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AN ANALOGUE OF HILBERT’S THEOREM 90 FOR INFINITE SYMMETRIC

GROUPS

M.ROVINSKY

Abstract. Let K be a field and G be a group of its automorphisms. If K is algebraic over the
subfield KG fixed by G then, according to Speiser’s generalization of Hilbert’s Theorem 90, any
smooth (i.e. with open stabilizers) K-semilinear representation of the group G is isomorphic to a
direct sum of copies of K.

If K is not algebraic over KG then there exist non-semisimple smooth semilinear representations
of G over K, so Hilbert’s Theorem 90 does not hold.

Let now G be the group of all permutations of an infinite set Ψ acting naturally on the field k(Ψ)
freely generated over a subfield k by the set Ψ. The goal of this note is to present three examples
of G-invariant subfields K ⊆ k(Ψ) such that the smooth K-semilinear representations of G of finite
length admit an explicit description, close to Hilbert’s Theorem 90.

Namely, (i) if K = k(Ψ) then any smooth K-semilinear representation of G of finite length is
isomorphic to a direct sum of copies of K, (ii) if K ⊂ k(Ψ) is the subfield of rational homogeneous
functions of degree 0 then any smooth K-semilinear representation of G of finite length splits into
a direct sum of one-dimensional K-semilinear representations of G, (iii) if K ⊂ k(Ψ) is the subfield
generated over k by x−y for all x, y ∈ Ψ then there is a unique isomorphism class of indecomposable
smooth K-semilinear representations of G of each given finite length.

1. Introduction

Let G be a group of automorphisms of a field K. Then the group G is endowed with the
standard topology, whose base is given by the left or right translates of the pointwise stabilizers
of finite subsets in K. We are interested in continuous G-actions on discrete sets (i.e., with open
stabilizers), called smooth in what follows. These G-sets will be K-vector spaces endowed with
semilinear G-actions.

For an abelian group A and a set S we denote by A[S] the direct sum of copies of A indexed by
S. In some cases, A[S] will be endowed with an additional structure, e.g., of a module, a ring, etc.

Denote by K〈G〉 the unital associative subring in EndZ(K[G]) generated by the natural left
action of K and the diagonal left action of G on K[G]. In other words, K〈G〉 is the ring of K-
valued measures on G with finite support. Then K〈G〉 is a central k-algebra, where k := KG is the
fixed field.

More explicitly, the elements of K〈G〉 are the finite formal sums
∑N

i=1 ai[gi] for all integer N ≥ 0,
ai ∈ K, gi ∈ G. Addition is defined obviously; multiplication is a unique distributive one such that
(a[g])(b[h]) = abg[gh], where we write ah for the result of applying of h ∈ G to a ∈ K.

An additive action of G on an K-vector space V is called semilinear if g(a · v) = ag · gv for any
g ∈ G, v ∈ V and a ∈ K. Then a K-vector space endowed with an additive semilinear G-action is
the same as an K〈G〉-module.

A K-semilinear representation of G is a left K〈G〉-module.

Let, as before, K be a field and G be a group of its automorphisms. Then Speiser’s generalization
of Hilbert’s theorem 90, cf. [3, Satz 1], can be interpreted and slightly generalized further as follows.

Proposition 1.1. The following conditions on the pair (K,G) are equivalent:

(1) G is precompact (i.e., any open subgroup of G is of finite index),
(2) K is algebraic over the subfield KG fixed by G,
(3) any smooth Q-linear representation of G is semisimple,
(4) any smooth K-semilinear representation V of G is semisimple,
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(5) any smooth K-semilinear representation V of G is isomorphic to a direct sum of copies of
K, in other words, the natural map V G ⊗KG K → V is an isomorphism.

Proof. Set k := KG. In the case of finite G the implication (1)⇒(5) is [3, Satz 1], appropriately
reformulated. Namely, the natural G-action on K gives rise to a k-algebra homomorphism K〈G〉 →
Endk(K), which is (a) surjective by Jacobson’s density theorem and (b) injective by independence
of characters. Then (a) any K〈G〉-module is isomorphic to a direct sum of copies of K, (b) the
field extension K|k is finite, which shows (1)⇒(2).

