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Abstract—Analytical theory of tsunami wave generation by

submarine landslides is extended to the case of narrow bays and

channels of different geometry, in the shallow-water theory

framework. New analytical solutions are obtained. For a number of

bottom configurations, the wave field can be found explicitly in the

form of the Duhamel integral. It is described by three waves: one

forced wave propagating together with the landslide and two free

waves propagating in opposite directions. The cases for bays with

triangular (V-shaped bay), parabolic (U-shaped bay), and rectan-

gular cross-sections are discussed in detail. The dynamics of the

offshore-propagating wave in linearly inclined bays of different

cross-section are also studied asymptotically for the resonant

moving landslide. Different cases of landslides of increasing and

decreasing volume are considered. It is shown that even if the

landslide is moving under fully resonant conditions, the amplitude

of the propagating tsunami wave may still be bounded, depending

on the type of the landslide.

Key words: Tsunami, landslides, bays and channels,

shallow water theory.

1. Introduction

Landslide motions and rock failures are now

recognized as important sources of tsunami waves

(KEATING et al., 2000; BARDET et al., 2003; YALCINER

et al., 2003; GUSIAKOV, 2009). A list of examples

includes the Papua New Guinea tsunami of 17 July

1998 (MCSAVENEY et al., 2000; SYNOLAKIS et al.,

2002), the tsunami in Izmit Bay (Turkey) of 17

August 1999 (ALTINOK et al., 2001), the tsunami in

Fatu Hiva (Marquesas islands; French Polynesia) of

13 September 1999 (OKAL et al., 2002), the Stromboli

tsunami of 30 December 2002 (TINTI et al., 2006), a

possible landslide tsunami of 7 May 2007 in the

Black Sea (RANGUELOV et al., 2008), and the largest

known tsunami event in Lituya Bay of 9 July 1958

(FRITZ et al., 2009).

To describe landslide tsunami generation, a vari-

ety of numerical models have been used (HARBITZ

et al., 1993; IMAMURA and GICA, 1996; HEINRICH et al.,

1999; ASSIER-RZADKIEWICZ et al., 2000; MANGENEY

et al., 2000; FINE et al., 2005; LIU et al., 2005; TINTI

et al., 2006; KUO et al., 2008; among others). Fewer

analytical methods are available. Most are limited to

the one-dimensional (1D) case of landslide motion in

the shallow-water approximation (PELINOVSKY, 1996;

TINTI and BORTOLUCCI, 2000; TINTI et al., 2001; LIU

et al., 2003; OKAL and SYNOLAKIS, 2003). For 2D and

3D cases, we note the works by (NOVIKOVA and

OSTROVSKY, 1978; PELINOVSKY and POPLAVSKY, 1996;

WARD, 2001; DI RISIO and SAMMARCO, 2008; SAMM-

ARCO and RENZI, 2008). The 2D shallow-water model

by (SAMMARCO and RENZI, 2008) also describes the

generation and propagation of edge waves induced by

a landslide of constant volume.

In all models above the volume of the landslide is

conserved. However, landslide and avalanche motion

are often accompanied by erosive and accretive pro-

cesses, which lead to variations of the landslide

volume (PUDASAINI and HUTTER, 2007). The first

analysis of tsunami wave generation from a landslide

of varying volume was performed by (DIDENKULOVA

et al., 2010) for two specific 1D bottom profiles

h� x4=3 (h is the water depth and x is coordinate

directed offshore) and h� x4. These two bottom

profiles enable presentation of the general solution as

a superposition of two travelling waves propagating
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in opposite directions (DIDENKULOVA et al., 2009;

DIDENKULOVA and PELINOVSKY, 2010).

This paper extends work by (DIDENKULOVA et al.,

2010) to the 2D case of U and V-shaped bays and

channels, taking into account the variability of land-

slide volume. It is organized as follows. The basic

shallow-water model, and specification of studied

basic bay geometries are described in the Sect. 2.

