УДК 517.98

А. В. Романов

О слабой* сходимости операторных средних

Для линейного оператора $U, ||U^n|| \leq \text{const},$ в пространстве Банаха X обсуждаются условия сходимости соответствующих его сопряженному оператору U^* эргодических операторных сетей T_{α} в W*О-топологии пространства $\operatorname{End} X^*$. Точки накопления всевозможных таких сетей образуют выпуклое компактное множество L в $\operatorname{End} X^*$, представляющее собой ядро полугруппы операторов $G = \overline{\operatorname{co}} \Gamma_0$, где $\Gamma_0 = \{U_n^*, n \geqslant 0\}$. Показано, что все эргодические сети T_{α} слабо * сходятся точно тогда, когда ядро L состоит из одного элемента. В случае $X = C(\Omega)$ и оператора сдвига U, порожденного непрерывным преобразованием φ метризуемого компакта Ω , прослеживаются связи эргодических свойств U со структурой полугрупп операторов L, G и $\Gamma = \overline{\Gamma}_0$, а также с динамическими характеристиками полукаскада (φ, Ω) . В частности, если card L=1, то: а) при каждом $\omega \in \Omega$ замыкание траектории $\{\varphi^n \omega, n \geqslant 0\}$ содержит ровно одно минимальное множество m; б) сужение (φ, m) строго эргодично. Условие а) влечет W*О-сходимость любых эргодических последовательностей операторов $T_n \in \operatorname{End} X^*$ при дополнительном предположении о наличии в ядре обволакивающей полугруппы $E(\varphi, \Omega)$ элементов, полученных из "базисного" семейства преобразований $\{\varphi^n, n\geqslant 0\}$ компакта Ω с помощью некоторой трансфинитной последовательности секвенциальных предельных переходов.

Библиография: 15 наименований.

Ключевые слова: слабая* эргодическая теория, динамическая система, обволакивающая полугруппа, представление Шоке.

Введение

Пусть линейный оператор U в банаховом пространстве X удовлетворяет оценкам $\|U^n\|\leqslant c$ при всех целых $n\geqslant 0$. Вопрос о сходимости в подходящих топологиях средних Чезаро

$$U_n = \frac{1}{n}(I + U + \dots + U^{n-1}), \quad n \to \infty,$$

или иных эргодических (усредняющих) сетей $R_{\alpha}=R_{\alpha}(U)$ составляет содержание операторных эргодических теорем. При этом, как правило, рассматривается [1] сходимость R_{α} в сильной, слабой или равномерной топологиях пространства линейных ограниченных операторов $\operatorname{End} X$. В наиболее естественной постановке задачи рассматривается сильная операторная топология (SO-топология), элементы SO-эргодической сети R_{α} выбираются из выпуклой оболочки множества операторов $\{U^n, n \geqslant 0\}$ и удовлетворяют требованию

 $R_{\alpha}(I-U) \xrightarrow{\mathrm{SO}} 0$. Согласно принципу разделения Сайна [1], [2] произвольная SO-эргодическая операторная сеть R_{α} сходится сильно, если и только если инвариантные векторы оператора U разделяют инвариантные векторы сопряженного оператора U^* . Различные версии этого принципа используются [1], [3] и в более общих ситуациях, связанных со сходимостью операторных средних.

В настоящей работе будут рассматриваться условия сходимости для всех $x\in X$ обобщенных средних $R_{\alpha}x\to z,\,z\in X^{**}$, в w^* -топологии второго сопряженного пространства X^{**} , или, что эквивалентно, условия слабой* сходимости (W*O-сходимости) действующих в первом сопряженном пространстве X^* операторов $T_{\alpha}=R_{\alpha}^*$. В частности, вместо w^* -сходимости для $x\in X$ средних $U_nx\to z,\,z\in X^{**}$, можно говорить о W*O-сходимости в пространстве End X^* операторной последовательности

$$V_n = \frac{1}{n}(I + V + \dots + V^{n-1}),$$

где $V = U^*$.

Пусть G_0 — выпуклая оболочка множества операторов $\Gamma_0 = \{V^n, n \geqslant 0\}$ в End X^* . Сеть операторов T_α в G_0 называем эргодической, если выполняется условие $T_\alpha(I-V) \xrightarrow{W^*O} 0$. При этом $T_\alpha = R_\alpha^*$, $R_\alpha \in \operatorname{End} X$, и соответствующую операторную сеть R_α также называем эргодической. Как видим, имеет место сходимость в слабой операторной топологии $R_\alpha(I-U) \xrightarrow{WO} 0$. Обозначим через G и Γ полугруппы операторов, полученные W^*O -замыканием G_0 и Γ_0 . Ограниченные (по норме) подмножества пространства $\operatorname{End} X^*$ относительно компактны в W^*O -топологии, поэтому множества G и Γ компактны. Наименьший двусторонний идеал (ядро) L полугруппы G оказывается непустым выпуклым компактным подмножеством в G, состоящим из всех таких операторов $Q \in G$, что VQ = Q. Отметим, что элементы идеала L представляют собой действующие в пространстве X^* проекторы с нормой, не превосходящей величины c.

Главная идея настоящей работы состоит в том, чтобы связать эргодические свойства линейных операторов U, V с алгебраической и геометрической структурами полугрупп L, G и Γ . Из результатов С. П. Ллойда [4] с помощью принципа разделения можно получить, что если некоторая SO-эргодическая сеть операторов $R_{\alpha} \in \operatorname{End} X$ сильно сходится, то ядро L полугруппы G состоит из одного элемента. В развитие этой темы показано (теорема 1.3), что все эргодические сети операторов $T_{\alpha} \in G_0$ сходятся (к одному и тому же проектору $Q \in L$) в W*О-топологии точно тогда, когда $L = \{Q\}$. Последнее условие выполняется не всегда, однако непосредственно из определения ядра L следует, что каждый элемент $Q \in L$ есть предел некоторой операторной эргодической сети, т. е. для любого $U \in \operatorname{End} X, \|U^n\| \leqslant \operatorname{const},$ существуют W*О-сходящиеся эргодические сети операторов $T_{\alpha} \in G_0$. Тем самым демонстрируется принципиальное различие между сильной и слабой* эргодическими теориями, так как согласно принципу разделения все SO-эргодические операторные сети R_{α} одновременно сходятся (к одному и тому же проектору $P \in \operatorname{End} X$) или расходятся в SO-топологии пространства End X. Пока нет полной ясности в вопросе о том, при каких условиях тот или иной проектор $Q \in L$ будет пределом в W*О-топологии некоторой эргодической последовательности операторов $T_n \in G_0$.

В качестве аналога принципа разделения для слабой* сходимости средних Чезаро V_n известен критерий Иваника [5]. Полезные обобщения этого критерия в случае произвольных эргодических сетей получены в теореме 1.5.

Слабая* сходимость эргодических средних представляет интерес прежде всего с точки зрения теории динамических систем. Действительно, всякое непрерывное преобразование φ метризуемого компакта Ω порождает оператор сдвига $U: x(\omega) \to x(\varphi\omega), \ \omega \in \Omega$, в пространстве непрерывных скалярных функций $X = C(\Omega)$, и, например, слабая* сходимость средних Чезаро V_n сводится к поточечной сходимости скалярных средних, определенных равенством

$$(U_n x)(\omega) = \frac{1}{n} (x(\omega) + x(\varphi \omega) + \dots + x(\varphi^{n-1} \omega))$$

при любых $x\in X$ и $\omega\in\Omega$. В терминологии Крылова–Боголюбова [6], [7] это означает квазирегулярность всех точек Ω относительно дискретной динамической системы (полукаскада) $\varphi^n,\ n\geqslant 0$. Главные результаты статьи относятся именно к данному случаю, причем их формулировки и доказательства существенно используют понятие обволакивающей полугруппы $E(\varphi,\Omega)$ полукаскада (φ,Ω) , представляющей собой [8] замыкание в топологии прямого произведения Ω^Ω семейства преобразований $\Phi_0=\{\varphi^n,n\geqslant 0\}$ компакта Ω .

Пусть $\Lambda(\Omega)$ – совокупность вероятностных борелевских φ -эргодических мер на Ω . Для меры $\mu \in \Lambda(\Omega)$ обозначим через $\Phi_1(\mu)$ класс преобразований $p\colon \Omega \to \Omega$, обладающих следующим свойством: найдутся неубывающая система борелевских множеств $h_k \subset \Omega$ и двойная последовательность натуральных чисел n(k,l) такие, что $\mu(h_k) > 1 - k^{-1}$ и $\lim_{l \to \infty} \varphi^{n(k,l)} \omega = p\omega$ при всех $\omega \in h_k$. Продолжим процедуру перехода от Φ_0 к $\Phi_1(\mu)$ с помощью трансфинитной индукции и обозначим через $\Phi(\mu)$ объединение полученных классов $\Phi_{\nu}(\mu)$ по всем порядковым числам ν . Пусть Φ – пересечение классов $\Phi(\mu)$ по $\mu \in \Lambda(\Omega)$. Для $\omega \in \Omega$ обозначим через $\overline{\varrho}(\omega)$ замыкание в топологии Ω траектории $\{\varphi^n \omega, n \geqslant 0\}$.

Основной результат статьи (теорема 3.2) устанавливает связь между следующими утверждениями:

- А) ядро $\operatorname{Ker} E(\varphi, \Omega)$ обволакивающей полугруппы $E(\varphi, \Omega)$ содержит хотя бы одно преобразование $p \colon \Omega \to \Omega$, принадлежащее классу Φ ;
- A_1) носитель любой эргодической меры полукаскада (φ, Ω) есть минимальное множество;
- В) для каждого $\omega \in \Omega$ в $\overline{o}(\omega)$ содержится единственное минимальное множество m, причем на m сосредоточена ровно одна вероятностная борелевская φ -инвариантная мера;
- B_1) для каждого $\omega \in \Omega$ в $\overline{o}(\omega)$ содержится единственное минимальное множество;
 - С) ядро L полугруппы G состоит из одного элемента;
- D) все эргодические последовательности операторов $T_n \in G_0$ сходятся в W*O-топологии пространства $\operatorname{End} X^*$;
- E) все эргодические сети операторов $T_{\alpha} \in G_0$ сходятся в W*О-топологии пространства End X^* .