For arbitrary precompact G, a smooth K-semilinear representation V of G and v ∈ V the
intersection H of all conjugates of the stabilizer of v in G is of finite index. Thus, v is contained in the
KH -semilinear representation V H of the group G/H. As G/H is finite, V H = (V H)G/H ⊗(KH)G/H

KH = V G⊗KG KH , i.e., v is contained in a subrepresentation isomorphic to a direct sum of copies
of K. In particular, any element of K is contained in a finite field extension of k.

If G is not precompact then it admits an open subgroup U ⊂ G of infinite index, while the
representations Q[G/U ] and K[G/U ] of G have no non-zero vectors fixed by G, unlike their simple
quotients Q and K, respectively. (For a G-set S we consider K[S] as a K-vector space with
the diagonal G-action.) This shows implications (3)⇒(1) and (4)⇒(1). The implication (5)⇒(4)
is trivial, while (1)⇒(3) is well-known; (2)⇒(1) is evident: K is a union of finite G-invariant
extensions of KG, so G is dense in a profinite group. �

The purpose of this note is to present three examples (Theorems 1.2, 1.3, 1.6) of a field K and
a non-precompact group G of its automorphisms such that the smooth irreducible K-semilinear
representations of G admit an explicit description.

Theorem 1.2. Let K = k(Ψ) be the field of rational functions over a field k in the variables
enumerated by a set Ψ. Let G = SΨ be the group of all permutations of the set Ψ acting naturally
on K. Then any smooth K-semilinear representation of SΨ of finite length is isomorphic to a
direct sum of copies of K.

Theorem 1.3. Let K ⊂ k(Ψ) be the subfield of homogeneous rational functions of degree 0. Let
G = SΨ be the group of all permutations of an infinite set Ψ acting naturally on the fields k(Ψ)
and K. Then any smooth K-semilinear representation of SΨ of finite length is isomorphic to
⊕

d∈Z V
m(d)
d for a unique function m : Z → Z≥0 with finite support, where Vd ⊆ k(Ψ) is the

one-dimensional subspace of homogeneous rational functions of degree d.

Remark 1.4. Let K be a field and G be a group of automorphisms of K. Let k ⊆ KG be a
subfield. Then any smooth irreducible representation W of G over k can be embedded into a smooth
irreducible K-semilinear representation of G. Indeed, W can be embedded into any irreducible
quotient of the K-semilinear representation W ⊗k K.

Corollary 1.5. In notation of Theorem 1.3, any smooth irreducible representation W of SΨ over
a field k can be embedded into the K-semilinear representation Vd ⊂ k(Ψ) for some integer d.

This follows from Remark 1.4 and Theorem 1.3. �

Theorem 1.6. Let k be a field and Ψ be an infinite set. Let K ⊂ k(Ψ) be the subfield generated
over k by the rational functions x−y for all x, y ∈ Ψ. Let G = SΨ be the group of all permutations
of the set Ψ acting naturally on the fields k(Ψ) and K. Then for any integer N ≥ 1 there exists a
unique isomorphism class of smooth K-semilinear indecomposable representations of SΨ of length
N .

Remark 1.7. We may relax the condition (5) of Proposition 1.1 as follows:

any irreducible smooth K-semilinear representation of G is isomorphic to K.

If this relaxed condition holds for a pair (K,G) then, according to Remark 1.4, any irreducible
smooth k-linear representation W of G can be embedded into K.

However, the converse is not true: in the setup of Theorem 1.3, the group G = SΨ admits non-
trivial irreducible smooth K-semilinear representations Vd for d 6= 0, but any irreducible smooth
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k-linear representation W of G can be embedded into K if k is of characteristic 0. Namely, it is quite
well-known (cf., e.g. [2, Theorem 5.7]), that W can be embedded into k[{embeddings of I into Ψ}]
for an appropriate finite I ⊂ Ψ. On the other hand, any sufficiently general homogeneous rational
function Q ∈ k(I) of degree 0 gives rise to an embedding k[{embeddings of I into Ψ}] →֒ K,
[g] 7→ gQ.

