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The transformation of a weakly nonlinear interfacial solitary wave in an ideal two-layer flow
over a step is studied. In the vicinity of the step the wave transformation is described in the
framework of the linear theory of long interfacial waves, and the coefficients of wave reflection
and transmission are calculated. A strong transformation arises for propagation into shallower
water, but a weak transformation for propagation into deeper water. Far from the step, the
wave dynamics is described by the Korteweg-de Vries equation which is fully integrable. In the
vicinity of the step, the reflected and transmitted waves have soliton-like shapes, but their
parameters do not satisfy the steady-state soliton solutions. Using the inverse scattering
technique it is shown that the reflected wave evolves into a single soliton and dispersing
radiation if the wave propagates from deep to shallow water, and only dispersing radiation if
the wave propagates from shallow to deep water. The dynamics of the transmitted wave is more
complicated. In particular, if the coefficient of the nonlinear quadratic term in the Korteweg-de
Vries equation is not changed in sign in the region after the step, the transmitted wave evolves
into a group of solitons and radiation, a process similar to soliton fission for surface gravity
waves at a step. But if the coefficient of the nonlinear term changes sign, the soliton is destroyed
completely and transforms into radiation. The effects of cubic nonlinearity are studied in the
framework of the extended Korteweg-de Vries (Gardner) equation which is also integrable. The
higher-order nonlinear effects influence the amplitudes of the generated solitons if the
amplitude of the transformed wave is comparable with the thickness of lower layer, but
otherwise the process of soliton fission is qualitatively the same as in the framework of the
Korteweg-de Vries equation.

Keywords: Nonlinear waves in the ocean; Internal waves; Two-layer flow; Solitons; Korteweg-
de Vries equation

1. Introduction

The fission of a solitary wave (soliton) is well known for surface waves passing through
a zone of rapid depth change, when the incident soliton transforms into a group of
the secondary solitons (Tappert and Zabusky 1971, Pelinovsky 1971, 1977, Johnson
1972). The same process was studied theoretically for internal waves by Djordevic
and Redekopp (1978) and Helfrich and Melville (1986) (see also Zheng et al. 2001).
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Fission of internal solitary waves propagating along an inhomogeneous thermocline
was observed in the Gulf of Aden (Zheng et al. 2001), and while propagating across the
continental slope in the South China Sea (Liu et al. 2004). Sometimes this process is
observed with a changing of polarity of solitons (Liu et al. 1998, Orr and Mignerey
2003, Zhao et al. 2003). In these cited papers for internal waves, the width of the
transition zone is relatively small compared with a characteristic nonlinear length-scale,
but is relatively large compared with the wavelength. In this case a WKB-type
approximation for linear long waves can be used to describe the wave transformation in
the transition zone. This feature can also be built into a variable-coefficient Korteweg-
de Vries equation to describe the transformation of internal solitary waves propagating
over the continental slope (see, for instance, Grimshaw et al. 2004, 2007).

On the other hand, the case when the background state changes very rapidly, for
instance at a step in the bottom topography, the incident modal internal wave is
transformed into reflected and transmitted internal waves with many modes; this
process is more difficult for theoretical analysis even when the waves are linear. But, if
the fluid stratification is modeled as a two-layer fluid, there is only one mode present
(interfacial waves), and hence there can be no scattering into other modes.
This simplified process is studied in this paper, where we analyze the fission of an
interfacial soliton incident on a step. In the vicinity of the step, where wave
transformation may be quite rapid, we use linear long wave theory to describe the
wave transformation, see section 2; this assumes that the wave amplitude is small, and
the wavelengths are much greater than the fluid depth, while the width of the transition
zone is much shorter than these wavelengths. Then in sections 3 and 4 we allow weakly
nonlinear and weakly dispersive effects to come into play to describe the development
of the reflected and transmitted wave fields, so that each of these are governed by a
Korteweg-de Vries equation. In section 3 we show that only a single soliton forms in the
reflected field for the case of a transformation from deep to shallow water over the step;
otherwise for a transformation from shallow to deep water, no solitons form in the
reflected field which instead contains only dispersing radiation. Note that ‘‘deep’’ is
used here and throughout the text only in contrast to ‘‘shallow’’; in all cases the water
depth is much less than the wavelength. Then in section 4 we examine the fission of the
transmitted wave, and show that secondary solitons form together with some radiation.
But, in contrast with the case of a surface wave, secondary solitary waves may not
appear at all if the nonlinearity changes its sign after a step, and only radiation is
formed. Some effects on this fission phenomenon of cubic nonlinearity leading to
an extended Korteweg-de Vries (Gardner) equation are investigated in section 5.
Our results are summarized in the conclusion.

