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ABSTRACT. – We have prepared two sets of experiments in a wave flume to model effects occurring in nature and to 
demonstrate resonance phenomena in laboratory conditions. The first set was performed to investigate non‑linear wave 
run‑up on the beach caused by harmonic wave maker located at some distance from the shore line. It is revealed that 
under certain wave excitation frequencies a significant increase in run‑up amplification is observed [Ezersky et al. 2013]. 
It is found that this amplification is due to the excitation of resonant mode in the region between the shoreline and wave 
maker. Frequency and magnitude of the maximum amplification are in good correlation with the numerical calculation 
results represented in the recently published paper [Stefanakis et al. 2011]. The second set of experiments was performed 
to study resonance effects due to parametric excitation of edge waves. It is known that surface waves propagating toward 
the shore can excite edge waves propagating along the shore line. Although the edge wave amplitude decreases in an  
offshore direction they may contain enough energy to be responsible for erosion of the shore and generate so‑called 
cusps [Buchan et al. 1995]. We investigate parametric mechanism of such generation when plane surface wave with fre‑
quency W excite edge wave with frequency W/2. It is show that parametric generation of edge waves can amplify run‑up 
up to two times.
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Modélisation physique du phénomène de résonance dans la dynamique d’onde longue

Nous avons préparé deux séries d’expériences dans un canal à houle pour modéliser physiquement les effets que se pro‑
duisent dans la nature et démontrer les phénomènes de résonance dans des conditions en laboratoire. La première série a 
été réalisée pour étudier le jet de rive (run‑up) d’une onde non linéaire générée par un générateur de ondes harmoniques 
située à une certaine distance de la ligne de rivage. Il est révélé que, pour certaines fréquences d’excitation d’onde, une 
augmentation significative de l’amplification du run‑up est observée [Ezersky et al. 2013]. On constate que cette amplifi‑
cation est due à l’excitation du mode de résonance dans la région entre la rive et le générateur d’ondes. La fréquence et 
l’amplitude de l’amplification maximale sont en bonne corrélation avec les résultats de simulations numériques représen‑
tés dans le papier récemment publié [Stefanakis et al. 2011].La deuxième série d’expériences a été réalisée pour étudier 
les effets de résonance due à une excitation paramétrique des ondes de bord. 
On sait que les ondes de surface se propageant vers le rivage peuvent exciter des ondes se propageant le long des bords 
de la ligne de rivage. Bien que l’amplitude des ondes de bords diminue vers le large, elles peuvent contenir assez d’éner‑
gie pour être responsable de l’érosion de la rive et de générer des croissants de plages [Buchan et al., 1995].
Nous étudions le mécanisme paramétrique d’une telle génération lorsque des ondes de surface avec une fréquence W 
excitent des ondes de bords avec une fréquence W/2. Il est de montrer que la génération paramétrique des ondes de bord 
peut amplifier le run‑up jusqu’à deux fois.

Mots‑clés : vagues de bords, déferlement, l’instabilité paramétrique, run‑up, viscosité turbulente

I.  �INTRODUCTION

The resonance phenomena plays significant role in the 
amplification of the long surface waves, especially tsunami 
waves, in coastal areas leading to the long‑time weakly 
damped water oscillations, late approach of a maximal 
amplitude wave comparing with leading waves, grouping 
structure of tsunami waves. Recent huge tsunamis demon‑
strate the nonlinear behaviour on the coast leading to the 
strong impact. It was also revealed recently that the number 
of abnormally large and suddenly appearing waves (rogue 
waves) observed in the coastal zone is sufficiently larger 
than Gaussian statistics predicts [Nikolkina & Didenkulova 

2011, Nikolkina & Didenkulova 2012]. Analysis of tsunami 
records showed that reflections due to bottom topography 
may result in appearance of resonant mode in coastal zone, 
see for instance Neetu et al. [2011]. The study of the tsu‑
nami and coastal rogue waves is based on the nonlinear 
theory of shallow water [Kharif et al. 2009; Didenkulova 
et al. 2011; Slunyaev et al. 2011]. To characterize the impact 
of waves on coastal infrastructure, the systematic study of 
run‑up processes is undertaken and a lot of papers summa‑
rizing the progress in the analytical solutions of the nonlin‑
ear shallow water theory have been published by now (see 
for instance [Pelinovsky 1982; Synolakis 1987; Pelinovsky 
et al.1992; Carrier et al. 2003). 
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Recently, [Stefanakis et al. 2011; Ezersky et al. 2013] 
on the basis of numerical simulations of the nonlinear shal‑
low‑water equations, it was pointed out the existence of 
resonance effects in the process of the long wave run‑up. 
It should be noted that such resonance effect was predicted 
in [Antuono et al. 2010] in the framework of linear theory. 
The main result [Stefanakis et al. 2011] is that at a certain 
frequency of the waves there exists a significant increase in 
the run‑up amplitude. According to calculations, the maxi‑
mal run‑up height can be 50 times greater than the free 
surface oscillation amplitude used as the boundary condi‑
tions in the numerical calculations. It was established in 
[Stefanakis et al. 2011] that the wave period for which 
maximal run‑up amplification is observed depends on the 
slope of the bottom and the depth of water in the place 
where the waves are excited. This period is much larger 
than the “natural period” – time needed for perturbations to 
run from the point of excitation to the shoreline and return 
back. Results obtained in [Stefanakis et al. 2011] pose a lot 
of questions. That is why, we carried out a physical simula‑
tion of this process in the wave flume with an inclined bot‑
tom [Ezersky et al. 2013].

