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Abstract. Pattern structures allow one to approach the knowledge ex-
traction problem in case of arbitrary object descriptions. They provide
the way to apply Formal Concept Analysis (FCA) techniques to non-
binary contexts. However, in order to produce classification rules a con-
cept lattice should be built. For non-binary contexts this procedure may
take much time and resources. In order to tackle this problem, we in-
troduce a modification of the lazy associative classification algorithm
and apply it to credit scoring. The resulting quality of classification is
compared to present methods adopted in bank system.

1 Introduction

Banks and credit institutions face classification problem each time they con-
sider a loan application. In most general case, bank is eager to have a tool to
discriminate between solvent and potentially delinquent borrowers, i.e. the tool
to predict whether the applicant is going to meet his or her obligations or not.
Before 1950s such decision making process was expert driven and involved no ex-
plicit statistical modeling. The decision whether to grant a loan or not was made
upon an interview and after retrieving information about spouse and close rela-
tives [5]. From the 1960s, banks have started to adopt statistical scoring systems
that were trained on datasets of applicants, consisting of their socio-demographic
factors and loan application features. As far as mathematical models are con-
cerned, they were typically logistic regressions run on selected set of attributes.
Apparently, a considerable amount of research was done in the field of alterna-
tive machine learning techniques seeking the goal to improve the results of the
wide-spread scorecards [8,9,10,11,12].

All mentioned methods can be divided into two groups: the first one provides
the result difficult for interpretation, so-called “black box” models, the second
group provides interpretable results and clear model structure. The key feature
of risk management practice is that, regardless of the model accuracy, it must
not be the black box. That is why methods such as neural networks and SVM
classifiers did not earn much trust within banking community [5]. The dividing



hyperplane in an artificial high-dimensional space (dependent on the chosen
kernel) cannot be easily interpreted in order to claim the reject reason for the
client. As far as neural networks are concerned, they also do not provide the
user with a set of reasons why a particular loan application has been approved
or rejected. In other words, these algorithms do not provide the decision maker
with knowledge. The predicted class is generated, but no knowledge is retrieved
from data.

On the contrary, alternative methods such as associative rules and decision
trees provide the user with easily interpretable rules which can be applied to the
loan application. FCA-based algorithms also belong to the second group since
they use concepts in order to classify objects. The intent of the concept can be
interpreted as a set of rules that is supported by the extent of the concept. How-
ever, for non-binary context the computation of the concepts and their relations
can be very time-consuming. In case of credit scoring we deal with numerical
context, as soon as categorical variables can be transformed into set of dummy
variables. Lazy classification [17] seems to be appropriate to use in this case since
it provides the decision maker with the set of rules for the loan application and
can be easily parallelized. In this paper, we modify lazy classification framework
and test it on credit scoring data of a top-10 Russian bank.

The paper is structured as follows: section 2 provides basic definitions. Section
3 argues why the original setting can be inconsistent in case of large numerical
context and describes the proposed modification and its parameters. Section
5 describes the data in hand and some experiments with parameters of the
algorithm. Finally, section 6 concludes the paper.

2 Main Definitions

First, we recall some standard definitions related to Formal Concept Analysis,
see e.g. [1,2].

Let G be a set (of objects), let (D, u) be a meet-semi-lattice (of all possible
object descriptions) and let δ: G → D be a mapping. Then (G, D ,δ), where
D =(D, u), is called a pattern structure [1], provided that the set
δ(G) := {δ(g)|g ∈ G} generates a complete subsemilattice (Dδ, u) of (D, u), i.e.,
every subset X of δ(G) has an infimum uX in (D, u). Elements of D are called
patterns and are naturally ordered by subsumption relation v:
given c, d ∈ D one has c v d↔ c u d = c. Operation u is also called a similarity
operation. A pattern structure (G, D, δ) gives rise to the following derivation
operators (·)�:

A� =
l

g∈A
δ(g) for A ∈ G,

d� = {g ∈ G | d v δ(g)} for d ∈ (D, u).

These operators form a Galois connection between the powerset of G and
(D,u). The pairs (A, d) satisfying A ⊆ G, d ∈ D, A� = d, and A = d� are called



pattern concepts of (G,D, δ), with pattern extent A and pattern intent d. Oper-
ator (·)�� is an algebraical closure operator on patterns, since it is idempotent,
extensive, and monotone [1].