2. Linear long interfacial wave transformation at a step

Let us consider the problem sketched in figure 1. The thickness of the upper layer, h1 is
constant, and the thickness of the lower layer, h2 is varied rapidly from h2� to h2þ in the
vicinity of x¼ 0. The vertical displacement of the interface is �(x, t), and the layer-mean
horizontal velocities are u1 and u2 respectively. The density jump on the interface is
��/�, and the acceleration g due to gravity is directed down. We will use the Boussinesq

180 R. Grimshaw et al.
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approximation (that is, the density jump is weak) and the approximation of a rigid

upper lid, which are typical for oceanographic applications.
In general, the description of the wave field near the step is a difficult task (see for

instance, Baines 1995); it contains propagating waves (reflected as well as transmitted)

and non-propagating evanscent modes. But, in the long wave limit, the characteristics

of the reflected and transmitted waves can be found from the conservation of pressure

(water level) and the mass flux in the lower layer at a step, they are

�� ¼ �þ, h2�u2� ¼ h2þu2þ: ð1Þ

In linear long wave theory, each dependent variable satisfies the linear wave equation,

with a speed c given by

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
��

�

h1h2
h1 þ h2

s
: ð2Þ

The wave field is then expressed as a superposition of an incident and a reflected wave

in x50 before the step, and a transmitted wave in x40 after the step. After taking into

account the relationhip between the horizontal velocity and the vertical displacement in

each wave

u2 ¼ �
c�

h2
, ð3Þ

it is straightforward to find the coefficients of reflection R and transmission T:

R ¼
ð1� ðcþ=c�ÞÞ

ð1þ ðcþ=c�ÞÞ
, T ¼

2

ð1þ ðcþ=c�ÞÞ
: ð4Þ

Here cþ and c� are values of the long wave speed (2) in x40 after the step and in x50

before the step, respectively. As expected, these expressions are the same as for surface

waves, and any special features arising for interfacial waves are due to the dependence

of the long wave speed (2) on the thickness of the lower layer. More specifically, the

reflection and transmission properties are determined by the speed jump

� ¼
cþ
c�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hþ
h�

h1 þ h�
h1 þ hþ

s
, ð5Þ

where for convenience we have denoted h2� and h2þ by h� and hþ respectively. It is

convenient to normalize the depth of the lower layer with the thickness of upper layer

and let H¼ h2/h1. As a result, the speed jump is a function of two parameters, the initial

 η

2−

2+

1

Figure 1. Geometry of the problem.
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depth of lower layer H� and the depth jump �H¼ hþ/h�:

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�H

1þH�

1þH��H

r
: ð6Þ

The case �H51 corresponds to the wave transmission from deep to shallow water, and
�H41 to wave transmission from shallow to deep water. In contrast to surface waves,
the result now depends on the initial depth of the lower layer before the step, as well as
on the depth jump. When �H is small (transmission from deep to shallow water) we

have the approximate expression

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Hð1þH�Þ

p
: ð7Þ

In the opposite case of wave transmission from shallow to deep water, if the depth jump

�H is high, we have another approximate expression

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH�

H�

r
, ð8Þ

and for a very large initial depth there is no difference in the speed of propagation
across the bottom step. This is simply because the speed of propagation of long internal

waves is determined by the depth of the narrowest layer if the thicknesses are very
different.