Rigorous solutions for tsunami wave generation by

landslide motion along these bays are obtained in the

Sect. 3, where bays of triangular (V-shaped), para-

bolic (U-shaped), and rectangular cross-section are

discussed in detail. The resonant motion of landslides

of varying volume along inclined channels of dif-

ferent cross-section is studied in the Sect. 4. The main

results are summarized in the Sect. 5.

2. Basic Model of Landslide Tsunami Generation

in U-Shaped Bays

The propagation and runup of long waves in V

and U-shaped bays and channels has been studied by

(DIDENKULOVA and PELINOVSKY, 2009, 2011a, b). The

governing equations for tsunami wave generation by

underwater landslides in narrow bays and channels

can be written similar to the 1D case studied in

(PELINOVSKY, 1996; TINTI et al., 2001; LIU et al., 2003;

DIDENKULOVA et al., 2010):

oS

ot
þ o

ox
Su½ � ¼ oSb

ot
; ð1Þ

ou

ot
þ u

ou

ox
þ g

og
ox
¼ 0; ð2Þ

where g x; tð Þ is the sea surface elevation, u(x, t) is the

flow velocity averaged over a cross-section, g is the

acceleration due to gravity, S g; x; tð Þ is the variable

cross-section of the bay, Sb(x, t) describes the land-

slide motion, x is coordinate directed offshore, and t is

time. Generated waves and landslide body are

assumed to be uniform over the cross-section (Fig. 1).

In the case of an inclined bay with a cross-section

described by the power law z� yj jm, m is a cross-

section factor, which can be any positive number, the

variable cross-section of the bay S g; x; tð Þ is related

to the total water depth of the main bay axis

H = h(x) ? g(x, t) as S�Hq, where q ¼ mþ1
m

, and

Eqs. (1) and (2) can be re-written in terms of the total

water depth:

oH

ot
þ u

oH

ox
þ H

q

ou

ox
¼ ozb

ot
;
ou

ot
þ u

ou

ox
þ g

oH

ox
¼ g

dh

dx
;

ð3Þ

where zb x; tð Þ is the moving bottom boundary along

the main channel axis, which is assumed to be con-

stant over the channel cross-section. Analytical

solutions for tsunami wave generation by the moving

landslide can be obtained by linear approximation,

and the linearized equation Eq. (3) take the form:

og
ot
þ u

dh

dx
þ h

q

ou

ox
¼ ozb

ot
;
ou

ot
þ g

og
ox
¼ 0: ð4Þ

Finally, Eq. (4) can be transformed to Eq. (5) for

sea surface elevation:

o2g
ot2
� g

dh

dx

og
ox
� gh

q

o2g
ox2
¼ o2zb

ot2
: ð5Þ

Initial conditions for the shallow-water system

(Eqs. 1 and 2) are applied to both g x; tð Þ and u(x, t).

If, at the initial moment the ocean rests and the

landslide starts its motion instantaneously, the

effective initial conditions have the following form

(DIDENKULOVA et al., 2010):

gðx; 0Þ ¼ zbðx; 0Þ;
og
ot
ðx; 0Þ ¼ ozb

ot
ðx; 0Þ: ð6Þ

Initial conditions for this type are similar to those

known for tsunami generation by earthquakes. This

similarity comes from the fact that at one moment the

landslide is stationary and the next moment it

abruptly starts its motion along the slope. These

initial conditions (Eq. 6) for tsunami generation by

landslides have been rigorously derived and dis-

cussed in detail by (DIDENKULOVA et al., 2010).

Figure 1
The geometry of the problem: a uniform sea surface elevation over

the cross-section, g(x, t), is generated by a landslide with the shape

Sb(x, t)
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Equation (5) is an inhomogeneous wave equation

with variable coefficients which cannot be solved

analytically in the general case. That is why we seek

specific conditions when this equation can be reduced

to an inhomogeneous constant-coefficient equation.