The concept-based learning model for standard object-attribute representa-
tion (i.e., formal contexts) is naturally extended to pattern structures. Suppose
we have a set of positive examples G+ and a set of negative examples G− w.r.t.
a target attribute, G+ ∩G− = ∅, objects from
Gτ = G \(G+ ∪G−) are called undetermined examples. A pattern c ∈ D is an
α - weak positive premise (classifier) iff:

||c� ∩G−||
||G−||

≤ α and ∃A ⊆ G+ : c v A�

A pattern h ∈ D is an α - weak positive hypothesis iff:

||h� ∩G−||
||G−||

≤ α and ∃A ⊆ G+ : h = A�

In case of credit scoring we work with pattern structures on intervals as
soon as a typical object-attribute data table is not binary, but has many-valued
attributes. Instead of binarizing (scaling) data, one can directly work with many-
valued attributes by applying interval pattern structure. For two intervals [a1, b1]
and [a2, b2], with a1, b1, a2, b2 ∈ R the meet operation is defined as [4]:

[a1, b1] u [a2, b2] = [min(a1, a2),max(b1, b2)].
The original setting for lazy classification with pattern structures can be

found in [3].

3 Modification of lazy classification algorithm

In credit scoring the object-attribute context is typically numerical. Factors
can have arbitrary distributions and take wide range of values. At the same time
categorical variables and dummies can be present. With relatively large number
of attributes (over 30-40) it produces high-dimensional space of continuous vari-
ables. That is when the result of meet operator tends to be very specific, i.e. for
almost every g ∈ G only g and gn have the descriptin δ(gn)u δ(g). This happens
due to the fact that numerical variables, ratios especially, can have unique values
for every object. This results in that for test object gn the number of positive and
negative premises is close to the number of observations in those context corre-
spondingly. In other words, too specific descriptions are usually not falsified (i.e.
there are no ojects of opposite class with such description) and almost always
form either positive or negative premises. Therefore, the idea of voting scheme
for lazy classification in the case of high dimensional numerical context may turn
out to be obscure. Thus, it seems reasonable to seek the concepts with larger
extent and with not too specific intent. At the same we would like to preserve
the advantages of lazy classification, e.g. no need to compute full concept lattice,
easy parallelization etc. The way to increase the extent of the generated concepts



is to consider intersection of the test object with more than one element from
the positive (negative) context. What is the suitable number of objects to take
for intersection? In our modification we consider this as a parameter subsample
size and perform grid search. The parameter is expressed as percentage of the
observations in the context. As subsample size grows, the resulting intersection
δ(g1)u . . .u δ(gk)u δ(g) becomes more generic and it is more frequently falsified
by the objects from the opposite context. Strictly speaking, in order to replicate
the lazy classification approach, one should consider all possible combinations of
the chosen number of objects from the positive (negative) context. Apparently,
this is not applicable in the case of large datasets. For example, having 10 000
objects in positive context and having subsample size equal to only two objects
will produce almost 50 mln combinations for intersection with the test object.
Therefore, we randomly take the chosen number of objects from positive (neg-
ative) context as candidates for intersection with the test object. The number
of times (number of iterations) we randomly pick a subsample from the context
is also tuned through grid search. Intuition says , the higher the value of the
parameter the more premises are mined from the data. However, the obvious
penalty for increasing the value of this parameter is time and resources required
for computing intersections. As we mentioned, the greater the subsample size,
the more it is likely that (δ(g1) u . . . u δ(gk) u δ(g))� contains the object of the
opposite class. In order to control this issue, we add third parameter which is
alpha-threshold. If the percentage of objects from the positive (negative) context
that falsify the premise δ(g1)u . . .u δ(gk)u δ(g) is greater than alpha-threshold
of this context than the premise will be considered as falsified, otherwise the
premise will be supported and used in the classification of the test object.

4 Voting schemes

The final classification of a test object is based on a voting scheme among
premises. In most general case voting scheme F is a mapping:

F (gtest, h
+
1 , ..., h

+
p , h

−
1 , ..., h

−
n )→ [−1, 1, ∅]

where gtest is the test object with unknown class, h+i is a positive premise ∀i =
1, p and h−j is a negative premise ∀j = 1, n , -1 is a label for negative class, and 1
is a lable for positive class (i.e. defaulters). In other words, F is an aggregating
rule that takes premises as input and gives the classification label as an output.
Note, that we allow for an empty label. If the label is empty it is said that the
voting rule abstains from classification. There may be different approaches to
build up aggregating rules. The voting scheme is built upon weighting function
ω(·), aggregation operator A(·) and comparing operator ⊗.