The calculated coefficients for the wave transmission and reflection are shown in
figure 2. As expected, when a wave passes from deep to shallow water the transmitted
wave is increased and the reflected wave is decreased. On the other hand when a wave
propagates from shallow to deep water, the transmitted wave is decreased, and the
reflected wave has the opposite polarity. This conclusion is similar to the behavior for

the surface waves at a step (all formulas for this case are obtained if formally H�¼ 0).
The main new result for an interfacial wave is manifested if the initial depth is large; in
this case the wave passes through a step with very little change, as explained in the
previous paragraph.

3. Reflection of a soliton from a step

First, let us consider the transformation of a Korteweg-de Vries soliton at a step.
The Korteweg-de Vries equation (KdV) for an interfacial wave in a two-layer fluid has
the following form

@�

@t
þ cþ ��ð Þ

@�

@x
þ �

@3�

@x3
¼ 0, ð9Þ

where

� ¼
ch21H

6
, � ¼

3c

2h1

1�H

H
, ð10Þ

where again we use the normalization of the depth of the lower layer by the thickness of
the upper layer, and c is the long wave speed given by (2). The solitary wave (soliton)

182 R. Grimshaw et al.
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solution of (9) is

� ¼ A sech2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A

4h1

� �
ð1�H�Þ

H2
�

s
½x� ðcþ �A=3Þt�

h1
: ð11Þ

The soliton amplitude is positive if H51 (elevation soliton), and negative if H41

(depression soliton). If H¼ 1, as is well-known, the interfacial solitons do not exist.

We will assume that (11) describes the incident wave propagating from the left towards

the step, and hence H¼H�.
Taking into account that the soliton amplitude is weak (both the nonlinear and

dispersive effects are weak, but in balance), the process of the wave transformation at

the step can be described to leading order in the framework of the linear theory of long

interfacial waves. The reflection coefficient R was calculated in section 2, and does not

depend on the wave scale. This means that to leading order after reflection, in the
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Figure 2. Transmission and reflection coefficients of long internal wave on step (the numbers indicate the
initial depth).
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vicinity of the step, the reflected wave has the same shape as the incident wave, but its

amplitude is different, so that near the step

�ref ¼ Aref sech
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A

4h1

1�H�

H2
�

s
x

h1

 !
, Aref ¼ RA: ð12Þ

This reflected wave, although it has a soliton-like shape, is now not a steady-state

soliton, because its width is determined by the initial soliton amplitude, and not by the

amplitude of reflected wave. Instead, the expression (12) should be used now to solve

the KdV equation (10) (with c replaced with �c). As is well-known, the KdV equation is

exactly integrable using an associated spectral problem and the inverse scattering

transform. Indeed, in the case of soliton-like disturbances, the spectral problem has an

explicit solution (e.g. Drazin and Johnson 1989). The answer depends on the sign of the

reflected coefficient. If the wave passes from shallow into deep water, the reflection

coefficient is negative, and polarity of the reflected wave is opposite to polarity of the

incident soliton. In this case no solitons are produced and the reflected wave decays into

dispersing radiation. If the wave passes from deep into shallow water, the polarity of the

reflected wave is unchanged, and the disturbance evolves into a finite number of

solitons, and radiation. Using the explicit results from the KdV equation (Drazin and

Johnson 1989) it is easy to show that only one soliton is formed in the reflected wave,

and its amplitude is

Asr

A
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rþ

1

4

r
�
1

2

 !2

: ð13Þ

This expression can be called the ‘‘soliton reflection’’ coefficient, and it does not depend

on the incident wave amplitude. If the depth ratio is small, the linear reflection

coefficient is small too, and the soliton reflection coefficient is described by the

approximate expression

Aref

A
� 4R2: ð14Þ
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Figure 3. Amplitude of soliton formed in the reflected wave (the numbers indicate the initial depth).
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Such a soliton is accompanied by a large dispersing wavetrain. If the depth ratio is

high, the linear reflection coefficient tends to 1, and the soliton reflects with the same

amplitude. The dependence of the ‘‘soliton reflection’’ coefficient on the depth ratio

and the initial depth of the lower layer is shown in figure 3. In deepest water the

amplitude of reflected soliton is less than in shallow water. Polarity of the formed

soliton is the same as polarity of the incident wave: positive if H51 and negative if

H41. We again underline that the soliton in the reflected wave forms only if the

incident wave approaches to shallow water, in the opposite case the reflected wave

transforms into a damped dispersive train.