Оказывается, справедливы импликации $A)+B_1)\Rightarrow A_1),\ A_1)+B)\Rightarrow D),\ C)\Rightarrow B)$ и $C)\Leftrightarrow E)$. Эквивалентность условий C) и E) следует из упомянутой выше общей теоремы 1.3. Импликация $A_1)+B)\Rightarrow D)$ обобщает тот известный факт [7], что одноэргодичность компактной (дискретной) динамической системы влечет квазирегулярность всех точек ее фазового пространства. Как следует из импликации $C)\Rightarrow B)$, условие $\operatorname{card} L=1$ налагает жесткие ограничения на динамическую систему (φ,Ω) .

Показано также (теорема 2.4), что условие A) обеспечивает равенство $Z(\Omega)=(M(\Omega))^c$, где $M(\Omega)$ – объединение всех минимальных множеств и $Z(\Omega)$ – минимальный центр притяжения полукаскада (φ,Ω) , а $(\cdot)^c$ – операция замыкания в Ω . Напомним, что в общем случае (см. [6, гл. 5]) включение $(M(\Omega))^c \subset Z(\Omega)$ может быть собственным.

Один из наиболее простых возможных типов поведения динамической системы (φ,Ω) связан с совпадением для нее множества $M(\Omega)$ и совокупности неподвижных точек $N(\Omega)=\{\omega\in\Omega\colon \varphi\omega=\omega\}$. Чисто алгебраические рассуждения позволяют установить (теорема 3.5) равносильность условий $L\cap\Gamma\neq\varnothing$ и $L\cap\Gamma=\mathrm{Ker}\,\Gamma$, где $\mathrm{Ker}\,\Gamma$ – ядро полугруппы Γ . При этом каждое из данных условий обеспечивает равенство $M(\Omega)=N(\Omega)$.

Одним из инструментов исследования в настоящей работе служит интегральное представление Шоке операторов $T\in G$ через операторы $P\in \Gamma$. В этой связи для случая оператора сдвига $U\colon C(\Omega)\to C(\Omega)$ описано строение множества крайних точек ех G выпуклого компактного множества $G\subset \operatorname{End} X^*$. Показано, что всегда ех $G=\exp \Gamma$. Из определения полугрупп операторов G и Γ следует вложение ех $G\subset \Gamma$. В то же время согласно предложению 4.4 равенство ех $G=\Gamma$ оказывается равносильным инъективности эпиморфизма полугрупп $\theta\colon \Gamma\to E(\varphi,\Omega)$, действие которого определяется соотношением $P\delta(\omega)=\delta(p\omega)$ для $p=\theta P$ и $\omega\in\Omega$.

§ 1. Линейный оператор в произвольном пространстве

Рассмотрим в этом параграфе эргодические свойства произвольного линейного оператора U в банаховом пространстве X, предполагая лишь выполнение равномерных по $n\geqslant 0$ оценок $\|U^n\|\leqslant c$. Обозначим через $\mathrm{Im}(\,\cdot\,)$ и $F(\,\cdot\,)$ соответственно образ и подпространство неподвижных векторов линейных операторов, а через $\mathrm{End}\,X$ и $\mathrm{End}\,X^*$ – алгебры ограниченных операторов, действующих соответственно в X и первом сопряженном X^* . Пусть $V=U^*$ – сопряженный оператор в X^* ; тогда $\|V^n\|\leqslant c$ для $n\geqslant 0$. Оснастим алгебру операторов $\mathrm{End}\,X^*$ локально выпуклой слабой* операторной топологией (W*O-топологией) и выделим в ней мультипликативные полугруппы $\Gamma_0=\{V^n,n\geqslant 0\},\ G_0=\mathrm{co}\,\Gamma_0.$

Положим $G = \overline{\operatorname{co}} \Gamma_0$ и $\Gamma = \overline{\Gamma}_0$, где чертой сверху определена операция W*O-замыкания множеств нормированного пространства $\operatorname{End} X^*$. Тогда $\Gamma \subset G$ и $\|T\| \leqslant c$ для $T \in G$. Ограниченные по норме подмножества $\operatorname{End} X^*$ относительно компактны в W*O-топологии, поэтому множества G и Γ представляют собой хаусдорфовы (вообще говоря, неметризуемые) сепарабельные компакты. Умножение TT_1 в $\operatorname{End} X^*$ непрерывно по T при любом T_1 , однако непрерывно по T_1 лишь в случае $T = R^*$, $T_1 \in \operatorname{End} X$. Вследствие этого полугруппа $T_2 \in \operatorname{End} X$ 0 и ее

подполугруппа Γ некоммутативны, хотя их элементы и коммутируют с оператором V.

Заметим, что ${\rm Im}\, T\supset F(T)\supset F(V)$ для всех $T\in G.$ Следуя [4], рассмотрим непустую совокупность

$$L = \{Q \in G \colon VQ = Q\}$$

неподвижных точек непрерывного отображения $T \to VT$ выпуклого компактного множества G в себя. Оператор V непрерывен в w^* -топологии пространства X^* , поэтому множество L замкнуто. Если $Q \in L$, то $V^nQ = Q$ при $n \geqslant 1$, следовательно, TQ = Q для всех $T \in G$, в частности $Q^2 = Q$. Выпуклое компактное множество L состоит из проекторов $Q \in \operatorname{End} X^*$, $\|Q\| \leqslant c$. Можно дать альтернативное определение: $L = \{T \in G \colon \operatorname{Im} T = T(V)\}$. Отсюда видим, что $L = \{0\}$, если $F(V) = \{0\}$. Отметим, кроме того, что $L \cap G_0 = \varnothing$, если предполагать линейную независимость системы операторов $\{U^n, n \geqslant 0\}$ в пространстве $\operatorname{End} X$.

Для описания алгебраической структуры L, а также для доказательства некоторых утверждений в § 3 потребуются элементарные сведения из общей теории полугрупп (см., например, [9], [10]). Именно, если полугруппа S обладает минимальным левым идеалом, то она обладает и ядром $\operatorname{Ker} S$, представляющим собой непустое пересечение всех двусторонних идеалов. При этом $\operatorname{Ker} S$ совпадает с объединением всех минимальных левых идеалов и каждый левый идеал содержит минимальный. Если левый идеал $I \subset S$ минимальн и $u \in S$, то левый идеал Iu также будет минимальным, причем все минимальные левые идеалы полугруппы S получаются таким образом. С понятными поправками все изложенное верно и для правых идеалов.

ЛЕММА 1.1. Множество L является ядром полугруппы G, состоящим из одноэлементных левых идеалов. Кроме того, L – единственный минимальный правый идеал в G.

Доказательство. Ясно, что L – правый идеал в G. Если $Q \in L$, то TQ = Q для всех $T \in G$. Таким образом, $\{Q\}$ – одноэлементный минимальный левый идеал в G, поэтому L – двусторонний идеал. Полугруппа G обладает ядром $\operatorname{Ker} G$, представляющим собой объединение всех минимальных левых идеалов, это ядро содержит идеал L, а значит, совпадает с ним. Далее, $QQ_1 = Q_1$ для любых проекторов $Q, Q_1 \in L$, стало быть, правый идеал L является главным, порожденным любым своим элементом. Тем самым, L – минимальный правый идеал. Поскольку $\operatorname{Ker} G$ – объединение всех минимальных правых идеалов, то L – единственный идеал такого рода в полугруппе G и лемма доказана.

Отметим, что каждый односторонний идеал полугруппы G включает в себя минимальный, следовательно, каждый правый идеал содержит ядро L, а каждый левый идеал имеет с L непустое пересечение.

Для произвольной операторной сети T_{α} в G обозначаем через $\mathrm{cl}(T_{\alpha})$ непустое в силу компактности G множество ее обобщенных предельных точек (точек накопления). Называем такую сеть эргодической, если все $T_{\alpha} \in G_0$ и

$$T_{\alpha}(I-V) \xrightarrow{\mathrm{W}^{*}\mathrm{O}} 0.$$
 (1.1)

Поскольку $T_{\alpha} \in G_0$, то $T_{\alpha} \in R_{\alpha}^*$, где $R_{\alpha} \in \operatorname{End} X$. При этом операторную сеть R_{α} также называем эргодической. Последовательность средних Чезаро V_n является эргодической, поскольку $V_n(I-V) = n^{-1}(I-V^n)$ и $\|V_n(I-V)\| \le (1+c)n^{-1}$. Если эргодическая сеть T_{α} сходится в W*О-топологии к оператору Q, то $Q \in L$, причем из w^* -сходимости $T_{\alpha}y \to y_0$ для $y \in X^*$ следует, что $Vy_0 = y_0$.

Покажем, что условие $\operatorname{card} L=1$ равносильно одновременной сходимости всех эргодических сетей операторов $T_{\alpha}\in G_0$ в W*О-топологии пространства $\operatorname{End} X^*$.

ЛЕММА 1.2. Для произвольной сети операторов $T_{\alpha} \in G$ вложение $\operatorname{cl}(T_{\alpha}) \subset L$ равносильно соотношению (1.1).

Доказательство. Если $\operatorname{cl}(T_\alpha)\subset L$, но не выполнено равенство (1.1), то для некоторой окрестности D нуля в $\operatorname{End} X^*$ и каждого индекса α найдется индекс $\beta=\beta(\alpha),\ \beta\geqslant\alpha$, такой, что $T_\beta(I-V)\notin D$. Пусть $Q\in\operatorname{cl}(T_\beta)$; тогда $Q\in\operatorname{cl}(T_\alpha)\subset L$ и $Q(I-V)\notin D$. Тем самым, $Q(I-V)\neq 0$, а это противоречит соотношению $Q\in L$.