2. Open subgroups and permutation modules

For a subset T ⊆ Ψ, we denote by SΨ|T the pointwise stabilizer SΨ|T of T in SΨ. Let SΨ,T :=

SΨrT ×ST be the group of all permutations of Ψ preserving T (in other words, the setwise stabilizer
of T in the group SΨ, or equivalently, the normalizer of SΨ|T in SΨ).

Lemma 2.1. For any pair of finite subsets T1, T2 ⊂ Ψ the subgroups SΨ|T1
and SΨ|T2

generate the
subgroup SΨ|T1∩T2

.

Proof. Let us show first that SΨ|T1 SΨ|T2
= {g ∈ SΨ|T1∩T2

| g(T2) ∩ T1 = T1 ∩ T2} =: Ξ. The
inclusion ⊆ is trivial. On the other hand,

Ξ/SΨ|T2
= {embeddings T2 r (T1 ∩ T2) →֒ Ψr T1},

while the latter is an SΨ|T1
-orbit. �

Lemma 2.2. For any open subgroup U of SΨ there exists a unique subset T ⊂ Ψ such that

SΨ|T ⊆ U and the following equivalent conditions hold: (a) T is minimal; (b) SΨ|T is normal in
U ; (c) SΨ|T is of finite index in U . In particular, (i) such T is finite, (ii) the open subgroups of

SΨ correspond bijectively to the pairs (T,H) consisting of a finite subset T ⊂ Ψ and a subgroup
H ⊆ Aut(T ) under (T,H) 7→ {g ∈ SΨ,T | restriction of g to T belongs to H}.

Proof. Any open subgroup U in SΨ contains the subgroup SΨ|T for a finite subset T ⊂ Ψ. Assume

that T is chosen to be minimal. If σ ∈ U then U ⊇ σSΨ|T σ−1 = SΨ|σ(T ), and therefore, (i)
σ(T ) is also minimal, (ii) U contains the subgroup generated by SΨ|σ(T ) and SΨ|T . By Lemma
2.1, the subgroup generated by SΨ|σ(T ) and SΨ|T is SΨ|T∩σ(T ), and thus, U contains the subgroup

SΨ|T∩σ(T ). The minimality of T means that T = σ(T ), i.e., U ⊆ SΨ,T . If T ′ ⊂ Ψ is another
minimal subset such that SΨ|T ′ ⊆ U then, by Lemma 2.1, SΨ|T∩T ′ ⊆ U , so T = T ′, which proves
(b) and (the uniqueness in the case) (a). It follows from (b) that SΨ|T ⊆ U ⊆ SΨ,T , so SΨ|T is
of finite index in U . As the subgroups SΨ|T and SΨ|T ′ are not commensurable for T ′ 6= T , we get
the uniqueness in the case (c). �

Lemma 2.3. Let K be a field endowed with an SΨ-action. Let U ⊂ SΨ be a proper open subgroup.
Then (i) index of U in SΨ is infinite; (ii) there are no elements in SΨrU acting identically on
KU ; (iii) there are no irreducible K-semilinear subrepresentations in K[SΨ /U ].

Example and notation. For an integer s ≥ 0, we denote by
(

Ψ
s

)

the set of all subsets of Ψ of
cardinality s. Let U ⊂ SΨ be a maximal proper subgroup, i.e., U = SΨ,I for a finite subset I ⊂ Ψ

(so SΨ /U can be identified with the set
(

Ψ
#I

)

). Then we are under assumptions of Lemma 2.3, so

there are no irreducible K-semilinear subrepresentations in K[
( Ψ
#I

)

].