4. Transmission of the KdV soliton through a step

A similar approach can be used to calculate the solitary waves formed in the field

of the transmitted wave. The transformed wave in the vicinity of the step has a

soliton-like shape, but its parameters are not the same as for the permanent

soliton; its amplitude differs by a factor of T, and its wavelength differs by a

factor of �¼ cþ/c�, since the temporal structure is not changed over the step.

Near the step it is given by

�tr ¼ Atr sech
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A

4h1

1�H�

H2
�

s
C�

Cþ

x

h1

 !
, Atr ¼ TA: ð15Þ

In general such a soliton-like disturbance (15) evolves into a group of solitons and a

dispersive wave train. But solitons can be formed only if the sign of the nonlinear

term is not changed after passage over the step. The possible existence of

transmitted solitons and their polarities are displayed in figure 4. In shallow

water, when both depths are less then the thickness of the upper layer, the polarities

of the transmitted solitons are positive, the same as the polarity of the incident

soliton. In deep water, when both depths are bigger than the thickness of the upper

layer, all solitons will be solitons of depression.

h−

h+

No solitons

No solitons

0 1

1

Depression 
solitons

Elevation 
solitons

Figure 4. Polarity of solitons formed in the transmitted wave.
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If the sign of the nonlinear coefficient is not changed, secondary solitons can be

formed in the transmitted wave. Their amplitudes can be also calculated from the

inverse scattering technique using the same scheme as for the reflected wave

Am
str

A
¼

c2����þ

c2þ�þ��

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

c2þ�þ��

c2����þ

� �
þ
1

4

s
� mþ

1

2

� �" #2

, ð16Þ

where m¼ 0, 1, 2, . . .N� 1, and

N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

c2þ�þ��

c2����þ

� �
þ
1

4

s
þ
1

2

" #
ð17Þ

is the number of transmitted solitons. All ratios in (16) are functions of the depth ratio

�H and initial depth of the lower layer H�:

cþ
c�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�H

1þH�

1þH��H

r
, T ¼ 2= 1þ

cþ
c�

� �
,

�þ

��

¼
1

�H

1�H��H

1�H�

,
�þ

��

¼ �H:

ð18Þ

If the fluid is very deep on both sides of the step (H�441), the wave passes over the

step with no change in amplitude (T� 1), but the dispersion coefficient ‘‘feels’’ the

thickness of the lower layer, and the soliton-like pulse nevertheless transforms into

solitons with amplitudes described by the simplified asymptotic expressions (see

figure 5)

N �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�H
þ
1

4

r
þ
1

2

" #
,

Am
str

A
� �H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�H
þ
1

4

r
� mþ

1

2

� �" #2

, ð19Þ

If the wave transforms from shallow to deep water (�H41), only one soliton is formed

and its amplitude decreases with the increase of the depth ratio. This decrease of the
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Figure 5. Internal soliton transmission in deep water.
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soliton amplitude is only due to the increase in the dispersion. If the wave transforms

from deep to shallow water (�H51), but the shallow depth is also large, the number of

solitons increases, and their amplitudes are increased (see figure 5).
Next, if the wave approaches from ‘‘real’’ shallow water or is transmitted into shallow

water, the result depends also on the initial thickness of the lower layer. In particular, if

the thicknesses of both layers after a step are almost the same (Hþ� 1), the nonlinear

coefficient (�þ) tends to zero, only one small soliton can appear, and its amplitude

follows from (16):

Atr

A
� 4T2 c

2
þ�þ��

c2����þ

: ð20Þ

On the other hand, if the soliton approaches from an incident zone with a small value of

the nonlinear coefficient (��) to a transmitted zone with ‘‘normal’’ values of the

nonlinear coefficient (�þ), the number of transmitted solitons is large, and the

amplitude of the leading transformed soliton is 2TA. The intermediate general case is

determined by two parameters and it is rather complicated. Figure 6 demonstrates the

maximum number of secondary solitons formed in the transmitted wave, if the initial

depth H�41 (the maximum determined from all depth ratios, but Hþ41 also).