Обратно, TV = VT для операторов $T \in G$, и функция $T \to T(I-V)$ непрерывно отображает компактное множество G в End X^* , поэтому $\operatorname{cl}(T_\alpha(I-V)) \supset (I-V)\operatorname{cl}(T_\alpha)$. Если справедливо условие (1.1), то $\operatorname{cl}(T_\alpha(I-V)) = \{0\}$, а значит, $(I-V)\operatorname{cl}(T_\alpha) = \{0\}$, $\operatorname{cl}(T_\alpha) \subset L$ и лемма доказана.

ТЕОРЕМА 1.3. Все эргодические сети операторов $T_{\alpha} \in G_0$ сходятся в W*О-топологии точно тогда, когда ядро L полугруппы G состоит из единственного элемента Q. При этом $\lim_{\alpha} T_{\alpha} = Q$.

Доказательство. Если ядро L одноэлементно, то по лемме 1.2 произвольная эргодическая сеть операторов $T_{\alpha} \in G_0$ имеет единственную точку накопления $Q \in G$, следовательно, $T_{\alpha} \to Q$.

Предположим теперь, что ядро L содержит два различных элемента Q и Q'. Поскольку $L \subset \overline{G}_0$, то $T_\alpha \to Q$ и $T'_\alpha \to Q'$, где T_α , T'_α – эргодические сети в G_0 , определяемые системой W*O-окрестностей нуля пространства $\operatorname{End} X^*$. Более подробно, пусть $\alpha = (B, B^*, k)$, где k – натуральные числа, а B и B^* – произвольные конечные множества соответственно в X и X^* . На множестве индексов α введем отношение частичного порядка, а именно $\alpha_1 \geqslant \alpha$, если $B_1 \supset B$, $B_1^* \supset B^*$ и $k_1 \geqslant k$. При каждом значении α выберем операторы T_α и T'_α в G_0 таким образом, чтобы выполнялись соотношения

$$|(x, (T_{\alpha} - Q)y)| < k^{-1}, \qquad |(x, (T'_{\alpha} - Q')y)| < k^{-1}$$

для элементов $x \in B$ и $y \in B^*$. Положим $T''_{\alpha} = T_{\alpha}$ или $T''_{\alpha} = T'_{\alpha}$ в зависимости от четности или нечетности числа k. Как видим, операторная сеть T''_{α} является эргодической, но не имеет предела в W*О-топологии. Теорема доказана.

Обсудим теперь необходимые и достаточные условия сходимости эргодической сети $T_{\alpha}=R_{\alpha}^*$ в W*О-топологии пространства операторов $\operatorname{End} X^*$, обобщающие известный критерий Иваника [5] для средних Чезаро. Пусть $\operatorname{End}(X,X^{**})$ – банахово пространство ограниченных линейных операторов, действующих из X в X^{**} . Обозначим w^* -топологии в X^* и X^{**} через τ и σ

соответственно. Из тождества $(R_{\alpha}x,y)=(x,T_{\alpha}y)$ при $x\in X$ и $y\in X^*$ следует, что слабая* сходимость $T_{\alpha}\to T$ в $\operatorname{End} X^*$ эквивалентна σ -сходимости $R_{\alpha}x\to Rx$ на X, где $R\in \operatorname{End}(X,X^{**})$. Полезно заметить, что соотношения $(Rx,y)=(x,Ty),\ R=T^*\big|_X$ и $T=R^*\big|_{X^*}$ определяют естественную линейную изометрию пространств $\operatorname{End}(X,X^{**})$ и $\operatorname{End} X^*$.

Пусть $(\cdot)^{\sigma}$ операция замыкания множеств в σ -топологии. Положим

$$Y = \{ y \in X^* : T_{\alpha} y \xrightarrow{\tau} 0 \}, \qquad X_0 = \{ x \in X : R_{\alpha} x \xrightarrow{\sigma} z, z \in X^{**} \}.$$

Тогда $z=R_0x$, где $R_0\in \operatorname{End}(X_0,X^{**})$. Положим, кроме того, $X_1=\operatorname{Im} R_0$ и отметим, что $Y\cap F(V)=\{0\}$. Поскольку $R_{\alpha}x=x$ и $R_0x=x$ при $x\in F(U)$, то $F(U)\subset X_1$. Для множества $(\,\cdot\,)$ в X^{**} или X^* обозначаем через $(\,\cdot\,)^\perp$ его аннулятор (ортогональное дополнение) соответственно в X^* или X^{**} . Как следует из условия эргодичности (1.1), $T_{\alpha}y\stackrel{\tau}{\to}0$ на $\operatorname{Im}(I-V)\subset X^*$, а поскольку $(R_{\alpha}x,y)=(x,T_{\alpha}y)$ для всех $x\in X,\,y\subset X^*$, то и $R_{\alpha}x\stackrel{\sigma}{\to}0$ на $\operatorname{Im}(I-U)\subset X$. Таким образом, $X_0\supset \operatorname{Im}(I-U)$, а значит, $X_0^\perp\subset \operatorname{Im}(I-U)^\perp=F(V)$.

ЛЕММА 1.4. Для каждой эргодической сети операторов $T_{\alpha} \in G_0$ имеют место соотношения:

- a) $X_1^{\sigma} \subset Y^{\perp} \subset F(V^*)$ $u X_1^{\perp} \supset Y$;
- б) $X_0^{\perp} = X_1^{\perp} \cap F(V)$.

Доказательство. Отметим вложения $Y\supset {\rm Im}(I-V)$ и $Y^{\perp}\subset {\rm Im}(I-V)^{\perp}=F(V^*),$ где $V^*=U^{**}.$ Пусть $x\in X_0,\ y\in X^*$ и $z=R_0x;$ тогда $z\in X_1$ и

$$(z,y) = \lim_{\alpha} (R_{\alpha}x, y) = \lim_{\alpha} (x, T_{\alpha}y). \tag{1.2}$$

Как видим, (z,y)=0 для всех $y\in Y$, поэтому $X_1\subset Y^\perp$ и $X_1^\sigma\subset Y^\perp$. Из соотношений $(X_1^\sigma)^\perp=X_1^\perp,\ Y^{\perp\perp}=Y$ выводим вложение $X_1^\perp\supset Y$. Следовательно, п. а) леммы установлен. Далее, для функционалов $y\in F(V)$ справедливы равенства $T_\alpha y=y$. Отсюда находим, что $(R_\alpha x,y)=(R_0x,y)=(x,y)$ при всех $x\in X_0$. Это означает, что для таких y условия $y\in X_0^\perp$ и $y\in X_1^\perp$ равносильны. Однако $X_0^\perp\subset F(V)$, стало быть, $X_0^\perp=X_1^\perp\cap F(V)$. Лемма доказана.

Отметим, что требование W*O-сходимости эргодической сети T_{α} эквивалентно любому из двух соотношений: $X_0 = X$ или $X^* = F(V) \oplus Y$. Скажем, что X_1 разделяет F(V), если для любых различных векторов $y_1, y_2 \in F(V)$ найдется такой вектор $x \in X_1$, что $(x, y_1) \neq (x, y_2)$.

ТЕОРЕМА 1.5. Для каждой эргодической сети операторов $T_{\alpha} \in G_0$ следующие три условия попарно равносильны:

- а) X_1 разделяет F(V);
- б) $X_0 = X;$
- в) $X_1^{\perp} = Y$.

Доказательство. Подпространство X_1 разделяет F(V) точно тогда, когда $X_1^\perp \cap F(V) = \{0\}$. Из условия а) по лемме 1.4, б) имеем $X_0^\perp = \{0\}$, т. е. $X_0 = X$. Пусть теперь $X_0 = X$. Если $x \in X_0$, $z = R_0 x$ и $y \in X_1^\perp$, то (z,y) = 0, а из соотношений (1.2) выводим, что $T_\alpha y \xrightarrow{\tau} \overline{y}$ и вектор \overline{y} ортогонален X. Таким

образом, $\overline{y}=0$ при всех $y\in X_1^\perp$, или, другими словами, $X_1^\perp\subset Y$. Обратное вложение всегда верно по лемме 1.4, а), и импликация б) \Rightarrow в) установлена. Наконец, импликацию в) \Rightarrow а) получаем из того факта, что $Y\cap F(V)=\{0\}$, и доказательство теоремы завершено.

Для случая средних Чезаро V_n эквивалентность условий а) и б) теоремы 1.5 установлена в [5]. Отметим, что условие в) теоремы 1.5 равносильно соотношению $X_1^{\sigma} = Y^{\perp}$.

Замечание 1.6. Подпространства X_0, Y и линеал X_1 зависят от выбора операторной эргодической сети T_α . Если все такие сети сходятся, то согласно теореме 1.3 ядро L состоит из одного элемента Q и подпространство Y, совпадающее с ядром проектора Q, не зависит от выбора сети T_α . При этом линеалы $X_1 \subset X^{**}$ могут быть разными для разных сетей T_α , хотя и имеющими одинаковые σ -замыкания, так как в этом случае $X_1^\sigma = Y^\perp$.

Непрерывное действие $P \to VP$ порождает полукаскад (V,Γ) на W*O-компакте $\Gamma \subset \operatorname{End} X^*$. Будем придерживаться следующих обозначений: $A(\Gamma)$ – компактное (в w^* -топологии пространства $C^*(\Gamma)$) выпуклое множество вероятностных борелевских мер на Γ ; $\operatorname{Ai}(\Gamma)$ – замкнутое выпуклое подмножество V-инвариантных мер в $A(\Gamma)$; $\Lambda(\Gamma)$ – подмножество эргодических мер в $\operatorname{Ai}(\Gamma)$. По одному из эквивалентных определений [11, гл. 10] множество эргодических мер совпадает с совокупностью крайних точек ex $\operatorname{Ai}(\Gamma)$.