F (ω(·), A(·),⊗) =
= (Api=1[ω(h

+
i )])⊗ (Anj=1[ω(h

−
j )])

In order to configure a new weighting scheme it is sufficient to define the
operators and weighting function. In this paper we use the number of positive



versus negative premises. In this case the rule allows the test object to satisfy
both positive and negative premises which decreases the rejects from classifica-
tion. The weighting function, aggregation operator and comparing operator are
defined as follows:

A(h) =
∑

h

ω(h) =

{
1, if δ(gtest) v h
0, otherwise

a⊗ b =

{
sign(b− a), if a 6= b

∅, a = b

So the label for a test object gn is defined by following mapping:

F (gtest, h
+
1 , ..., h

+
p , h

−
1 , ..., h

−
n ) =

= (

p∑
i=1

[δ(gtest) v h+i ])⊗ (

n∑
j=1

[δ(gtest) v h−j ])

However, one can think of margin b− a as a measure for discrimination be-
tween two classes and consider the decision boundary based on ROC analysis,
for instance. This approach is good for decreasing the number of rejects from
classification, but it does not account for the support of the premises. Naturally,
one would give more weight to the premise with large image (with higher sup-
port). Also, if the number of positive and negative premises is equal the rule
rejects from classification.

5 Experiments

The data we used for the computation represent the customers and their met-
rics assessed on the date of loan application. The applications were approved by
the bank credit policy and the clients were granted the loans. After that the
loans were observed for the fact of delinquency. The dataset is divided into two
contexts positive and negative. The positive context is the set of loans where
the target attribute is present. The target attribute in credit scoring is typi-
cally defined as more than 90 days of delinquency within the first 12 months
after the loan origination. So, the positive context is the set of bad borrowers,
and the negative context consists of good ones. Each context consists of 1000
objects in order that voting scheme concerned in the second section was appli-
cable. The test dataset consists of 300 objects and is extracted from the same
population as the positive and negative contexts. Attributes represent various
metrics such as loan amount, term, rate, payment-to-income ratio, age of the
borrower, undocumented-to-documented income, credit history metrics etc. The
set of attributes used for the lazy classification trials contained 28 numerical at-
tributes. In order to evaluate the accuracy of the classification we calculate the



Gini coefficient for every combination of parameters based on 300 predictions
on the test set. Gini coefficient is calculated based on the margin between the
number of objects within positive premises and negative ones. In fact, the mar-
gin is the analog for the score value in credit scorecards. When the subsample
size is low, the intersections of the test object description and the members of
positive (negative) context tend to be more specific. That is why, a relatively
high number of premises are mined and used for the classification. As subsample
size increases, the candidates for premises start being generic and it is likely
that there exists certain amount of objects from the opposite context which also
satisfy the description. If alpha-threshold is low, the frequency of rejects from
classification is high. The dynamics of premise mining is demonstrated on the
following graphs:

Fig. 1. The dynamics of α - weak positive premises mining

The average number of premises mined for a test object is dropping as ex-
pected with the increase in the subsample size and the drop is quicker for higher
alpha-thresholds. This supports the idea, that if lazy classification is run in its
original setting upon the numerical context (i.e. when subsample size consists
of only one object) the number of premises generated is close to the number of
objects in the context, so the premises can be considered as too specific. The
descriptive graphs above allows one to expect that the proposed parameters of
the algorithm can be tuned (grid searched), so as to tackle the trade-off between
the high number of premises used for classification and the size of their support.
The average number of positive premises tends to fall slightly faster compared
to negative premises. Below we present the classification accuracy obtained for
different combination of parameters (grid search).



Fig. 2. The dynamics of negative α - weak premises mining

Table 1. Gini coefficients for the parameters grid search

Subsample size
Alpha-threshold Number of iterations 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9%
0.0% 100 40% 44% 39% 18% 1% 0% 0% 0% 0%

150 35% 46% 35% 5% 0% 0% 0% 0% 0%
200 42% 37% 36% 12% 5% 1% 0% 0% 0%
500 39% 44% 44% 25% 6% 1% 0% 0% 0%
1000 44% 47% 44% 41% 11% 3% 0% 0% 0%
2000 44% 48% 46% 36% 17% 4% 0% 0% 0%

0.1% 100 33% 37% 40% 40% 44% 43% 34% 32% 34%
150 41% 34% 33% 43% 41% 47% 41% 37% 37%
200 40% 40% 34% 42% 51% 43% 44% 41% 36%
500 37% 42% 47% 49% 51% 49% 43% 41% 34%
1000 37% 42% 46% 48% 49% 48% 43% 43% 37%
2000 39% 43% 45% 49% 51% 49% 46% 41% 38%
5000 43% 40% 44% 49% 46% 50% 48% 38% 36%