As indicated above, the number of solitons formed is large if the initial depth is close to

1 (a zone with small values of the nonlinear parameter). It is also large when the initial

depth is large, and this is due to passage from deep to shallow water. The amplitudes of

the secondary solitons are shown in figure 7 for various values of the initial depth and

depth ratio. If the initial depth is close to 1, several solitons are formed (for instance, for

H�¼ 1.05 there are four solitons but the smallest soliton is not visible). If the initial

depth is H�¼ 2, two solitons are formed, but one of them is too small and is not visible.

For H�¼ 5 a third soliton has appeared, but it is not visible. At H�¼ 20 all three

solitons are visible.
If the wave passes over a step in the case when both zones are shallow water

(H�,Hþ51), many solitons are generated if the depth of the lower layer is very small
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Figure 6. Numbers of secondary solitons formed in the transmitted wave.
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(�H551), and their number is described by the approximation

N �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�H

1þH�

1�H�

r
: ð21Þ

The amplitude of the first soliton tends to 4. The amplitudes of the first four solitons are
shown in figure 8. Clearly seen is the increase of the secondary soliton amplitudes if the
transmitted depth is small as seen above in (21). If the initial depth is close to 1 (the zone
of small values of the nonlinear coefficient) the number of secondary solitons is
increased for any depth ratio.

5. Higher-order nonlinear effects for soliton transmission over a step

The Korteweg-de Vries equation is valid for weakly nonlinear waves when the
amplitude is less than the thickness of both layers. But if the density jump lies near the
middle of the fluid depth, the quadratic nonlinear term becomes small and high-order
nonlinear effects (cubic nonlinearity) have to be taken into account. The extension of
the Korteweg-de Vries equation for two-layer fluid was derived first by Kakutani and
Yamasaki (1978), and is given by the extended KdV (or Gardner) equation,

@�

@t
þ ðcþ ��þ �1�

2Þ
@�

@x
þ �

@3�

@x3
¼ 0, ð22Þ
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Figure 7. Amplitudes of solitons in the transmitted wave for various initial depths.
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where the cubic nonlinear coefficient is

�1 ¼ �
3c

8h21

1þH2 þ 6H

H2
: ð23Þ

It is important to mention that the cubic nonlinear coefficient is negative for all ratios

of the thickness of both layers. Steady-state solitary wave solution of the Gardner

equation can be easily found

�ðx, tÞ ¼
D

1þ B cosh½�ðx� VtÞ�
, ð24Þ

D ¼
6��2

�
, B2 ¼ 1þ

6�1��
2

�2
, V ¼ ��2, ð25Þ

where � is a free parameter characterizing the inverse width of the soliton. The soliton

amplitude is

A ¼
D

ð1þ BÞ
, ð26Þ

and is positive for positive values of the coefficient of quadratic nonlinearity. For the

case here, when �150, 05B51. The soliton amplitude varies from small values (B� 1),
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Figure 8. Amplitudes of the secondary solitons formed in the transmitted wave in shallow water for various
initial depths.

Fission of a weakly nonlinear interfacial solitary wave at a step 189



D
ow

nl
oa

de
d 

B
y:

 [G
rim

sh
aw

, R
og

er
] A

t: 
10

:0
1 

25
 M

ay
 2

00
8 

when the Gardner soliton (24) coincides with the Korteweg-de Vries soliton (11), to the

limiting value (B� 0)

Alim ¼
�

j�1j
, ð27Þ

when the soliton has a ‘‘table-top’’ shape.
The influence of the cubic nonlinear term can be demonstrated by two examples of

wave transformation over a step. First is the case when the incident wave propagates in

a zone of a small value of the coefficient of the nonlinear quadratic term and so is

described by the Gardner soliton (24). After the step the wave has the same shape but

with a different amplitude and width

�trðxÞ ¼ DT

�
1þ B cosh

C�

Cþ

rx

� �� �
, D ¼

6���
2

��

, B2 ¼ 1þ
6�1 � ���

2

�2
�

: ð28Þ

If the transformed wave propagates in a fluid with a ‘‘normal’’ (that is, not too small)

value of the coefficient of the nonlinear quadratic term, expression (28) can be used as

an initial condition for the Korteweg-de Vries equation. The solution of the associated

spectral problem with the initial condition (28) cannot be obtained in explicit form as

for soliton-like disturbances, but the main conclusions are evident. The Gardner soliton