For this purpose, we apply the transformation similar

to that which was used to find nonreflecting bottom

configurations (DIDENKULOVA et al., 2008, 2009;

GRIMSHAW et al., 2010):

g ¼ AðxÞYðsðxÞ; tÞ: ð7Þ

Substituting Eq. (7) into Eq. (5) we obtain a so-

called inhomogeneous Klein-Gordon equation:

A
o2Y

ot2
� gh

q

ds
dx

� �2
o2Y

os2

( )

� oY

os
gA

dh

dx

ds
dx
þ 2

gh

q

dA

dx

ds
dx
þ A

gh

q

d2s
dx2

� �

� Y g
dh

dx

dA

dx
þ gh

q

d2A

dx2

� �
¼ o2zb

ot2
ð8Þ

The first term in Eq. (8) is a standard wave

operator (d’Alembertian) if:

ds
dx

� �2

¼ q

ghðxÞ : ð9Þ

Equation (9) defines the travel time of wave

propagation in the channel s ¼
R

dx=c with the speed

cðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
gh=q

p
. The coefficient after oY

os (the second

term in Eq. 8) should be equal to zero in order to

satisfy the boundedness of the wave field,

gA
dh

dx

ds
dx
þ 2

gh

q

dA

dx

ds
dx
þ A

gh

q

d2s
dx2
¼ 0: ð10Þ

Equations (10) and (9) gives us the generalized

Green’s law for wave propagation in channels of var-

iable depth and cross-section (MEI, 1989; SYNOLAKIS,

1991; DIDENKULOVA and PELINOVSKY, 2011a):

Ah
2q�1

4 ¼ const: ð11Þ

And, finally, to obtain the constant-coefficient

wave equation, the last term in Eq. (8) should also be

equal to zero:

g
dh

dx

dA

dx
þ gh

q

d2A

dx2
¼ 0: ð12Þ

Taking into account Eq. (11), Eq. (12) gives us a

set of specific bay geometries:

h� x
4

2qþ1; SðxÞ� hq: ð13Þ

These bay geometries, which induce wave prop-

agation over large distances without energy loss,

were discussed extensively by (DIDENKULOVA and

PELINOVSKY, 2011a).

Thus, the final expression for the basic equation

describing tsunami wave generation by landslides in

inclined bays and channels is:

o2Y

ot2
� o2Y

os2
¼ o2

ot2

zbðs; tÞ
A sð Þ

� �
; ð14Þ

where A sð Þ is fully determined for each channel

configuration by use of Eqs. (11) and (13). Equa-

tion (14) is an inhomogeneous wave equation, which

can be solved analytically, as demonstrated in the

next section.

3. Tsunami Generation by Landslide Motion

Along the Bay

The solution of Eq. (14) satisfying the initial

conditions in Eq. (6) can be expressed in the form of

the Duhamel integral (COURANT and HILBERT, 1989):

Yðs; tÞ ¼ 1

2

zbðs� tÞ
Aðs� tÞ þ

zbðsþ tÞ
Aðsþ tÞ

� �

þ 1

2

Zsþt

s�t

1

AðrÞ
ozb

ot
ðr; 0Þdr

þ 1

2

Z t

0

dq
Zsþðt�qÞ

s�ðt�qÞ

1

Að1Þ
o2zb

oq2
ð1; qÞd1: ð15Þ

Equation (15) does not imply any restriction of

the properties of the landslide and its speed; it can be

used to study different types of landslide motion,

including variable volume of the landslide body and

variable speed of landslide motion. The solution of

Eq. (15) can be found in the explicit form if the

landslide moves as:

zbðs; tÞ ¼ AðsÞZðs� Fr � tÞ; ð16Þ

where the Froude number:
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Fr ¼ VðxÞ
cðxÞ ; ð17Þ

is constant and determines the variable speed of the

landslide in the basin of variable depth.

Equation (15) for the special landslide shape

(Eq. 16) transforms into:

gðx; tÞ ¼ Fr2

Fr2 � 1
AðxÞZ

Zx

0

dx0

cðx0Þ � Fr � t

2
4

3
5

� AðxÞ
2ðFr � 1Þ Z

Zx

0

dx0

cðx0Þ � t

2
4

3
5

þ AðxÞ
2ðFr þ 1Þ Z

Zx

0

dx0

cðx0Þ þ t

2
4

3
5; ð18Þ

and represents three waves. The first term describes

the forced wave, which propagates together with the

landslide. Its length increases with increasing dis-

tance and its amplitude is proportional to the

thickness of the landslide and decreases with a dis-

tance. The forced wave can have different polarity,

depending on the type of the landslide motion. It is

positive in the super-critical range (Fr [ 1) and

negative in the sub-critical range (Fr \ 1). The sec-

ond term describes a free wave, which propagates

with the speed c(x). As for the forced wave, it can

also be of different polarity: negative in the super-

critical range and positive in the sub-critical range.