Proof. (i) and (ii) follow from the explicit description of open subgroups in Lemma 2.2.
(iii) Artin’s independence of characters theorem (applied to the one-dimensional characters

g : (KU )× → K×) implies that the morphism K[SΨ /U ] →
∏

(KU )× K, given by
∑

g bg[g] 7→

(
∑

g bgf
g)f∈(KU )× , is injective. Then, for any non-zero element α ∈ K[SΨ /U ], there exists an

element Q ∈ KU such that the morphism K[SΨ /U ] → K, given by
∑

g bg[g] 7→
∑

g bgQ
g, does not

vanish on α. Then α generates a subrepresentation V surjecting onto K. If V is irreducible then it
is isomorphic to K, so V SΨ 6= 0. In particular, K[SΨ /U ]SΨ 6= 0, which can happen only if index
of U in SΨ is finite. �
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Lemma 2.4. Let K be a field endowed with an SΨ-action. Let s ≥ 0 be an integer and M be a
quotient of the K〈SΨ〉-module K[

(Ψ
s

)

] by a non-zero submodule M0. Then there is a finite subset

I ⊂ Ψ such that the K〈SΨ|I〉-module M is isomorphic to a quotient of
⊕s−1

j=0K[
(

ΨrI
j

)

]⊕(
|I|
s−j).

Proof. Let α =
∑

S⊆J aS[S] ∈ M0 be a non-zero element for a finite set J ⊂ Ψ. Fix some S ⊆ J with

aS 6= 0. Set I := JrS. Then the morphism of K〈SΨ|I〉-modulesK〈SΨ|I〉α⊕
⊕

∅ 6=Λ⊆I K[
(ΨrI
s−|Λ|

)

] →

K[
(Ψ
s

)

], given (i) by the inclusion on the first summand and (ii) by [T ] 7→ [T ∪Λ] on the summand
corresponding to Λ, is surjective. �

Lemma 2.5. Let K be a field endowed with a smooth faithful SΨ-action. Let S be an infinite set
of positive integers. Then the objects K[

(Ψ
N

)

] for all N ∈ S form a system of generators of the
category of smooth K-semilinear representations of G.

Proof. Let V be a smooth semilinear representation of SΨ. Then the stabilizer of any vector v is
open, i.e., the stabilizer contains the subgroup SΨ|T ′ for a finite subset T ′ ⊂ Ψ. Choose a finite

subset T ⊂ Ψ containing T ′ with |T | ∈ S. The KSΨ|T -linear envelope of the (finite) ST -orbit of v is
a smooth KSΨ|T -semilinear representation of ST , so it is trivial, i.e., v belongs to the KSΨ|T -linear
envelope of the KSΨ,T -vector subspace fixed by SΨ,T . As a consequence, there is a morphism from

a finite cartesian power of K[SΨ /SΨ,T ] ∼= K[
( Ψ
|T |

)

] to V , containing v in the image. �

3. Proofs of Theorems 1.2, 1.3 and 1.6

The following result appears also as [2, Lemma 7.1].

Lemma 3.1. Let K = k(Ψ) for a field k. Then any finite-dimensional smooth K-semilinear
representation V of SΨ is isomorphic to a direct sum of copies of K.

Proof. Let b ⊂ V be a K-basis, pointwise fixed by an open subgroup of SΨ, so b ⊂ VI := V SΨ|I for
a finite subset I ⊂ Ψ. It is easy to see, cf. e.g. [1, Lemma 2.3] with ρ ≡ 1, that the multiplication
maps VI ⊗KI

K = (VI ⊗KI
KJ ) ⊗KJ

K → VJ ⊗KJ
K → V are injective for any subset J ⊆ Ψ

containing I, where KJ := KSΨ|J . The composition is an isomorphism, so VI ⊗KI
KJ → VJ

is an isomorphism as well. In particular, fσ = idV if σ ∈ SΨ|I , where (fσ ∈ GLK(V ))σ is the
1-cocycle of the SΨ-action in the basis b. Clearly, (i) fσ depends only on the class σ|I of σ in

SΨ /SΨ|I = {emdeddings of I into Ψ}, (ii) fσ ∈ GLKI∪σ(I)
(VI∪σ(I)).