Поскольку $G = \overline{\text{co}} \, \Gamma_0$ и $\Gamma = \overline{\Gamma}_0$, то ех $G \subset \Gamma$ согласно [11, гл. 1], а так как разность $G \setminus \Gamma$ является бэровским множеством, то [11, гл. 4] каждому оператору $T \subset G$ соответствует мера $\lambda \in A(\Gamma)$, реализующая представление Шоке

$$T = \int_{\Gamma} P\lambda(dP). \tag{1.3}$$

Интегрирование здесь можно понимать в том смысле, что

$$(x, Ty) = \int_{\Gamma} (x, Py) \lambda(dP)$$

при всех $x \in X$ и $y \in X^*$. Будем называть меру λ представляющей и иногда использовать запись $T = T_{\lambda}$. Формула (1.3) определяет непрерывную сюръекцию $A(\Gamma) \to G$, однако представляющая мера не обязательно единственна.

ЛЕММА 1.7. $Ecnu \ \lambda \in Ai(\Gamma), \ mo \ T_{\lambda} \in L.$

Доказательство. Из V-инвариантности меры λ следует, что

$$VT_{\lambda} = \int_{\Gamma} VP\lambda(dP) = \int_{\Gamma} P\lambda(dP) = T_{\lambda}, \qquad T_{\lambda} \in L.$$

§ 2. Сдвиг в $C(\Omega)$: предварительные сведения

Всюду до конца статьи будут рассматриваться эргодические свойства оператора сдвига U в пространстве скалярных непрерывных функций $X=C(\Omega)$ на метризуемом компакте Ω . Таким образом, $(Ux)(\omega)=x(\varphi\omega)$ для $x\in C(\Omega)$ и

 $\omega \in \Omega$, где φ – некоторое непрерывное (не обязательно обратимое) преобразование Ω . Обозначим через $A(\Omega)$ и $K(\Omega)$ множества вероятностных борелевских мер и мер Дирака на Ω . Пусть $\Lambda(\Omega)$ – класс эргодических мер полукаскада (φ,Ω) , т.е. таких φ -инвариантных мер $\lambda \in A(\Omega)$, что $\lambda(h)$ равно 0 или 1 для всякого борелевского множества $h \subset \Omega$ со свойством $\varphi^{-1}h = h$. Кроме того, обозначим через $M(\Omega)$ и $Z(\Omega)$ объединение всех минимальных множеств и минимальный центр притяжения полукаскада (φ,Ω) . Напомним, что $Z(\Omega)$ совпадает с замыканием объединения носителей всех эргодических мер. Множество $A(\Omega)$ выпукло, компактно и метризуемо в w^* -топологии сопряженного пространства X^* , а $K(\Omega)$ представляет собой его замкнутое подмножество. Как известно, $(M(\Omega))^c \subset Z(\Omega)$, где $(\cdot)^c$ – операция замыкания в Ω , и это вложение может быть собственным.

Пусть Σ_{μ} — сигма-алгебра множеств $h \subset \Omega$, измеримых относительно лебегова продолжения борелевской меры $\mu \in A(\Omega)$. Тогда Σ_{μ} включает в себя сигма-алгебру Σ_b борелевских подмножеств Ω . Отображение $p \colon \Omega \to \Omega$ назовем μ -измеримым, если $p^{-1}\Sigma_b \subset \Sigma_{\mu}$. Совокупность таких отображений будем обозначать через Π_{μ} и положим

$$\Pi_A = \bigcap_{\mu \in A(\Omega)} \Pi_{\mu}.$$

Класс Π_A состоит из всех универсально измеримых преобразований компакта Ω .

Важную роль в дальнейших рассмотрениях будет играть понятие обволакивающей полугруппы динамической системы. Обволакивающая полугруппа $E(\varphi,\Omega)$ полукаскада (φ,Ω) представляет собой [8] замыкание семейства $\Phi_0=\{\varphi^n,n\geqslant 0\}$ в топологии t поточечной сходимости пространства Π всевозможных отображений $p\colon\Omega\to\Omega$. Эта топология отделима и совпадает с топологией прямого произведения Ω^Ω . По теореме Тихонова пространство Π компактно, а значит, компактно (но в общем случае неметризуемо) и множество $E(\varphi,\Omega)$. Полугруппа $E(\varphi,\Omega)$, вообще говоря, некоммутативна, и ее центр содержит подполугруппу Φ_0 . Любая обволакивающая полугруппа сепарабельна (как топологическое пространство) и обладает непустым ядром.

Действующий в пространстве мер $X^* = C^*(\Omega)$ сопряженный оператор $V = U^*$ сохраняет конус положительных борелевских мер на Ω , стало быть, этим же свойством обладает (как W*O-предел выпуклых комбинаций степеней V^n) и любой оператор $T \in G$. Если $\mu \in A(\Omega)$, то $(1, V^n \mu) = (U^n 1, \mu) = (1, \mu) = 1$ при $n \geqslant 0$, следовательно, $(1, T\mu) = 1$ и $T \colon A(\Omega) \to A(\Omega)$ для всех $T \in G$. В частности, $P \colon A(\Omega) \to A(\Omega)$ для $P \in \Gamma$.

Итак, оператор V порождает полукаскад (V,A) на компакте $A=A(\Omega)$, и операторы $P\in\Gamma$ действуют на $A(\Omega)$ как элементы обволакивающей полугруппы E(V,A) этого полукаскада. Данная полугруппа представляет собой замыкание последовательности непрерывных преобразований $\{V^n,n\geqslant 0\}$ компакта $A(\Omega)$ в топологии прямого произведения A^A . Более того, для операторов из $\operatorname{End} X^*$ топология w^* -сходимости на мерах $\mu\in A(\Omega)$ совпадает (с формально более сильной) W*O-топологией. Таким образом, полугруппу операторов Γ можно отождествить с обволакивающей полугруппой E(V,A).

Далее, $V\delta(\omega)=\delta(\varphi\omega)$ для точек $\omega\subset\Omega$, и множество мер Дирака $K=K(\Omega)$ замкнуто в $A(\Omega)$, поэтому $VK\subset K$ и $PK\subset K$ для всех операторов $P\in\Gamma$. Соответствие $V\to\varphi$ порождает непрерывный алгебраический гомоморфизм $\theta\colon P\to p$ полугруппы Γ в полугруппу $E(\varphi,\Omega)$, действие которого определяется из соотношения

$$P\delta(\omega) = \delta(p\omega), \qquad \omega \in \Omega.$$
 (2.1)

Поскольку множество Γ компактно, $\varphi^n=\theta(V^n)$ и семейство преобразований $\Phi_0=\{\varphi^n,n\geqslant 0\}$ плотно в $E(\varphi,\Omega)$, то $\theta(\Gamma)=E(\varphi,\Omega)$ и функция θ является эпиморфизмом.

Постараемся (хотя бы частично) охарактеризовать класс отображений $p \in \Pi$, удовлетворяющих тем же условиям, что и "базисные" преобразования $\varphi^n \in \Phi_0$:

- i) $p \in \Pi_A$;
- ii) $\mu(p^{-1}h) = \mu(h)$ для $\mu \in \Lambda(\Omega)$ и $h \in \Sigma_b$.

Для меры $\mu \in A(\Omega)$ и множества $B \subset \Pi$ определим класс $\mathcal{F}_{\mu}(B)$ отображений $p \colon \Omega \to \Omega$ следующим образом: $p \in \mathcal{F}_{\mu}(B)$, если найдутся неубывающая (зависящая от B) счетная система множеств $h_k \in \Sigma_b$ и двойная последовательность элементов $p_{kl} \in B$ такие, что $\mu(h_k) > 1 - k^{-1}$ и $\lim_{l \to \infty} p_{kl} \omega = p \omega$ при всех $\omega \in h_k$. При этом $\mu(H) = 1$, где $H = \bigcup_{k=1}^{\infty} h_k$, и $B \subset \mathcal{F}_{\mu}(B)$. Обозначим классы скалярных борелевских или μ -измеримых функций на метризуемом компакте Ω через X_b или X_μ соответственно.

ЛЕММА 2.1. Если $\mu \in A(\Omega)$, то операция $B \to \mathcal{F}_{\mu}(B)$ сохраняет свойство $B \subset \Pi_{\mu}$. Если $\mu \in \Lambda(\Omega)$ и $\mu(q^{-1}h) = \mu(h)$ для элементов $q \in B$ и $h \in \Sigma_b$, то этим же свойством обладают и элементы $p \in \mathcal{F}_{\mu}(B)$.

ДОКАЗАТЕЛЬСТВО. Покажем сначала, что преобразования $p \in \mathcal{F}_{\mu}(B)$ измеримы относительно меры μ , если это верно для всех $q \in B$. Пусть $x \in C(\Omega)$ и $g(\omega) = x(p\omega)$, а $\{h_k\}$ – соответствующая преобразованию p возрастающая система множеств. Обозначим через $\chi_k(\omega)$ и $\overline{\chi}_k(\omega)$ индикаторы множеств h_k и H. Если $p_{kl} \in B$ и $x_{kl}(\omega) = x(p_{kl}\omega)$, то $x_{kl} \in X_{\mu}$ и $x_{kl}(\omega) \stackrel{l}{\to} g(\omega)$ на h_k , т.е. $x_{kl}(\omega)\chi_k(\omega) \stackrel{l}{\to} g(\omega)\chi_k(\omega)$ на Ω . Таким образом, $g\chi_k \in X_{\mu}$, а поскольку $g(\omega)\chi_k(\omega) \stackrel{k}{\to} g(\omega)\overline{\chi}(\omega)$ при всех $\omega \in H$, то и $g\overline{\chi} \in X_{\mu}$. Однако $\mu(H) = \mu(\Omega)$, следовательно, μ -почти всюду $g(\omega)\overline{\chi}(\omega) = g(\omega)$.