The last term corresponds to the free wave of positive

polarity propagating onshore.

It is important to mention that the solution of

Eq. (18) has the same form for waves generated by a

landslide moving with constant speed in a basin of

constant depth (TINTI et al., 2001; PELINOVSKY, 1996;

OKAL and SYNOLAKIS, 2003) and for a 1D landslide

moving along a non-reflecting bottom profile h� x4=3

(DIDENKULOVA et al., 2010). The limitations of con-

stant landslide speed and constant Froude number

discussed above are not adequate physically, but they

are the only ones that enable analytical solution of the

problem. It is also important to note that the general

structure of the wave field remains qualitatively

similar even for cases when the speed of the landslide

and the Froude number vary arbitrarily (TINTI et al.,

2001; LIU et al., 2003; DIDENKULOVA et al., 2011).

The forced wave propagating offshore has a sign-

variable shape in the resonant case (Fr = 1). This

follows from two first terms in Eq. (18) using

l’Hôpital’s rule. Taking into account that in the

vicinity of the resonance sðxÞ � t, the resonant wave

can be written as:

gresðx; tÞ ¼ �
AðxÞsðxÞ

2

oZ

os
sðxÞ � t½ �: ð19Þ

By use of Eqs. (9), (11), and (13) it can be shown

that AðxÞsðxÞ tends to a constant asymptotic value for

any non-reflecting bay geometry. So, in contrast with

the basin of constant depth, where the resonance

leads to infinite growth of the wave amplitude, the

resonance effect in a basin of a variable depth can be

bounded for any kind of non-reflecting beach profile.

So, the effectiveness of the resonance decreases

because of the decrease in the landslide thickness and

wave propagation to deeper water. Of course, this is a

very particular solution, which enables rigorous

analytical investigation of resonant tsunami wave

generation. However, a more general case of land-

slides of different volume and different bottom

structures is discussed in the next section.

Let us study in more detail tsunami wave gener-

ation in bays of different cross-sections described by

Eq. (18). In particular, wave dynamics in a V-shaped

bay (m = 1, q = 2, h� x4=5) are calculated below for

the initial landslide shape, described by:

zbðx; t ¼ 0Þ ¼ AðxÞ
2

tanh
sðxÞ � s0 þ T=2

a

� ��

� tanh
sðxÞ � s0 � T=2

a

� ��
; ð20Þ

where T ¼ 40 s, a is a smoothing parameter (a = 0.3

T), and s0 ¼ 5:3 min, providing the location of a

1.3 km long and 1 m high landslide at a distance of

3 km offshore at a water depth of 50 m. The results

of the calculation are presented in Fig. 2, for two

different types of wave motion: subcritical

(Fr = 0.7) and supercritical (Fr = 1.3).

For supercritical wave motion (Fr = 1.3), the

forced wave described by the first term in Eq. (18)

represents the leading wave of elevation. For sub-

critical wave motion (Fr = 0.7), it is the second wave

of depression moving offshore. Waves propagating

offshore become longer (Fig. 2). The variations of

1664 I. Didenkulova, E. Pelinovsky Pure Appl. Geophys.



their amplitudes are presented in Fig. 3. In the

beginning, for a short time, amplitudes of individual

waves propagating offshore are increased by the res-

onant effect up to the factor of 1.5 in the case of

supercritical wave motion but at a distance of about

2–3 wavelengths they start to be determined by the

generalized Green’s law Eq. (11) (Fig. 3).