(24) is wider than the KdV-soliton at the same amplitude (the same is the case for the

transformed pulse after a step), and therefore, the number of secondary solitons is

increased. In particular, if the incident wave is a table soliton with amplitude close to

the limiting amplitude (27), the number of transmitted solitons can be described by the

approximate formula (Drazin and Johnson 1989)

N �

Z þ1

�1

jx�trðx, 0Þjdk, ð29Þ

and the amplitudes of the first (leading) soliton is close to

Asol �
2T��

j�1þj
: ð30Þ

The main difference with the KdV scenario is in the number of transmitted solitons.
The second example is when a KdV-soliton is incident on the step, but after the step

there is an anomalously small value of the coefficient of the nonlinear quadratic term.

In this case the transmitted wave has the KdV-soliton-like shape (15) again in the

vicinity of the step. But its amplitude is significantly bigger than the limiting amplitude

(27). As is shown in Grimshaw et al. (2002), such a disturbance in general evolves into

one table-shape soliton and, perhaps, also smaller KdV-solitons. Their amplitudes

cannot exceed the limiting value �þ/|�1þ| (27), and in this case we may say that the

amplitude of table soliton does not depend on the incident soliton amplitude A, in

contrast with the prediction of the KdV theory, see (20). More precisely, the number

and amplitude of the transmitted solitons can be found from the discrete eigenvalues of

the associated spectral matrix problem

� �� ¼ k ��, � ¼
�@=@z uðzÞ

uðzÞ � 1 @=@z

� �
, ð31Þ
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where

uðzÞ ¼ B sech2
z

L

� �
, B ¼ AT

j�1þj

�þ

, L ¼
cþ
c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

A

��
�þ

� �
�2
þ

��j�1þj

s
: ð32Þ

These parameters are obtained after reducing the Gardner equation (21) to canonical

form with coefficients 6 in front of each nonlinear term. The spectrum of (31) can be

found numerically, but one limiting case can be analyzed analytically. If the coefficient

of the quadratic nonlinear term �þ tends to zero, the effective wave amplitude B tends

to infinity, but its effective length L tends to zero, and the disturbance (32) can be

considered as the �-function with effective mass

M ¼ 2T
cþ
c�

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A

��

�þ

� �
j�1þj

��

s
: ð33Þ

As it can be shown from the analytical result for a rectangular box disturbance

(Grimshaw et al. 2002), only one spectral level exists in (31), and it can be found

analytically:

k ¼ ðtanhMÞ=2: ð34Þ

The amplitude of the transmitted soliton is expressed through this spectral eigenvalue k

(now in dimensional variables):

Asol ¼
�þ
j�1þj

4k2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2

p : ð35Þ

If the mass is large, a table soliton is formed; if the mass is small, then a KdV soliton

will form; this last example was considered earlier, see (20). If the amplitudes of the

KdV and Gardner solitons are normalized by the limiting value (27), the following

relation between them can be found (figure 9):

AGar

Alim
¼

tanh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AKdV=Alim

p

1þ sech
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AKdV=Alim

p : ð36Þ
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Figure 9. Relation between amplitudes of the Gardner and KdV solitons when the wave transformed to
zone with small values of the quadratic nonlinear term; amplitudes are normalized on limiting value (27).
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If the amplitude of the KdV soliton is small, the amplitude of the Gardner soliton
coincides with it, and the effects of the cubic nonlinearity can be ignored. If the
amplitude of the KdV soliton is large (compared with the limiting amplitude), the
amplitude of the Gardner soliton tends to the limiting value, and the soliton has
a table shape.

We have analyzed as above the soliton part of the wave field for the transmitted
wave. A dispersive wavetrain tail is also induced for both the reflected and transmitted
waves. But this wave tail attenuates with time, and so the solitons will be the main
representatives of the wave field for large distances.