Итак, $x(p\omega) \in X_{\mu}$ для любой непрерывной функции $x(\omega)$. Согласно теории классов Бэра [12, § 39] функции $\psi \in X_b$ получаются из непрерывных с помощью трансфинитной последовательности секвенциальных поточечных предельных переходов. Тем самым, μ -измеримыми оказываются все функции вида $\psi(p\omega)$, где $\psi \in X_b$. В частности, если $\chi(\omega)$ – индикатор произвольного борелевского множества $h \subset \Omega$, то $\chi(p\omega) \in X_{\mu}$ и $p^{-1}h \in \Sigma_{\mu}$. Отсюда следует включение $p \in \Pi_{\mu}$.

Далее, пусть $\mu \in \Lambda(\Omega)$, $h \in \Sigma_b$ и $p \in \mathcal{F}_{\mu}(B)$. Пусть также $f(\omega) = \chi(p\omega)$, где $\chi(\omega)$ – индикатор множества h. По предположению леммы $\mu(p_{kl}^{-1}h) = \mu(h)$ для преобразований $p_{kl} \in B$, или, другими словами, $(\chi, \mu) = (\chi_{kl}, \mu)$, если положить, кроме того, $\chi_{kl}(\omega) = \chi(p_{kl}\omega)$. Поскольку $\mu(h_k) > 1 - k^{-1}$, то

$$\left| (\chi, \mu) - \int_{h_k} \chi_{kl}(\omega) \mu(d\omega) \right| < \frac{1}{k}.$$

Учитывая, что $\chi_{kl}(\omega) \to f(\omega)$ на h_k при $l \to \infty$, получаем с помощью теоремы Лебега оценку

 $\left| (\chi, \mu) - \int_{h_k} f(\omega) \mu(d\omega) \right| \leqslant \frac{1}{k}.$

Переходя здесь к пределу по $k \to \infty$, приходим к равенству

$$\int_{\Omega} \chi(\omega)\mu(d\omega) = \int_{H} f(\omega)\mu(d\omega).$$

Поскольку $\mu(H)=\mu(\Omega),$ то $(\chi,\mu)=(f,\mu)$ или $\mu(h)=\mu(p^{-1}h).$ Лемма доказана полностью.

Пусть теперь $\mu \in \Lambda(\Omega)$ и $\Phi_1(\mu) = \mathcal{F}_\mu(\Phi_0)$. Построим неубывающую трансфинитную последовательность классов преобразований $\Phi_\nu(\mu)$, полагая $\Phi_\nu(\mu) = \bigcup_{\eta<\nu} \Phi_\eta(\mu)$ или $\Phi_\nu(\mu) = \mathcal{F}_\mu(\Phi_{\nu-1}(\mu))$ в зависимости от того, является ли ν предельным порядковым числом или не является таковым. Обозначим через $\Phi(\mu)$ объединение $\Phi_\nu(\mu)$ по всем порядковым числам ν . Согласно лемме 2.1 элементы $p \in \Phi_\nu(\mu)$ наследуют свойства элементов $q \in \Phi_{\nu-1}(\mu)$, определяемые соотношениями $q \subset \Pi_\mu$ и $\mu(q^{-1}h) = \mu(h)$ для $h \in \Sigma_b$. Отсюда с помощью трансфинитной индукции находим, что теми же свойствами обладают и все $p \in \Phi(\mu)$.

Положим

$$\Phi = \bigcap_{\mu \in \Lambda(\Omega)} \Phi(\mu);$$

тогда фактически доказано

ПРЕДЛОЖЕНИЕ 2.2. Преобразования $p \in \Phi$ удовлетворяют условиям i), ii).

В общем случае Φ не является частью $E(\varphi,\Omega)$. С другой стороны, Φ содержит в себе секвенциальное замыкание $E_0(\varphi,\Omega)$ семейства преобразований Φ_0 в t-топологии пространства Π . Другими словами, $E_0(\varphi,\Omega)$ получается из семейства Φ_0 с помощью трансфинитной последовательности секвенциальных t-предельных переходов. Таким образом, $E_0(\varphi,\Omega) \subset E(\varphi,\Omega)$, и $E_0(\varphi,\Omega)$ состоит из борелевских преобразований компакта Ω . Оказывается, принадлежность классу Φ какого-либо преобразования $p \in \operatorname{Ker} E(\varphi,\Omega)$, где $\operatorname{Ker} E(\varphi,\Omega)$ – ядро полугруппы $E(\varphi,\Omega)$, налагает определенные ограничения на исходную динамическую систему. Отметим в этой связи одно элементарное общее свойство обволакивающих полугрупп в формулировке, удобной для дальнейших ссылок. Обозначаем здесь и далее через M(A) объединение минимальных множеств полукаскада (V,A) на компакте $A=A(\Omega)$.

ЛЕММА 2.3. Если $p \in \operatorname{Ker} E(\varphi, \Omega)$, то $p \Omega \subset M(\Omega)$. Если жее $P \in \operatorname{Ker} \Gamma$, то $PA \subset M(A)$.

Доказательство. Как известно [8, предложение 3.5], любой элемент $p \in \text{Ker } E(\varphi,\Omega)$ можно представить в виде $p=\pi p$ с некоторым идемпотентом $\pi \in \text{Ker } E(\varphi,\Omega)$. При этом из [8, предложение 3.7] следует вложение $\pi\Omega \subset M(\Omega)$, а тем самым, и вложение $p\Omega \subset M(\Omega)$. Второе утверждение леммы аналогично первому согласно тому, что $\Gamma \simeq E(V,A)$.

Отметим, что в книге [8] рассматриваются обратимые динамические системы. Тем не менее, как нетрудно проверить непосредственно, цитированные здесь и ниже результаты из этой работы справедливы также и в необратимом случае.

ТЕОРЕМА 2.4. Если ядро $\operatorname{Ker} E(\varphi,\Omega)$ содержит элемент $p \in \Phi$, то $Z(\Omega) = (M(\Omega))^c$.

Доказательство. Поскольку $p \in \operatorname{Ker} E(\varphi, \Omega)$, то лемма 2.3 гарантирует вложение $p \Omega \subset M(\Omega)$. Замкнутое множество $M^c = (M(\Omega))^c$ принадлежит сигма-алгебре Σ_b , и по лемме 2.1

$$\mu(M^c) = \mu(p^{-1}M^c) = \mu(\Omega) = 1$$

для любой меры $\mu \in \Lambda(\Omega)$. Тем самым, $\mu(M^c) = 1$ и $\mathrm{supp}\, \mu \subset M^c$, а так как

$$Z(\Omega) = \bigg(\bigcup_{\mu \in \Lambda(\Omega)} \operatorname{supp} \mu\bigg)^c,$$

то $Z(\Omega) \subset (M(\Omega))^c$. Обратное включение верно всегда (см., например, [6, гл. 5, § 7]). Теорема доказана.

Если вложение $(M(\Omega))^c \subset Z(\Omega)$ собственно, то $\operatorname{Ker} E(\varphi,\Omega) \cap \Phi = \emptyset$.

§ 3. Сдвиг в $C(\Omega)$: основные результаты

Пусть, как и ранее, $X=C(\Omega)$ и U – оператор сдвига в X, порожденный непрерывным преобразованием φ компакта $\Omega.$

Для точки $\omega \in \Omega$ обозначим через $\overline{o}(\omega)$ замыкание в Ω траектории $\{\varphi^n \omega, n \geqslant 0\}$ и отметим, что это множество полуинвариантно, т. е. $\varphi \overline{o}(\omega) \subset \overline{o}(\omega)$. Как известно, всякое замкнутое полуинвариантное множество компактной динамической системы содержит в себе минимальное множество m с теми же свойствами. При этом $\varphi m = m$ и любая траектория плотна в m. Заметим, что $p \overline{o}(\omega) \subset \overline{o}(\omega)$ для всех преобразований $p \in E(\varphi, \Omega)$.

Установим связь между минимальными множествами полукаскада (φ,Ω) и минимальными левыми идеалами обволакивающей полугруппы $E=E(\varphi,\Omega)$. Согласно [8, гл. 2] каждый такой идеал является минимальным множеством дискретной динамической системы (φ,Ω) , порожденной непрерывным преобразованием $p\to\varphi p$ компакта $E(\varphi,\Omega)$, а потому замкнут в тихоновской топологии $E(\varphi,\Omega)$.

ЛЕММА 3.1. Для любого $\omega \in \Omega$ и произвольного минимального левого идеала $I \subset E(\varphi,\Omega)$ множество $I\omega \subset \overline{o}(\omega)$ минимально. Обратно, для каждого минимального множества $m \subset \overline{o}(\omega)$ найдется такой минимальный левый идеал $I \subset E(\varphi,\Omega)$, что $I\omega = m$.

Доказательство. Левый идеал I минимален, и $\varphi p = p \varphi$ для всех $p \in E(\varphi, \Omega)$, поэтому $I \varphi = \varphi I = I$. При фиксированном $\omega \in \Omega$ функция $\gamma \colon p \to p \omega$ действует непрерывно из $E(\varphi, \Omega)$ в Ω , так что множество $I\omega$ замкнуто и

 $\varphi I\omega = I\omega$, следовательно, $I\omega$ содержит в себе минимальное множество m полукаскада (φ,Ω) . Функция $\gamma = \gamma_\omega$ отображает замкнутый идеал I на $I\omega$, значит, подмножество $\gamma^{-1}m\cap I$ полугруппы $E(\varphi,\Omega)$ замкнуто и полуинвариантно относительно полукаскада (φ,E) , но тогда $\gamma^{-1}m=I$ и $m=I\omega$.