The onshore-going free wave described by the

third term in Eq. (18) moves onshore with a weak

initial amplitude that grows when the wave approa-

ches the coast (Fig. 2). The wave approaching the

beach increases in amplitude according to the

Green’s law (Fig. 3) and reduces in length. The wave

amplitude is higher under subcritical conditions than

under supercritical conditions. The shoaling effect

becomes significant near the shore and results in

significant wave amplification.

The dynamics of the waves induced by a similar

initial landslide (Eq. 20) (T = 40 s, s0 ¼ 5:5 min)

located at the same distance offshore (3 km) and at

the same water depth (50 m) in the U-shaped (m = 2,

q = 3/2, h� x) bay are displayed in Fig. 4. Gener-

ally, the wave dynamics are the same as for the

V-shaped bay, but waves in U-shaped bay (m = 2)

propagate more quickly than in the V-shaped

(m = 1). This difference is related to the difference in

wave speeds cðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mgh=ðmþ 1Þ

p
. Also, ampli-

tudes of offshore-going waves in U-shaped bays grow
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-1

-0.5

0

0.5

1

1.5

 (
m

)

t = 0 min

0 2 4 6 8 10 12

-1

0

1

2
t = 2 min

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

1.5

x (km)

 (
m

)

t = 1 min

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

1.5

x (km)

t = 4 min

η
η

Figure 2
Wave dynamics in a bay of triangular cross-section (m = 1), for subcritical (black solid line) and supercritical (blue dashed line) types of

wave motion
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Figure 3
Maximum amplitude of tsunami waves during propagation in a bay of triangular cross-section (m = 1) under subcritical (black solid line) and

supercritical (blue dashed line) conditions for waves propagating onshore (left) and offshore (right); the red dotted line corresponds to the

generalized Green’s law (Eq. 11)
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faster than in V-shaped bays and amplitudes of

onshore-going waves grow more slowly (Fig. 5). This

is in agreement with the water depth variations,

which change more slowly in an onshore direction

and more quickly in an offshore direction along a

U-shaped bay than along a V-shaped bay [Eq. (13)].

It can also be seen that the difference in amplitude

between subcritical and supercritical conditions is

smaller in the U-shaped bay.

The corresponding dynamics of landslide-gener-

ated waves in the inclined channel of rectangular

cross-section (m!1, q = 1, h� x4=3) are shown in

Fig. 6 (s0 ¼ 6:7 min, T and location of the failure are

the same as in the two previous cases). It can be seen

that in rectangular bay waves propagate even more

quickly, amplitudes of offshore-going waves become

higher, and amplitudes of onshore-going waves grow

slower than in the two previous cases (Fig. 7).

4. Resonant Motion of Landslides of Varying Volume

As has been shown in the Sect. 3, the resonant

wave amplitude in specific non-reflecting bays can be

bounded, whereas it tends to infinity if the depth of

the basin is constant. This makes it clear that reso-

nance should be considered in a more general case of

arbitrary bottom variations, different from specific

nonreflecting configurations. This should provide

further information about the sensitivity of the results
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Figure 4
Wave dynamics in a bay of parabolic cross-section (m = 2) under subcritical (black solid line) and supercritical (blue dashed line) conditions
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Figure 5
Maximum amplitude of a tsunami wave during its propagation in a bay of parabolic cross-section (m = 2) under subcritical (black solid line)

and supercritical (blue dashed line) conditions for waves propagating onshore (left) and offshore (right); the red dotted line corresponds to the

generalized Green’s law (Eq. 11)
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obtained to variations of the bottom profile and of

landslide characteristics.

Here this effect is studied for a basin of slowly

varying depth. We do not analyse the full wave field,

because the dynamics of the ‘‘non-resonant’’ wave

approaching the coast is not related to the landslide

motion (mainly in the initial stage of its motion) and

we do not expect large variations of its amplitude for

all other conditions of tsunami generation by the

landslide. Here we concentrate on ‘‘resonant’’ waves

propagating offshore. In the vicinity of the resonance

these waves propagate with speeds close to the local

wave celerity c(x), which slowly changes with a

distance, because the water depth and the cross-

section of the bay are slow functions of coordinate x.