6. Numerical simulation of soliton generation in the transmitted wave

To demonstrate the process of the soliton fission, we performed some direct numerical
simulations of the transmitted wave in the framework of the Gardner equation (22).
We assume that the initial dimensionless thickness of the lower layer is 10, and after the
step is 1.5. The transmitted coefficient is T¼ 1.1 according to (4), and therefore the
linear amplification of the interfacial wave after a step is not too large. The initial
soliton amplitude of the incident wave is varied from 0.1 (KdV) to 1.0 (Gardner).
Numerical solution of the Gardner equation with constant coefficients calculated
for the case after the step is performed using a finite-different scheme described by
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Figure 10. Soliton appearance in the field of transmitted wave for various initial soliton amplitudes.
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Berezin (1987). Periodic boundary conditions are applied in the spatial domain, 05x/
h152000, and the number of points is 8000. The time step is chosen from the Courant
criterion. Time is normalized by h1/(g

0h1��/�)1/2.
Figure 10 demonstrates the generation of secondary solitons in the field of the

transmitted wave. In the case of weak initial amplitude (0.1) two solitons are generated
with amplitudes 0.136 and 0.027. According to the KdV theory (16) the soliton
amplitudes are 0.131 and 0.013. The agreement is quite good especially for the first
soliton. With an increase in the initial wave amplitude, the second soliton disappears,
and the first soliton transforms to a table-top soliton with an amplitude close to the
critical value 0.245, according to (27). Such behavior corresponds to the theoretical
scenario described in section 5. The amplitude of the dispersive tail is also increased.

7. Conclusions

In this paper we have considered the transformation of a weakly nonlinear
interfacial solitary wave incident on a step in the framework of a two-layer flow
formulation. In the vicinity of the step the wave transformation can be described
using the linear theory for long interfacial waves, and the coefficients of wave
reflection and transmission are calculated. A strong transformation occurs for
transmission into shallower water, and a weak one for transmission into deeper
water. Far from the step, the wave dynamics can be described by the Korteweg-
de Vries equation, which is fully integrable. The reflected and transmitted waves
in the vicinity of a step have soliton-like shapes, but their parameters do not
allow them to satisfy the steady-state soliton equations. Using the inverse
scattering technique it is shown that the reflected wave evolves into a soliton and
dispersive radiation if the incident wave meets a step from deep to shallow water,
and conversely, dispersive radiation only if the wave meets a step from shallow to
deep water. The dynamics of the transmitted wave is more complicated. In
particular, if the coefficient of the nonlinear quadratic term in the Korteweg-de
Vries equation is not changed in sign after the step, the transmitted wave evolves
into a group of solitons and dispersing radiation, and qualitatively this process is
similar to soliton fission for surface gravity waves. If the coefficient of the
nonlinear term changes sign, the soliton is destroyed completely and transforms
into dispersing radiation. The effects of cubic nonlinearity are studied in the
framework of the Gardner equation, which is also integrable. Higher-order
nonlinear effects influence the amplitudes of the generated solitons if the
amplitude of the transformed wave is comparable with the thickness of
the lower layer, but qualitatively the process of soliton fission is the same as
in the framework of the Korteweg-de Vries equation.

Although our results are for a very simple two-layer model of the density
stratification, and for a very simple representation (a step) of an abrupt change in
bottom topography, we expect that our results will form a useful guide to the
behaviour of oceanic internal solitary waves, propagating on the oceanic thermo-
cline, incident on the continental shelf from the deep ocean for the situation when
the wavelength is significantly greater than the horizontal scale of the topographic
change. In this scenario we have identified those wave and physical parameters
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which lead to substantial fission of the transmitted wave. The alternative case when
the horizontal scale of the topographic change is much greater than the wavelength
can be studied in the framework of a variable coefficient KdV, or Garder, equation
(see Grimshaw et al. 2004, 2007, for instance). Although fission may occur in this
case too, the number and amplitudes of the transmitted solitons is quite different
from those found here, in part due to the role played by the magnitude of the
transmission coefficient. The intermediate case when the horizontal scale of the
topographic change is comparable with the wavelength is apparently not readily
amenable to analysis, and requires numerical simulation.
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