Пусть теперь $m \subset \overline{o}(\omega)$ и $\xi \in m$; тогда $\varphi^{n(k)}\omega \to \xi$ для некоторой последовательности натуральных чисел $n(k), k \geqslant 1$. Последовательность преобразований $\varphi^{n(k)}$ в компактном хаусдорфовом пространстве $E(\varphi, \Omega)$ обладает точкой накопления q. При этом $q\omega = \xi$, множество

$$I_{\omega,m} = \{ p \in E(\varphi, \Omega) \colon p\omega \in m \}$$

не пусто (так как содержит q) и представляет собой левый идеал в $E(\varphi,\Omega)$. Данный идеал необходимо содержит в себе некоторый минимальный левый идеал I, причем $I\omega \subset m$. Поскольку $\varphi I\omega = I\omega$ и множество m минимально, то $I\omega = m$ и лемма доказана.

Как уже отмечалось в § 2, полугруппу операторов Γ можно интерпретировать как обволакивающую полугруппу E(V,A) полукаскада (V,A) на метризуемом компакте $A=A(\Omega)$. Согласно общим представлениям [8] минимальные левые идеалы $J\subset \Gamma$ – это в точности минимальные множества динамической системы (V,Γ) на компакте Γ . Отметим, что действующий по правилу (2.1) непрерывный алгебраический эпиморфизм $\Gamma \xrightarrow{\theta} E(\varphi,\Omega)$ сохраняет классы левых, правых и двусторонних идеалов в полугруппах Γ и $E(\varphi,\Omega)$. То же верно и для операции перехода к полному прообразу θ^{-1} .

Сформулируем теперь главный результат настоящей работы. Заметим, что носитель $\sup \mu$ эргодической меры $\mu \in \Lambda(\Omega)$ представляет собой замкнутое полуинвариантное множество. Рассмотрим следующие утверждения:

- А) ядро $\operatorname{Ker} E(\varphi,\Omega)$ обволакивающей полугруппы $E(\varphi,\Omega)$ имеет непустое пересечение с классом преобразований $\Phi\subset\Pi;$
- $A_1)$ носитель каждой эргодической меры $\mu \in \Lambda(\Omega)$ есть минимальное множество:
- В) при любом $\omega \in \Omega$ замыкание траектории $\overline{o}(\omega)$ содержит единственное минимальное множество m, причем на m сосредоточена ровно одна вероятностная φ -инвариантная мера;
- B_1) при любом $\omega \in \Omega$ замыкание траектории $\overline{o}(\omega)$ содержит единственное минимальное множество;
 - С) ядро L полугруппы G состоит из одного элемента;
- D) все эргодические последовательности операторов $T_n \in G_0$ сходятся в W*O-топологии пространства $\operatorname{End} X^*$;
- E) все эргодические сети операторов $T_{\alpha} \in G_0$ сходятся в W*О-топологии пространства End X^* .

Понятно, что B) \Rightarrow B₁) и E) \Rightarrow D). В рассматриваемой ситуации $X=C(\Omega)$ из W*О-сходимости эргодической сети операторов $T_{\alpha} \in R_{\alpha}^*$ в End X^* следует сходимость скалярных сетей $(R_{\alpha}x)(\omega)$ для любых $x \in X$ и $\omega \in \Omega$. Для эргодических последовательностей T_n обратное утверждение следует из теоремы Лебега о предельном переходе под знаком интеграла, тогда как в общем случае это неверно.

ТЕОРЕМА 3.2. Имеют место импликации: $A(A) + B_1 \Rightarrow A_1(A_1) + B(A_2) \Rightarrow D(A_1) \Rightarrow B(A_2) \Rightarrow B($

Совокупность условий $A_1)+B)$ означает, что для каждой точки $\omega\in\Omega$ динамическая система $(\varphi, \overline{o}(\omega))$ одноэргодична, т. е. обладает единственной вероятностной инвариантной борелевской мерой. Эквивалентность условий C) и E) представляет собой частный случай теоремы 1.3. Логический переход $A_1)+B)\Rightarrow D)$ слегка обобщает известное утверждение (см. [7, теорема 5.2]), согласно которому одноэргодичность полукаскада $(\varphi, \overline{o}(\omega))$ влечет квазирегулярность всех точек множества $\overline{o}(\omega)$.

Доказательство теоремы 3.2. Импликация $A)+B_1)\Rightarrow A_1)$. Носитель $s_\mu=\sup \mu$ любой эргодической меры $\mu\in\Lambda(\Omega)$ топологически транзитивен [13, § 4.1], т. е. $\overline{o}(\omega)=s_\mu$ для некоторой точки $\omega\in s_\mu$. С учетом предположения $B_1)$ отсюда следует, что в s_μ содержится единственное минимальное множество m. Поскольку $\theta\Gamma=E(\varphi,\Omega)$, где θ – эпиморфизм (2.1), для $p\in \operatorname{Ker} E(\varphi,\Omega)\cap\Phi$ в полугруппе операторов Γ найдется элемент $P\in\theta^{-1}p$. Согласно лемме 2.3 имеем $ps_\mu\subset s_\mu\cap M(\Omega)$, но $s_\mu\cap M(\Omega)=m$, а потому $ps_\mu\subset m$ и $p^{-1}m\supset s_\mu$. Так как $p\in\Phi$, то предложение 2.2 обеспечивает соотношения

$$p^{-1}m \subset \Sigma_{\mu}, \qquad \mu(m) = \mu(p^{-1}m) = \mu(s_{\mu})$$

для замкнутого множества $m \subset s_{\mu}$. Из определения носителя меры теперь следует равенство $m = \operatorname{supp} \mu$, что и требовалось доказать.

Импликация A_1) + B) \Rightarrow D). Пусть R_n - произвольная эргодическая последовательность операторов в End X и $\omega \in \Omega$. По предположению теоремы динамическая система $(\varphi, \overline{o}(\omega))$ обладает единственной (вероятностной) инвариантной мерой μ . Поскольку постоянные функции φ -инвариантны на компакте $\overline{o}(\omega)$ и $(1,\mu) \neq (2,\mu)$, по теореме 1.5 для любой непрерывной функции $x \in X$ скалярная последовательность $(R_n x)(\xi)$ сходится при каждом $\xi \in \overline{o}(\omega)$. Отсюда видим, что последовательность функций $R_n x$ сходится поточечно на Ω , следовательно, эргодическая последовательность операторов $T_n = R_n^*$ сходится в W*O-топологии пространства операторов End X^* . Таким образом, слабо* сходится любая эргодическая операторная последовательность $T_n \in G_0$, и доказательство данного пункта завершено.

Импликация С) \Rightarrow В). Согласно теореме 1.3 при условии С) имеет место поточечная сходимость средних Чезаро $U_n x$ для произвольной непрерывной функции $x \in X$, поэтому [7, теорема 5.4] на каждом минимальном множестве $m \subset \Omega$ сосредоточена ровно одна вероятностная борелевская инвариантная мера. Покажем теперь, что замыкание каждой траектории динамической системы (φ,Ω) содержит единственное минимальное множество. Если $\omega \in \Omega$ и $m \subset \overline{o}(\omega)$, то по лемме 3.1 в обволакивающей полугруппе $E(\varphi,\Omega)$ найдется минимальный левый идеал I такой, что $I\omega = m$. Допустим, что при каком-то ω в $\overline{o}(\omega)$ содержатся два разных минимальных множества m_1 и m_2 . Тогда $I_k\omega = m_k$ при k = 1, 2 для некоторых минимальных левых идеалов $I_k \subset E(\varphi,\Omega)$. Если $\theta \colon \Gamma \to E(\varphi,\Omega)$ – канонический эпиморфизм полугрупп $\Gamma \simeq E(V,A)$ и $E(\varphi,\Omega)$, то полные прообразы $\theta^{-1}I_1$ и $\theta^{-1}I_2$ представляют собой левые идеалы в Γ , необходимо содержащие в себе минимальные

левые идеалы J_1 и J_2 . При этом левые идеалы θJ_k принадлежат I_k , а значит, $\theta J_k = I_k$, k=1,2. Поскольку идеалы J_k представляют собой минимальные множества полукаскада (V,Γ) , найдутся сосредоточенные на J_k эргодические меры $\lambda_k \in \Lambda(\Gamma)$. Положим

$$Q_k = \int_{\Gamma} P\lambda_k(dP);$$

тогда с учетом равенств $P\delta(\omega)=\delta(p\omega),\,p=\theta P$ имеем соотношения

$$Q_k \delta(\omega) = \int_{\Gamma} \delta(p\omega) \lambda_k(dP).$$

Поскольку меры λ_k инвариантны относительно (V,Γ) , согласно лемме 1.7 имеем $Q_k \in L$. Так как supp $\lambda_k = J_k$ и $\theta J_k \omega = m_k$, то $p\omega \in m_k$ для каждого оператора $P \subset J_k$ и $p = \theta P$. Интеграл в представлении Шоке (1.3) понимается в смысле W*О-сходимости, поэтому меры $Q_k \delta(\omega)$ сосредоточены на множествах m_k . Таким образом, $Q_1 \neq Q_2$, и полученное противоречие завершает вывод логического перехода $C) \Rightarrow B$). Теорема доказана полностью.

Вывод импликации A) + B₁) \Rightarrow A₁) теоремы 3.2 реально опирается лишь на свойство ii) преобразования $p \in \operatorname{Ker} E(\varphi,\Omega)$, ибо μ -измеримость множества $p^{-1}m$ следует просто из соотношений $p^{-1}m \supset s_{\mu}$ и $\mu(s_{\mu})=1$. Это же замечание справедливо и в связи с доказательством теоремы 2.4. Оба утверждения остаются в силе при условии, что ядро $\operatorname{Ker} E(\varphi,\Omega)$ содержит преобразование $p \colon \Omega \to \Omega$ со следующим свойством: для каждой эргодической меры $\mu \in \Lambda(\Omega)$ равенство $\mu(p^{-1}h) = \mu(h)$ справедливо в случае, если множество h замкнуто и $p^{-1}h \subset \Sigma_{\mu}$.