Assume that I, σ(I), τσ(I) are disjoint, X,Y,Z are the standard collections of the elementary
symmetric functions in I, τ(I), τσ(I), respectively. Then the cocycle condition fτσ = fτf

τ
σ (where

f τ
σ ∈ GLKτ(I)∪τσ(I)

(Vτ(I)∪τσ(I))) becomes Φ(X,Z) = Φ(X,Y )Φ(Y,Z) and Φ(Y,X) = Φ(X,Y )−1,

where fτσ = Φ(X,Z), etc. If k is infinite then there is a k-point Y0, where Φ(X,Y ) and Φ(Y,Z)
are regular. If k is finite then there is a finite field extension k′|k and a k′-point Y0, where
Φ(X,Y ) and Φ(Y,Z) are regular. Specializing Y to such Y0, we get Φ(X,Z) = Φ(X,Y0)Φ(Y0, Z) =
Φ(X,Y0)Φ(Z, Y0)

−1. Then Φ(X,Y0) transforms b to a basis fixed by all σ ∈ SΨ such that σ(I)
does not meet I, i.e. fixed by entire SΨ. This gives an embedding of V into a (finite) direct sum of
copies of K⊗k k

′, which is itself a (finite) direct sum of copies of K, and finally, so is V as well. �

The following lemma asserts that, in a sense, restriction to an open subgroup cannot trivialize the
irreducible subquotients of a semilinear representation with a non-trivial irreducible subquotient.

Lemma 3.2. Let Ψ be a set, Ψ′ ⊆ Ψ be a subset of the same cardinality as Ψ, K := k(Ψ) and
K ′ = k(Ψ′). Set I := Ψ r Ψ′. Then any smooth simple K〈SΨ〉-module M admits a simple
K ′〈SΨ|I〉-submodule M ′ with dimK M = dimK ′ M ′.

Proof. For any SΨ-set M set M ′ := lim−→
J

MSΨ|J ⊆ MSΨ|Ψ′ , where J runs over finite subsets of Ψ′.

[This does not lead to confusion in the cases M = Ψ and M = K, since Ψ′ = lim−→
J

J = lim−→
J

ΨSΨ|J

and K ′ = k(Ψ′) = lim−→
J

k(J) = lim−→
J

k(Ψ)SΨ|J .] Clearly, the group SΨ|I acts on M ′. We note that
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restriction to Ψ′ identifies the groups SΨ|I and the automorphism group SΨ′ of Ψ′, while SΨ′ is
identified with SΨ,Ψ′ /SΨ|Ψ′ .

Any bijection ι : Ψ
∼

−→ Ψ′ induces a topological group isomorphism ιS : SΨ
∼
−→ SΨ′ , g 7→ [i 7→

ιg(ι−1(i))]. For a smooth SΨ-set M the bijection ι induces a bijection ιM : M
∼

−→ M ′, m 7→ σmm
for any σ ∈ SΨ with σm|J = ι|J if m ∈ MSΨ|J for a finite J ⊂ Ψ. This bijection is compatible with

SΨ- and SΨ′-actions, i.e., the following diagram commutes

SΨ×M
×
−→ M

↓ ιS × ιM ↓ ιM

SΨ|I ×M ′ ×
−→ M ′

Clearly, ι induces a ring isomorphism ιK〈SΨ〉 : K〈SΨ〉
∼

−→ K ′〈SΨ′〉. Now, if M is a smooth K〈SΨ〉-
module then ιM is compatible with K〈SΨ〉- and K〈SΨ′〉-module structures, i.e., the following
diagram commutes

K〈SΨ〉 ×M
×

−→ M
↓ ιK〈SΨ〉 × ιM ↓ ιM

K ′〈SΨ|I〉 ×M ′ ×
−→ M ′

In particular, dimK M = dimK ′ M ′. Moreover, if M is a simple K〈SΨ〉-module then M ′ is a simple
K ′〈SΨ′〉-module as well. �

Remark 3.3. Let Ψ be an infinite set and EndlMeng be the following site: the underlying category
is opposite to the category of finite sets and their embeddings, any morphism is covering. It may
be noticed that Lemma 3.2 is based on the existence of an equivalence between the category of
smooth SΨ-sets and the category of sheaves of sets on EndlMeng (sending a sheaf F to the SΨ-set
lim−→
J⊂Ψ

F(J)).

Proof of Theorem 1.2. By Lemma 2.5, any smooth simple K〈SΨ〉-module is isomorphic to a quo-

tient of K[
(Ψ
s

)

] for some s.
Let us show by induction on s that for any field K endowed with a smooth faithful SΨ-action

any simple subquotient of the K〈SΨ〉-module K[
(Ψ
s

)

] is isomorphic to K, the case s = 0 being
trivial.

