monodromy map γ(1) also acts by homotheties on
ϕ: Lieρ(1) ϕ = c′ϕ for another constant c′. What we have to do is to homothetically
modify the initial metric g such that c becomes 1/c′; in this case exp(−Iξ) · γ(1)
will preserve the potential ϕ and hence will preserve S.

Conversely, the vector field ξ is tangent to S and its flow exp(tξ) acts by con-
tractions, hence defining a metric on the cone C over S. As γ(1) maps a shell Sλ

to Sconst ·λ, if follows that γ(1) acts by homotheties on C. This means that the
complex flow generated on M = C/〈γ(1)〉 by ξ and Iξ lifts to a flow of non-trivial
homotheties on the cone. By [KO] this ensures the existence of a Vaisman metric
in the conformal class of g. �

2.5. Examples and erratum. As an application, we add an erratum to several
papers where we have given a wrong formula for an LCK metric on diagonal Hopf
manifolds (e.g. [Ve], [O]), and give a general and almost explicit construction of
a Vaisman metric on any diagonal Hopf manifold. This constructions originates
in the ones in [GO,B,KO], but unifies them and presents them in a much more
synthetic and transparent way.

We apply Theorem 2.27. The data to start with are the cone C, the shell S, the
vector field ξ and the monodromy γ.

Let A = diag(α1, . . . , αn), with 0 < |α1| � |α2| � · · · � |αn| < 1. Denote by A|·|
the matrix diag(|α1|, . . . , |αn|) (in the same basis).

Let C be C
n \ {0}. As a shell S, we take the sphere S2n−1, but one can take

for S the boundary of any strictly pseudoconvex body containing 0 and satisfying
A|·|A

−1(S) = S.
The transversal CR-holomorphic vector field ξ is

(2.3) ξ =
√
−1 ReLogA =

√
−1 log diag(|α1|, . . . , |αn|)

and the monodromy map γ is given by γ(z) = A · z, z ∈ C.
To apply Theorem 2.27 we need to verify that ξ is γ(1)-invariant and exp(−Iξ) ·

γ(1) preserves S. An easy computation shows that exp(−Iξ)·γ(1) acts as A|·|A
−1 =

diag( α1

|α1| , . . . ,
αn

|αn| ) and thus it preserves the norm of vectors, hence preserving the

spheres. Finally, as the action of γ(1) is linear, the γ(1)-invariance of ξ amounts to
A · ξz = ξA·z which is immediate from (2.3).

This gives an explicit construction of Vaisman’s structure on diagonal Hopf man-
ifolds. On the other hand, Theorem 2.19 provides a rather explicit construction of
LCK metrics on non-diagonal Hopf manifolds, avoiding the argument by deforma-
tions in [OV5].
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[Ve] M. S. Verbitskĭı, Theorems on the vanishing of cohomology for locally conformally hyper-
Kähler manifolds (Russian, with Russian summary), Tr. Mat. Inst. Steklova 246 (2004),

Licensed to University of Nottingham. Prepared on Wed Sep 14 17:42:34 EDT 2016 for download from IP 128.243.46.132.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1760667
http://www.ams.org/mathscinet-getitem?mr=1760667
http://www.ams.org/mathscinet-getitem?mr=2382957
http://www.ams.org/mathscinet-getitem?mr=2382957
http://www.ams.org/mathscinet-getitem?mr=0233360
http://www.ams.org/mathscinet-getitem?mr=0233360
http://www.ams.org/mathscinet-getitem?mr=1481969
http://www.ams.org/mathscinet-getitem?mr=1481969
http://www.ams.org/mathscinet-getitem?mr=1656010
http://www.ams.org/mathscinet-getitem?mr=1656010
http://www.ams.org/mathscinet-getitem?mr=2137466
http://www.ams.org/mathscinet-getitem?mr=2137466
http://www.ams.org/mathscinet-getitem?mr=2141693
http://www.ams.org/mathscinet-getitem?mr=2141693
http://www.ams.org/mathscinet-getitem?mr=2222543
http://www.ams.org/mathscinet-getitem?mr=2222543
http://www.ams.org/mathscinet-getitem?mr=2024735
http://www.ams.org/mathscinet-getitem?mr=2024735
http://www.ams.org/mathscinet-getitem?mr=2139254
http://www.ams.org/mathscinet-getitem?mr=2139254
http://www.ams.org/mathscinet-getitem?mr=2322546
http://www.ams.org/mathscinet-getitem?mr=2322546
http://www.ams.org/mathscinet-getitem?mr=2501742
http://www.ams.org/mathscinet-getitem?mr=2501742
http://www.ams.org/mathscinet-getitem?mr=2657432
http://www.ams.org/mathscinet-getitem?mr=2657432
http://www.ams.org/mathscinet-getitem?mr=2595004
http://www.ams.org/mathscinet-getitem?mr=2595004
http://www.ams.org/mathscinet-getitem?mr=2796645
http://www.ams.org/mathscinet-getitem?mr=2796645
http://www.ams.org/mathscinet-getitem?mr=0418003
http://www.ams.org/mathscinet-getitem?mr=0418003


LCK METRICS OBTAINED FROM PSEUDOCONVEX SHELLS 335

no. Algebr. Geom. Metody, Svyazi i Prilozh., 64–91; English transl., Proc. Steklov Inst.
Math. 3 (246) (2004), 54–78. MR2101284 (2005h:53071)

University of Bucharest, Faculty of Mathematics, 14 Academiei Street,

70109 Bucharest, Romania – and – Institute of Mathematics “Simion Stoilow” of the

Romanian Academy, 21, Calea Grivitei Street 010702-Bucharest, Romania

E-mail address: Liviu.Ornea@imar.ro
E-mail address: lornea@fmi.unibuc.ro

Laboratory of Algebraic Geometry, National Research University HSE, 7 Vavilova

Street, Moscow, Russia, 117312

E-mail address: verbit@mccme.ru
E-mail address: verbit@verbit.ru

Licensed to University of Nottingham. Prepared on Wed Sep 14 17:42:34 EDT 2016 for download from IP 128.243.46.132.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2101284
http://www.ams.org/mathscinet-getitem?mr=2101284

	1. Introduction
	1.1. Constructions of LCK metrics
	1.2. LCK manifolds
	1.3. Survey of the literature

	2. Algebraic cones and LCK manifolds with potential
	2.1. Algebraic cones
	2.2. CR-geometry and Sasakian manifolds
	2.3. Pseudoconvex shells in algebraic cones
	2.4. Vaisman metrics and pseudoconvex shells
	2.5. Examples and erratum

	Acknowledgments
	References