Применительно к W*О-сходимости средних Чезаро V_n имеем

Следствие 3.3. Если $\operatorname{Ker} E(\varphi,\Omega) \cap \Phi \neq \emptyset$, то условие B) влечет квазирегулярность всех точек $\omega \in \Omega$.

Действительно, из теоремы 3.2 следует импликация $A) + B) \Rightarrow D)$, т. е. в данном случае слабо* сходятся все операторные эргодические последовательности T_n в End X^* и в том числе средние V_n .

Цитированный выше результат Окстоби [7, теорема 5.4] можно сформулировать в усиленной форме: если некоторая эргодическая последовательность операторов $T_n \in G_0$ сходится в W*O-топологии, то на каждом минимальном множестве $m \subset \Omega$ сосредоточена ровно одна вероятностная борелевская инвариантная мера.

Отсюда следует неожиданный вывод: если на каком-то минимальном множестве полукаскада (φ,Ω) сосредоточена более чем одна эргодическая мера, то в W*O-топологии все эргодические последовательности операторов $T_n \in G_0$ расходятся, хотя среди эргодических сетей операторов $T_\alpha \in G_0$ непременно найдутся сходящиеся. Другими словами, в этом случае ядро L полугруппы G не имеет общих элементов с совокупностью секвенциальных слабых* пределов элементов выпуклого множества операторов $G_0 \subset \operatorname{End} X^*$.

Выясним теперь, при каких условиях ядро L полугруппы G имеет непустое пересечение с подполугруппой Γ . Заметим, что полугруппа Γ содержит единицу, а именно тождественный оператор в пространстве X^* . Напомним также, что ядро любой обволакивающей полугруппы не пусто и представляет собой объединение всех ее минимальных левых идеалов.

ЛЕММА 3.4. Функция $\theta \colon \Gamma \to E(\varphi, \Omega)$ отображает $\operatorname{Ker} \Gamma$ на $\operatorname{Ker} E(\varphi, \Omega)$.

Доказательство. Эпиморфизм θ (как и переход к полному прообразу θ^{-1}) сохраняет классы односторонних идеалов в полугруппах Γ и $E=E(\varphi,\Omega)$. Поскольку θ (Ker Γ) — двусторонний идеал, то θ (Ker Γ) — Кег E. Установим обратное вложение. Пусть $p \in \theta$ (Ker Γ); тогда $p = \theta P$ для некоторого элемента $P \in \text{Ker }\Gamma$. Если I — некоторый минимальный левый идеал в $E(\varphi,\Omega)$ и $J=\theta^{-1}I$, то J — левый идеал в Γ . Поскольку $\theta J=I$ и $\theta P=p$, то $\theta JP=Ip$ и $JP\subset\theta^{-1}(Ip)$. Далее, $P\in \text{Ker }\Gamma$ и Γ — полугруппа с единицей, следовательно, главный идеал ΓP минимален и содержит в себе P. Из соотношения $JP\subset\Gamma P$ находим, что $JP=\Gamma P$ и $P\in JP$. Таким образом, $P\subset\theta^{-1}(Ip)$, а потому $p\in Ip$. Минимальный левый идеал Ip принадлежит ядру полугруппы $E(\varphi,\Omega)$, значит, $p\in \text{Ker }E$, и доказательство завершено.

Пусть $N(\Omega)$ и N(A) — множества неподвижных точек полукаскадов (φ,Ω) и (V,A) на компактах Ω и $A=A(\Omega)$. Как и ранее, обозначаем через $M(\Omega)$ и M(A) объединения всех минимальных множеств соответствующих динамических систем.

ТЕОРЕМА 3.5. Следующие три условия попарно эквивалентны:

- a) $L \cap \Gamma \neq \emptyset$;
- б) $L \cap \Gamma = \operatorname{Ker} \Gamma$;
- B) M(A) = N(A).

Кроме того, каждое из условий a)-B) влечет равенство $M(\Omega) = N(\Omega)$.

Доказательство. Импликация а) \Rightarrow б). Поскольку $L={\rm Ker}\,G$ и Γ – подполугруппа G, в предположении а) множество $L\cap\Gamma$ представляет собой непустой двусторонний идеал полугруппы Γ . По лемме 1.1 данное множество состоит из одноэлементных минимальных левых идеалов полугруппы G. Отсюда видим, что $L\cap\Gamma\subset{\rm Ker}\,\Gamma$, а потому $L\cap\Gamma={\rm Ker}\,\Gamma$.

Импликация б) \Rightarrow в). Ясно, что $M(A) \supset N(A)$. Поскольку $\Gamma \simeq E(V,A)$, согласно [8, с. 20] для произвольного элемента (меры) $\mu \in M(A)$ найдется оператор $Q \in \operatorname{Ker} \Gamma$ такой, что $\mu \in QA$. В предположении б) имеем $Q \in L$ и VQ = Q, следовательно, $V\mu = \mu$ при всех $\mu \in M(A)$ и M(A) = N(A).

Импликация в) \Rightarrow а). По лемме 2.3 для элементов $Q \in \text{Ker }\Gamma$ справедливо соотношение $QA \subset M(A)$. Тем самым, предположение в) приводит к равенству VQ = Q, а значит, и к вложению $L \cap \Gamma \supset \text{Ker }\Gamma$.

Наконец, вновь пользуясь цитированным выше результатом [8], находим, что для любой точки $\omega \in M(\Omega)$ существует элемент $\pi \in \operatorname{Ker} E(\varphi,\Omega)$ со свойством $\omega \in \pi\Omega$. По лемме 3.4 имеем $\pi = \theta Q$, где Q – некоторый оператор из $\operatorname{Ker} \Gamma$. Если $L \cap \Gamma = \operatorname{Ker} \Gamma$, то VQ = Q. Поскольку θ – гомоморфизм полугрупп и $\theta V = \varphi$, то $\theta VQ = \theta Q = \varphi \theta Q$, а значит, $\varphi \pi = \pi$. Если $\omega = \pi \xi$ для некоторого $\xi \in \Omega$, то

 $\varphi\omega = \omega$ и $\omega \in N(\Omega)$. Как видим, условие б) влечет соотношение $M(\Omega) \subset N(\Omega)$. Обратное вложение тривиально, и теорема доказана полностью.

§ 4. Сдвиг в $C(\Omega)$: структура $\operatorname{ex} G$

Перейдем к обсуждению структуры множества крайних точек ех G выпуклого множества $G \subset \operatorname{End} X^*$ все в той же ситуации, когда $X = C(\Omega)$ и оператор сдвига $U \in \operatorname{End} X$ соответствует непрерывному преобразованию φ компакта Ω .

Ранее уже отмечалось соотношение ех $G \subset \Gamma$. Кроме того, покажем, что инъективность определенного правилом (2.1) эпиморфизма $\theta \colon \Gamma \to E(\varphi,\Omega)$ равносильна равенству ех $G = \Gamma$. Напомним, что через $K = K(\Omega)$ обозначена совокупность мер Дирака на множестве Ω , а через $A(\Omega)$ – выпуклое компактное множество всех вероятностных борелевских мер на Ω . Как известно [11, гл. 1], $K(\Omega) = \exp A(\Omega)$.

ЛЕММА 4.1. Для элементов $T \in G$ условия $T \in \Gamma$ и $TK \subset K$ эквивалентны.

Доказательство. Полугруппа Γ представляет собой замыкание счетной совокупности операторов $\{V^n, n \geqslant 0\}$ в W*О-топологии пространства End X^* . Множество точечных мер $K(\Omega)$ замкнуто в $A(\Omega)$, и $V^n\delta(\omega) = \delta(\varphi^n\omega)$ при всех $\omega \in \Omega$, поэтому $TK \subset K$, если $T \in \Gamma$.

Предположим теперь, что $T \in G$ и $TK \subset K$. Пусть $\lambda \in A(\Gamma)$ – одна из представляющих мер для оператора T в интегральной формуле (1.3); тогда для заданной точки $\omega \in \Omega$ имеем

$$T\delta(\omega) = \int_{\Gamma} \delta(p\omega)\lambda(dP) = \delta(\xi),$$

где $p = \theta P$ и $\xi \in \Omega$. Положим

$$H(\omega, T) = \{ P \in \Gamma \colon P\delta(\omega) = T\delta(\omega) \},$$

или в другой записи $\mathrm{H}(\omega,T)=\{P\in\Gamma\colon p\omega=\xi\}$. Как видим, $\mathrm{H}(\omega,T)$ представляет собой замкнутое выпуклое подмножество компакта $\Gamma\subset G$. Покажем, что $\mathrm{supp}\,\lambda\subset\mathrm{H}(\omega,T)$. Борелевская мера $\lambda\in A(\Gamma)$ регулярна, так что в предположении противного найдется не задевающее $\mathrm{H}(\omega,T)$ замкнутое множество $s\subset\mathrm{supp}\,\lambda$ такое, что $\lambda(s)>0$. Взяв при этом функцию $g\in C(\Omega)$ со свойствами $0\leqslant g\leqslant 1,\ g(\xi)=0$ и g=1 на замкнутом (не содержащем точку ξ) множестве $(\theta s)\omega$, приходим к взаимоисключающим соотношениям $(g,T\delta(\omega))=0$ и $(g,T\delta(\omega))\geqslant \lambda(s)$. Точка $\omega\in\Omega$ выбрана произвольно, поэтому $\mathrm{supp}\,\lambda\subset\mathrm{H}(T)$, если положить

$$H(T) = \bigcap_{\omega \in \Omega} H(\omega, T),$$

или в иной записи

$$\mathbf{H}(T) = \{ P \in \Gamma \colon P\big|_{K} = T\big|_{K} \}.$$

Множество операторов $H(T) \subset \Gamma$ замкнуто, выпукло, и, фактически,

$$T = \int_{\mathcal{H}(T)} P\lambda(dP). \tag{4.1}$$

Отсюда следует, что $T \in \mathrm{H}(T)$, а значит, $T \in \Gamma$, и лемма доказана.