By Lemma 2.3, there are no simple K〈SΨ〉-submodules in K[
(Ψ
s

)

] if s ≥ 1, and therefore, any

simple subquotient M of K[
(

Ψ
s

)

] is contained in a quotient by some non-zero K〈SΨ〉-submodule.
By Lemma 2.4, there is a finite subset I ⊂ Ψ such that the K〈SΨ|I〉-module M is isomorphic

to a subquotient of
⊕s−1

j=0K[
(ΨrI

j

)

]⊕(
#I
s−j). By the induction assumption, any simple subquotient

of the K〈SΨ|I〉-module M is isomorphic to K. In particular, in notation of Lemma 3.2 with
Ψ′ := Ψ r I, any simple subquotient of the K〈SΨ|I〉-module K ⊗K ′ M ′ ⊆ M is isomorphic to K,

and therefore, there is a surjection of K〈SΨ|I〉-modules π : K ⊗K ′ M ′ → K identifying M ′ with a
K ′〈SΨ|I〉-submodule of K.

Let Q ∈ K× be a non-zero element of π(M ′). As K ′ = k(Ψr I), so K = K ′(I), we can consider
Q as a rational function in variables in I over K ′. If k is infinite then, specializing the elements
of I to elements of k so that Q has neither zero nor pole at chosen collection, we get a non-zero
morphism of K ′〈SΨ|I〉-modules π(M ′) → K ′, so M ′ ∼= K ′, and thus, M ∼= K.

If k is finite then there is a finite field extension k′|k such that Q(I) has neither zero nor pole
at some collection of elements of k′. Specializing the elements of I to such collection, we get a
non-zero morphism of K ′ ⊗k k

′〈SΨ|I〉-modules π(M ′)⊗k k
′ → K ′ ⊗k k

′. As the K ′〈SΨ|I〉-modules

π(M ′) ⊗k k
′ and K ′ ⊗k k

′ are isomorphic to (finite) direct sums of copies, respectively, of M ′ and
of K ′, we get again M ′ ∼= K ′ and M ∼= K.

Therefore, any smooth K-semilinear representation V of SΨ of finite length is finite-dimensional.
Finally, by Lemma 3.1, V is isomorphic to a direct sum of copies of K. �
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Corollary 3.4. Let k be a field and Ψ be an infinite set. Let SΨ be the group of all permutations
of the set Ψ acting naturally on the field k(Ψ). Let K ⊂ k(Ψ) be an SΨ-invariant subfield over k.
Then any smooth K-semilinear irreducible representation of SΨ can be embedded into k(Ψ).

Proof. For any smooth simple K〈SΨ〉-module V the k(Ψ)〈SΨ〉-module V ⊗K k(Ψ) admits a simple
quotient isomorphic, by Theorem 1.2, to k(Ψ). This means that V can be embedded into k(Ψ). �

Proof of Theorem 1.3. For any smooth simple K〈SΨ〉-module V the k(Ψ)〈SΨ〉-module V ⊗K k(Ψ)
admits a simple quotient isomorphic, by Theorem 1.2, to k(Ψ). This means that V can be embedded
into k(Ψ).

Let us show that any simple K〈SΨ〉-submodule V ⊂ k(Ψ) coincides with Vd for some d ∈ Z.
Let P/Q ∈ V be a non-zero element for some polynomials P,Q ∈ k[Ψ]. Then there is a non-
zero morphism V → VdegP−degQ sending P/Q to Pdeg P /QdegQ, where Pdeg P and QdegQ denote
the homogeneous components of maximal degrees of P and Q, respectively. As V is simple, this
morphism should be bijective. Then P/Q is homogeneous, since otherwise V would be infinite-
dimensional over K, and therefore, V = VdegP−degQ.