For this case let us introduce new adequate coordi-

nates in Eq. (5):

s ¼ sðxÞ � t; x0 ¼ x; ð21Þ

where sðxÞ is the travel time as before. After substi-

tution of Eq. (21) the wave equation Eq. (5) has the

form:

2cðx0Þ o2g
osox0

þ 2q� 1ð Þ dc

dx0
og
os
¼ � o2zb

os2
; ð22Þ

where the term o2g=ox2 is of the second order of

accuracy and can be neglected. Thus, Eq. (22) can be

reduced to:
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Figure 6
Wave dynamics in a bay of almost rectangular cross-section (m = 100) under subcritical (black solid line) and supercritical (blue dashed line)

conditions
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Figure 7
Maximum amplitude of a tsunami wave during its propagation in a bay of almost rectangular cross-section (m = 100) under subcritical (black

solid line) and supercritical (blue dashed line) conditions for waves propagating onshore (left) and offshore (right); the red dotted line

corresponds to the generalized Green’s law (Eq. 11)
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o

ox0
cq�1=2 og

os

� �
¼ � cq�3=2

2

o2zb

os2
: ð23Þ

After integration of Eq. (23) and some simple

manipulations, the solution for the sea surface ele-

vation can be found (the prime (0) is omitted):

gðx; sÞ ¼ � 1

2cq�1=2

Zx

x0

cq�3=2 ozbðy; sÞ
os

dy; ð24Þ

Equation (24) describes resonant wave propaga-

tion in a narrow bay. To satisfy boundary conditions

an additional term, describing free non-resonant wave

propagation, should be added.

Equation (24) can be used for study of tsunami

wave generation by a landslide of a variable volume

moving with an arbitrary speed along the bay. It is

restricted by the speed of the landslide, which should

be close to the wave speed.

Let us consider a resonantly moving landslide of

arbitrary shape and variable volume:

zbðx; tÞ ¼ QðxÞZ sð Þ ¼ QðxÞZ sðxÞ � t½ �; ð25Þ

which according to Eq. (24) generates tsunami waves

of variable amplitude D(x)

gresðx; tÞ ¼ �DðxÞ oZðs� tÞ
os

;

DðxÞ ¼ 1

2cq�1=2

Zx

x0

cq�3=2QðyÞdy;
ð26Þ

along a linearly inclined bay

hðxÞ ¼ h0

x

x0

; ð27Þ

where x0 is the initial location of the landslide with

the water depth h0.

As has been mentioned above, to understand all

possible types of tsunami wave generation it is

important to consider different scenarios of landslide

volume variation.

If the landslide thickness is constant (Q = Q0 =

const), the coefficient D(x)

DðxÞ ¼ Q0x0

qþ 1=2ð Þc0

x

x0

� �1
2

� x

x0

� �1
4
�q

2

" #

¼ 2mQ0x0

3mþ 2ð Þc0

x

x0

� �1
2

� x

x0

� �1
4�

mþ1
2m

" #
; ð28Þ

increases at large distances as x1/2 for all kinds of bay

geometry with the coefficient depending on the cross-

section (Fig. 8).

If landslide thickness is decreasing, for example,

as Q� c�1, which bounds the volume of the land-

slide, coefficient D(x)

DðxÞ ¼ Q0x0

q� 1=2ð Þc0

1� x

x0

� �1
4
�q

2

" #

¼ 2mQ0x0

mþ 2ð Þc0

1� x

x0

� �1
4
�mþ1

2m

" #
; ð29Þ

asymptotically tends to a constant value for all kinds

of linearly inclined bay geometry, which is different

for different types of bay cross-section (Fig. 9). It can

be shown that when m = 2 and Q0 = A0 Eq. (29)

coincides with the coefficient in Eq. (19).
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Figure 8
Wave amplitude variation versus distance (Eq. 28) for inclined

bays of triangular (blue dotted line), parabolic (black solid line),

and rectangular (red dashed line) cross-sections (Q = const)
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Figure 9
Wave amplitude variations versus distance (Eq. 29) for inclined

bays of triangular (blue dotted line), parabolic (black solid line),

and rectangular (red dashed line) cross-section (Q� c�1)
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If the landslide thickness decreases significantly,