Таким образом, интегральное представление (1.3) для операторов $T \in \Gamma$ можно записать в виде (4.1). Если при этом $H(T) = \{T\}$, то однозначно $\lambda = \delta(T)$.

Отметим (на примере подмножеств G) общее свойство крайних точек: если $B \subset G$, то $\operatorname{ex} B \supset B \cap \operatorname{ex} G$.

ЛЕММА 4.2. Условия $P \in \text{ex } G \ u \ P \in \text{ex } H(P)$ эквивалентны.

Доказательство. Для оператора $P \in \operatorname{ex} G$ с учетом соотношений $P \in \Gamma$, $P \in \operatorname{H}(P)$ и $\operatorname{ex} \operatorname{H}(P) \supset \operatorname{H}(P) \cap \operatorname{ex} G$ находим, что $P \in \operatorname{ex} \operatorname{H}(P)$. Установим обратную связь. Пусть $P \in \operatorname{ex} \operatorname{H}(P)$ и $p = \theta P$. Если $2P = T_1 + T_2$, где $T_i \in G$ при i = 1, 2, то $2\delta(p\omega) = T_1\delta(\omega) + T_2\delta(\omega)$ для всех $\omega \in \Omega$. С учетом равенства $\operatorname{ex} A(\Omega) = K(\Omega)$ отсюда вытекает, что $T_i\delta(\omega) = \delta(p\omega)$. По лемме 4.1 имеем $T_i \in \Gamma$, а поскольку $T_i\big|_K = P\big|_K$, то $T_i \in \operatorname{H}(P)$. Как видим, $T_i = P$ и $P \in \operatorname{ex} G$. Лемма доказана.

Из включений $\Gamma \subset G$ и $\operatorname{ex} G \subset \Gamma$ следует, что $\operatorname{ex} \Gamma \supset \Gamma \cap \operatorname{ex} G$ и $\operatorname{ex} \Gamma \supset \operatorname{ex} G$. С другой стороны, для произвольного элемента $P \in \Gamma$ имеют место соотношения $P \in \operatorname{H}(P) \subset \Gamma$ и $\operatorname{ex} \operatorname{H}(P) \supset \operatorname{H}(P) \cap \operatorname{ex} \Gamma$. Тем самым, если $P \in \operatorname{ex} \Gamma$, то $P \in \operatorname{ex} \operatorname{H}(P)$. По лемме 4.2 имеем $\operatorname{ex} \operatorname{H}(P) \subset \operatorname{ex} G$, значит, $P \in \operatorname{ex} G$. Итак, $\operatorname{ex} \Gamma \subset \operatorname{ex} G$, и справедливо

Следствие 4.3. Имеет место равенство $\exp G = \exp \Gamma$.

Лемма 4.2 позволяет описать крайние точки множества G следующим образом:

$$\operatorname{ex} G = \bigcup_{P \in \Gamma} \operatorname{ex} H(P). \tag{4.2}$$

Теперь можно сформулировать основное утверждение настоящего параграфа.

ПРЕДЛОЖЕНИЕ 4.4. Равенство $\exp G = \Gamma$ равносильно инъективности эпиморфизма $\theta \colon \Gamma \to E(\varphi,\Omega)$.

Доказательство. Пусть $P \in \Gamma$. Из инъективности функции θ следует, что $\mathrm{H}(P) = \{P\}$ и $P \in \mathrm{ex}\, G$ согласно соотношению (4.2). Таким образом, $\Gamma \subset \mathrm{ex}\, G$, и поскольку обратное включение верно всегда, то $\mathrm{ex}\, G = \Gamma$. Если же изначально $\mathrm{ex}\, G = \Gamma$, то любой элемент $P \in \Gamma$ является крайней точкой выпуклого множества $\mathrm{H}(P) \subset \Gamma$. Тем самым, $\mathrm{H}(P)$ целиком состоит из крайних точек, а значит, $\mathrm{H}(P) = \{P\}$, и функция θ инъективна. Предложение доказано.

§ 5. Некоторые дополнения

Важную роль в предыдущих рассмотрениях играло условие

$$\operatorname{Ker} E(\varphi, \Omega) \cap \Phi \neq \emptyset, \tag{5.1}$$

означающее, что ядро обволакивающей полугруппы $E(\varphi,\Omega)$ содержит хотя бы одно "достаточно регулярное" отображение $p\colon \Omega \to \Omega$. Данное требование желательно переформулировать в более конструктивных терминах пусть даже

ценой его усиления. С этой точки зрения представляет интерес ряд свойств обволакивающих полугрупп динамических систем, описанных в обзоре [14]. Рассмотрим два предположения:

- а) компактное пространство $E(\varphi, \Omega)$ метризуемо;
- б) каждое замкнутое φ -инвариантное множество $\Theta \subset \Omega$ содержит траекторию, устойчивую по Ляпунову относительно полукаскада (φ, Θ) .

Здесь, как и ранее, рассматриваются односторонние траектории дискретных динамических систем. Слегка изменив авторскую терминологию, можно сформулировать на основе результатов из работы [14] следующее утверждение.

ЛЕММА 5.1. Условия а) и б) равносильны, причем любое из них влечет совпадение компакта $E(\varphi,\Omega)$ с множеством всевозможных секвенциальных поточечных пределов элементов базисного семейства преобразований $\Phi_0 = \{\varphi^n, n \geqslant 0\}.$

Поскольку класс преобразований Φ содержит в себе секвенциальное замыкание семейства Φ_0 , каждое из условий а), б) гарантирует (с большим запасом) справедливость соотношения (5.1). Более того [14], [15], данные условия обеспечивают также инъективность заданного правилом (2.1) эпиморфизма $\theta\colon \Gamma \to E(\varphi,\Omega)$, а значит, согласно предложению 4.4 и равенство ех $G=\Gamma$. Отметим, что полугруппа операторов $\Gamma\subset \operatorname{End}(C(\Omega))^*$ и ее связь с обволакивающей полугруппой $E(\varphi,\Omega)$ впервые рассматривались именно в статье [15]. Известен пример [14, с. 2356] минимального дистального каскада на двумерном торе, для которого функция θ не инъективна.

Импликация $A)+B_1)\Rightarrow A_1)$ теоремы 3.2 в сочетании с леммой 5.1 приводит к следующему результату.

ТЕОРЕМА 5.2. Допустим, что справедливо условие б) и замыкание кажедой траектории полукаскада (φ, Ω) содержит ровно одно минимальное множество. Тогда все φ – эргодические меры $\mu \in \Lambda(\Omega)$ – сосредоточены на минимальных множествах.

В работе [14] и цитированных в ней статьях можно найти еще несколько условий, эквивалентных предположению б), характеризующему в определенном смысле "не хаотичные" динамические системы.

Список литературы

- 1. U. Krengel, *Ergodic theorems*, de Gruyter Stud. Math., **6**, de Gruyter, Berlin–New York, 1985.
- 2. R. Sine, "A mean ergodic theorem", Proc. Amer. Math. Soc., 24:3 (1970), 438–439.
- 3. E. Yu. Emel'ynov, N. Erkursun, "Generalization of Eberlein's and Sine's ergodic theorems to LR-nets", Владикавк. матем. эсурн., 9:3 (2007), 22–26.
- 4. S. P. Lloyd, "On the mean ergodic theorem of Sine", *Proc. Amer. Math. Soc.*, **56** (1976), 121–126.
- 5. A. Iwanik, "On pointwise convergence of Cesàro means and separation properties for Markov operators on C(X)", Bull. Acad. Polon. Sci. Sér. Sci. Math., **29**:9–10 (1981), 515–520.
- 4 Серия математическая, т. 75, № 6

- 6. В. В. Немыцкий, В. В. Степанов, Качественная теория дифференциальных уравнений, 3-е изд., УРСС, М., 2004; англ. пер. 1-го изд.: V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, NJ, 1960.
- 7. Д. Окстоби, "Эргодические множества", УМН, **8**:3 (1953), 75–97; пер. с англ.: J. C. Oxtoby, "Ergodic sets", Bull. Amer. Math. Soc., **58**:3 (1952), 116–136.
- 8. R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969.
- 9. А. Клиффорд, Г. Престон, *Алгебраическая теория полугрупп*, т. 1, Мир, М., 1972; пер. с англ.: А. H. Clifford, G. B. Preston, *The algebraic theory of semigroups*, v. 1, Amer. Math. Soc., Providence, RI, 1961.
- 10. Е.С. Ляпин, Полугруппы, Наука, М., 1960; англ. пер.: Е.S. Lyapin, Semigroups, Amer. Math. Soc., Providence, RI, 1963.
- 11. Р. Фелпс, Лекции о теореме Шоке, Мир, М., 1968; пер. с англ.: R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton—Toronto—New York—London, 1966.
- 12. Ф. Хаусдорф, *Teopus множеств*, 4-е изд., УРСС, М., 2007; пер. с нем.: F. Hausdorff, *Mengenlehre*, de Gruyter, Berlin–Leipzig, 1927.
- 13. А.Б. Каток, Б. Хасселблат, Введение в современную теорию динамических систем, Факториал, М., 1999; пер. с англ.: А. Katok, В. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995.
- 14. E. Glasner, "Enveloping semigroups in topological dynamics", *Topology Appl.*, **154**:11 (2007), 2344–2363.
- 15. A. Köhler, "Enveloping semigroups for flows", Proc. Roy. Irish Acad. Sect. A, 95:2 (1995), 179–191.

А. В. Романов (А. V. Romanov) Московский государственный институт электроники и математики (технический университет) *E-mail*: vitkar48@inbox.ru $\begin{tabular}{l} \mbox{Поступило в редакцию} \\ \mbox{08.02.2010} \\ \mbox{22.03.2010} \end{tabular}$