Thus, any smooth K〈SΨ〉-module V of finite length is a finite-dimensional K-vector space. Set
N := dimK V . By Lemma 3.1, the SΨ-action on V in a fixed basis is given by the 1-cocycle
fσ = Φ(I)Φ(σI)−1 for some finite I ⊂ Ψ and some Φ(X) ∈ GLNk(I). As fσ ∈ GLNK, one has
Φ(λI)Φ(λσI)−1 = Φ(I)Φ(σI)−1 for any λ ∈ k and any σ ∈ SΨ, and therefore, Φ(I)−1Φ(λI) ∈
(GLNk(I))SΨ = GLNk. Then λ 7→ Φ(I)−1Φ(λI) gives rise to a homomorphism of algebraic k-
groups Gm,k → GLN,k. Changing the basis, we may assume that Φ(I)−1Φ(λI) is diagonal with
powers of λ on the diagonal. This means that the colums of Φ(I) are homogeneous of the same
degree, i.e., V is isomorphic to a direct sum of several Vd’s for some integer d. The spaces Vd ⊆
k(Ψ) are pairwise non-isomorphic one-dimensional K-semilinear representations of SΨ, since Vd =

V
⊗d

K
1 . �

Proof of Theorem 1.3. By Corollary 3.4, any smooth simple K〈SΨ〉-module can be embedded into
k(Ψ). Let us show that any simple K〈SΨ〉-submodule V ⊂ k(Ψ) coincides with K.

Fix some x ∈ Ψ. One has k(Ψ) = K[x] ⊕
⊕

R lim−→
0≤j<mdegR

V
(j,m)
R , where R runs over the SΨ-

orbits of non-constant irreducible monic polynomials in K[x] and V
(j,m)
R is the K-linear envelope of

P (x)/Qm for all Q ∈ R and P ∈ K[x] with degP ≤ j. Clearly, these decomposition and filtrations
are independent of x. It suffices to show that the only simple K〈SΨ〉-submodule K[x] is K and

there are no simple K〈SΨ〉-submodules in V
(j,m)
R for any R, m and j.

Suppose first that V ⊂ K[x]. Let Q ∈ V be a (non-zero) monic polynomial in x of minimal
degree. Then V contains Q− σQ for any σ ∈ SΨ. If σQ 6= Q for some σ ∈ SΨ then Q− σQ 6= 0
and deg(Q− σQ) < degQ, contradicting our assumption, so σQ = Q for any σ ∈ SΨ, i.e., Q ∈ k.

Suppose now that V ⊂ V
(j,m)
R . One has isomorphisms

xj · : V
(0,m)
R

∼
−→ V

(j,m)
R /V

(j−1,m)
R

for all 0 < j < m degR, so it suffices to check that V
(0,m)
R admits no simple K〈SΨ〉-submodules.

Fix some Q ∈ R. Then the morphism K[SΨ /StabQ] → V
(0,m)
R , [g] 7→ (gQ)−m, is an isomorphism.

By [2, Lemma 6.2], there are no simple submodules in K[SΨ /StabQ].
Thus, any smooth K〈SΨ〉-module V of finite length is a finite-dimensional K-vector space. Set

N := dimK V . By Lemma 3.1, the SΨ-action on V in a fixed basis is given by the 1-cocycle
fσ = Φ(I)Φ(σI)−1 for some finite I ⊂ Ψ and some Φ(X) ∈ GLNk(I). As fσ ∈ GLNK, one has
Φ(TλI)Φ(TλσI)

−1 = Φ(I)Φ(σI)−1 for any λ ∈ k and any σ ∈ SΨ, where Tλx = x+ λ for any x ∈
Ψ ⊂ k(Ψ), and therefore, Φ(I)−1Φ(TλI) ∈ (GLNk(I))SΨ = GLNk. Then λ 7→ Φ(I)−1Φ(TλI) gives
rise to a homomorphism of algebraic k-groups Ga,k → GLN,k. Changing the basis, we may assume
that Φ(I)−1Φ(TλI) is block-diagonal with unipotent blocks corresponding to indecomposable direct
summands of V . For any integer N ≥ 1 the unique isomorphism class of smooth K-semilinear
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indecomposable representations of SΨ of length N is presented by
⊕N−1

j=0 xjK ⊂ k(Ψ) for any
x ∈ Ψ. �
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