for example, as Q� c�2, which corresponds to the

decrease in the landslide volume, coefficient D(x):

varies non-monotonically for all the bay geometries

considered (Fig. 10). In particular, the wave ampli-

tude reaches its maximum value at the distance:

x�
x0

¼ q� 1=2ð Þ�ðq�3=2Þ=2; q 6¼ 3=2

e2; q ¼ 3=2

�
: ð31Þ

Maximum wave amplitude depends on the cross-

section factor, m. For instance, for a U-shaped bay

(m = 2, q = 3/2), it is:

Dmax ¼
Q0x0

ec0

: ð32Þ

All calculations above were performed using the

thickness of the landslide as the main variable. The

volume of the landslide can be found as a function of

its thickness:

V ¼
Z

z
q
bdx ¼

Z
QqðsÞ
cðsÞ Zq s� tð Þds; ð33Þ

where the integral in Eq. (33) is over landslide length.

In particular, for relatively short landslides:

VðxÞ� QqðxÞ
cðxÞ : ð34Þ

For instance, for the latter case of landslide

motion with Q� c�2 moving along a U-shaped bay

(m = 2) VðxÞ� c�4� h�2.

Thus, we demonstrate that the joint action of the

resonance and increasing cross-section of the bay

may lead to a slow increase of wave amplitude

(Fig. 9) or non-monotonic variations of wave ampli-

tude with distance (Fig. 10). The result is sensitive to

landslide thickness variations in time and the ampli-

fication zone decreases with decreasing landslide

thickness.

5. Conclusions

We propose a simple model of landslide tsunami

generation in narrow bays and channels. It is based on

shallow-water equations averaged over the bay cross-

section with an assumption of uniform landslide body

surface in the transverse direction of the bay, and

small landslide thickness compared with water depth.

As a result, the equivalent 1D inhomogeneous wave

equation is derived.

The process of landslide tsunami wave generation

in inclined bays of specific nonreflecting bottom con-

figurations was studied. The inhomogeneous variable-

coefficient wave equation was reduced to the inho-

mogeneous constant-coefficient wave equation, and its

rigorous solution had the form of the Duhamel inte-

gral. For a landslide of variable height moving with the

constant Froude number, the analytical solution can be

presented in an explicit form. Three different bottom

configurations (V-shaped bay, U-shaped bay, and a

bay of rectangular cross-section) were considered. It

was shown that in the resonant case the wave
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Figure 10
Wave amplitude variations versus distance (Eq. 30) for inclined

bays of triangular (blue dotted line), parabolic (black solid line),

and rectangular (red dashed line) cross-section (Q� c�2)

DðxÞ ¼
Q0x0

q�3=2ð Þc0

x
x0

	 
�1
2� x

x0

	 
1
4
�q

2

� �
¼ 2mQ0x0

2�mð Þc0

x
x0

	 
�1
2� x

x0

	 
1
4
�mþ1

2m

� �
; m 6¼ 2
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2c0
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�1
2

ln x
x0
; m ¼ 2

8>><
>>:

; ð30Þ
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amplitude is bounded for all nonreflecting bottom

configurations. However, wave amplitudes depend on

the bottom configuration. For example, the offshore-

going resonant wave was larger in a bay of rectangular

cross-section whereas the onshore going wave was

more strongly amplified in a V-shaped bay.

Resonance between landslide motion and wave

propagation in linearly inclined bays of variable cross-

section was studied, assuming smooth bottom varia-

tions. Effects of erosion and accretion of the landslide

body were included in the model. It was shown that if

the volume of the landslide increases with distance,

the wave amplitude also grows, but more slowly than

in a bay of constant depth. For a landslide of constant

volume, wave amplitude tends to a constant value

depending on the cross-section factor of the bay. If the

landslide thickness decreases substantially with dis-

tance, the amplitude of the generated wave varies non-

monotonically and its maximum is also determined by

the bay cross-section.

Our analytical solutions can be used for testing

numerical codes and for better understanding of the

physics of landslide-generated tsunamis.
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