0.2% 100 29% 38% 42% 32% 43% 37% 46% 43% 37%
150 27% 42% 41% 41% 36% 47% 48% 45% 41%
200 32% 40% 43% 42% 42% 49% 46% 47% 48%
500 39% 46% 46% 48% 47% 48% 51% 48% 51%
1000 41% 50% 48% 47% 49% 53% 52% 52% 47%
2000 38% 48% 50% 48% 47% 53% 52% 53% 50%

0.3% 100 35% 38% 39% 42% 39% 45% 34% 45% 39%
150 27% 43% 44% 42% 42% 39% 37% 40% 46%
200 34% 46% 47% 45% 49% 47% 45% 45% 52%
500 31% 45% 49% 50% 49% 46% 50% 51% 47%
1000 37% 48% 49% 49% 49% 47% 52% 51% 51%
2000 38% 46% 48% 51% 51% 50% 50% 52% 52%
5000 40% 47% 46% 51% 52% 51% 49% 51% 53%
10000 40% 44% 43% 46% 46% 48% 50% 52% 54%
20000 40% 43% 42% 46% 47% 49% 50% 52% 53%

0.4% 100 28% 39% 44% 48% 43% 50% 53% 42% 49%
150 34% 42% 43% 42% 43% 52% 50% 45% 47%
200 33% 46% 43% 47% 51% 49% 49% 42% 45%
500 37% 50% 50% 49% 49% 49% 51% 47% 48%
1000 40% 48% 50% 50% 51% 52% 50% 48% 50%
2000 37% 48% 49% 49% 49% 47% 52% 49% 51%
5000 39% 42% 42% 43% 45% 47% 49% 52% 49%



We observe the area with zero Gini coefficients where the alpha-threshold
is zero and the subsample size is relatively high. That is due to the fact that
almost no premises were mined during the lazy classification run. It is quite
intuitive because as the subsample size grows, the intersection of the subsample
with a test object results in a generic description, which is very likely to be
falsified at least by one object from the opposite context. In this case the reject
from classification takes place almost for all test objects. The first thing that is
quite intuitive is that the more iterations are produced, the higher is the Gini
on average:

Fig. 3. Average Gini grouped by the different number of iterations (over all other pa-
rameter values)

The more times the subsamples are randomly extracted the more knowledge
(in terms of premises) is generated. By increasing the number of premises used for
classification according to voting scheme, we are likely to capture the structure of
the data in more detail. However, the number of iterations is not the only driver
of the classification accuracy in our case. We find a range with relatively high
Gini in the area of mild alpha-threshold and relatively high subsample size. It
also seems natural as soon as the support of a good predictive rule (i.e. premise)
is expected to be higher than its support in the opposite context. We elaborate
further and run additional grid search in range of parameters providing high
Gini coefficient:



Table 2. Gini coefficients for the parameters grid search on specified area

Subsample size
Alpha-thresh-old Number of iterations 1.0% 1.1% 1.2% 1.3% 1.4% 1.5%
0.3% 500 51% 49% 48% 43% 41% 38%

1000 52% 51% 48% 45% 43% 39%
2000 54% 53% 49% 47% 46% 38%
5000 55% 52% 50% 47% 46% 40%
10000 56% 53% 50% 47% 47% 40%
20000 55% 53% 51% 46% 48% 41%

According to performed grid search the range with the highest Gini (55%-
56%) on the test sample is in range with following parameter values: alpha-
threshold = 0,3%, number of iterations = 10000, subsample size = 1,0%. The
result was compared to three benchmarks that are traditionally used in the credit
scoring within the bank system: logistic regression, scorecard and decision tree.
It should be cleared what is implied by the scorecard classifier. Mathematical
architecture of the scorecard is based on logistic regression which takes the trans-
formed variables as input. The transformation of the initial variables which is
typically used is WOE-transformation [14]. It is wide-spreaded in credit scoring
to apply such a transformation to the input variables as soon as it accounts for
non-linear dependencies and it also provides certain robustness coping with po-
tential outliers. The aim of the transformation is to divide each variable into not
more than k categories. The thresholds are derived so as to maximize the infor-
mation value of a variable [14]. Having each variable binned into categories, the
log-odds ratio is calculated for each category. Finally, instead of initial variables
the discrete valued variables are considered as input in logistic regression. The
properties of the decision tree were as follows: we ran CART with two possible
child nodes from each parent node. The criterion for optimal threshold calcu-
lation was the greatest entropy reduction. The number of terminal nodes was
not explicitly restricted; however, the minimum size of the terminal node was
set to 50. As far as logistic regression is concerned, the variable selection was
performed based on stepwise approach [15]. As for scorecard, the variables were
initially selected based on their information value after the WOE-transformation.
The comparison of the classifiers performance based on test sample of 300 objects
is given in Table 3.



Table 3. Modified lazy classification algorithm versus models adopted in the bank

Gini on test sample
Logistic regression 47.38%
Scorecard
(Logistic based on WOE-transformation) 51.89%

CART (minsize= 50) 54.75%
MLCA
(s = 1%, a=0.3%,
n=10000)

56.30%

6 Conclusion

When dealing with large numerical datasets, lazy classification may be prefer-
able to classification based on explicitly generated calssifiers, since it requires less
time and memory resources [3]. However, the original lazy classification setting
in case of high dimensional numerical feature space meets certain limitation.
The limitation is that, when intersecting descriptions of a test object and every
object from the context, one is likely to acquire premises with image consisting
only of those two objects. In other words, the premises tend to be very specific
for the context and, therefore, the number of positive and negative premises is
likely to be equal to the number of the objects in the contexts. The weighting
cannot be considered helpful in this case as soon as the premises will have very
similar low support. In this paper, we modified the original lazy classification
setting by making it, in fact, a stochastic procedure with three parameters: sub-
sample size, number of iterations and alpha-threshold. In effect, the modified
algorithm mines the premises with relatively high support that will be used for
the classification of the test object. The classification is then carried out upon
the predefined voting scheme. We applied the introduced procedure to the retail
loan classification problem. The data we used for was provided during the pilot
project with one of the top-10 banks in Russia, the details are not provided due
to non-disclosure agreement. The positive and negative contexts both had 1000
objects with 28 numerical attributes. The accuracy of the algorithm was evalu-
ated on the test dataset consisting of 300 objects. Gini coefficient was chosen as
accuracy metric. We performed the basic grid search by running the modified
lazy classification algorithm with different parameter values. The classification
accuracy of the algorithm was compared to the conventionally adopted models
used in the bank. The benchmark models were logistic regression, scorecard and
decision tree. The proposed algorithm outperforms the logistic regression the
scorecard with the subsample size parameter around 1%, alpha-threshold equal
to 0,3% and with number of iterations over 5000. The performance of the decision
tree is at the comparable level with the proposed algorithm, however, the mod-
ified lazy classification is slightly better in terms of Gini coefficient. As an area
for further research, one can consider and compare accuracy when other voting
schemes are used. It is expected that taking into account premises’ specificity



one can improve overall accuracy of the classification algorithm or, alternatively,
one will reach the same accuracy given less number of iterations, which can save
the time resources required for the calculations.
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Algorithm 1 Lazy Classification by Sub-Samples in Numeric Context
Input: {Posdata, Negdata} – positive and negative numerical contexts.
N+, N− – number of objects in the contexts. It is preferable that the positive and
negative contexts are of the same size.
M – number of attributes.
sub.smpl – percentage of the context randomly used for intersection with the test
object (parameter).
num.iter – number of iterations (resamplings) during the premise mining (parameter).
alpha.threshold is the maximum allowable percentage of the opposite context for that
the premise is not falsified (parameter).
t – test object.

Output: margint – measure that is produced by the voting rule.
yt – class labels predicted for the test object.

for iter from 1 to num.iter do
S=random.sample(Posdata,size=sub.smpl·N+) —mine positive α - weak premises
descr = δ(g1) u ... u δ(gs) u δ(t)
Negimage = {x ∈ descr�|x ∈ Negdata}
if ||Negimage|| < alpha.threshold ·N− then

Add descr to positive α - weak premises set
else

Do nothing
end if
S=random.sample(Negdata,size=sub.smpl · N−) — mine α - weak negative
premises
descr = δ(g1) u ... u δ(gs) u δ(t)
Posimage = {x ∈ descr�|x ∈ Posdata}
if ||Posimage|| < alpha.threshold ·N+ then

Add descr to negative α - weak premises set
else

Do nothing
end if

end for
p = dim(set of positive α - weak premises)
n = dim(set of negative α - weak premises)
Choose voting scheme: A(·), w(·),⊗
pos.power = Ap

i (w(h
+
i ))

neg.power = An
j (w(h

−
j ))

margin = pos.power − neg.power
yt = pos.power ⊗ neg.power