It is known that in the coastal zone, waves coming from 
the open sea can excite so‑called edge waves which are 
localized near the shore [Johnson R.S. 2005; Johnson R.S. 
2007]. The edge wave field can not be represented in the 
dimensional approximation: edge waves propagate along 
cosatal line and their amplitude decreases in off shore direc‑
tion. Characteristics of linear and nonlinear edge waves 
were studied in numerous theoretical papers [Akylas 1983; 
Dubinina et al. 2004; Grimshaw 1974; Kurkin et al. 2002; 
Minzoni et al. 1977; Pelinovsky et al. 2010]. Characteristics 
of edge wave are also investigated in marine experiments 
and numerical simulations. These studies focus on investi‑
gation of edge waves excitation in costal zone and correla‑
tions between characteristics of edge waves and the spectra 
of waves propagating toward the shore. The edge waves 
localized at the shoreline may contain enough energy to 
be responsible for the erosion of the shore and the genera‑
tion of the so‑called cusps [Blondeaux et al. 1995; Carter 
2002; Coco 2003]. Therefore, investigation of the genera‑
tion mechanisms of edge waves and studying of run‑up 
caused by them are important problems of wave ‑ coastal 
zone interaction. 

By now, one mechanism of edge wave generation is 
investigated very widely. This mechanism is connected with 

parametric excitation of standing edge wave with frequency 
w/2 by surface wave with frequency w propagating per‑
pendicular a shore line. Such mechanism was investigated 
theoretically [Blondeaux et al. 1995; Guza et al. 1974] and 
it was identified in marine experiments in coastal zone 
[Huntley et al. 1978]. The laboratory experiments on para‑
metric excitation of edge wave are described in [Buchan 
et al. 1995]. The laboratory study of edge wave paramet‑
ric excitation in the hydrodynamic flume allowed them to 
choose plane bottom and explore the simplest spectrum of 
waves propagating toward to the shoreline. It should be 
noted that in this laboratory experiments wave breaking was 
absent meanwhile breaking effects are important in natu‑
ral conditions. Principal question of the influence of wave 
breaking on parametric edge wave generation is not investi‑
gated yet. Exactly this problem is investigated in our paper. 
We concentrate on study of influence of wave breaking on 
characteristics of the edge waves and on run‑up amplifica‑
tion occurred in this case.

The paper is organized as follows. Section 1 is devoted 
to the description of the experimental setup, section 2 pre‑
sents the results of measurements of resonance phenom‑
ena and excitation of edge wave. In section 3, we discuss 
the experimental data and present a theoretical model to 
describe the modes of parametric excitation of edge waves 
and section 4, conclusion.

II.  �EXPERIMENTAL SETUP

Experiments were performed in the wave flume of the 
Laboratory of Continental and Coastal Morphodynamics 
in Caen. This flume has a length of 18 meters, a width of 
0.5 m. The flume is equipped with a wave‑maker controlled 
by computer. To simulate an inclined bottom, a PVC plate 
with thickness of 1 cm is used. The plate is placed at dif‑
ferent angles relative to the horizontal bottom of the flume 
in the vicinity of the wave maker (see fig. 1). Three series 
of experiments have been performed for water depth h near 
the wave maker and length L, (h0 = 0.245 m, L = 1.458 m, 
tana = 0.168) (h0 = 0,26 m, L = 1.35 m, tana = 0.192) and 
(h0 = 0.32 m, L = 1.21.5 m, tana = 0.263). Three resistive 
probes (P1, P2, P3, fig. 1) are used to measure a displace‑
ment of water surface. First of them, P1 is placed at the 
distance of 1 cm from the wave maker. The probes P2 and 
P3 representing thin copper strips are glued on the inclined 

Figure 1: Schema of experiment: resistive probes: vertical probe (P1) and inclined probes (P2, P3), high‑speed video camera (2),  
wave maker (3), inclined bottom (4).
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bottom. These probes allow us to record run‑up at two dif‑
ferent points on the plat. Besides, run–up characteristics 
are determined by processing a movie which is shot by 
a high‑speed camera mounted as shown in fig. 1. These 
characteristics are determined within a precision of 2%. 
Wave‑maker allows us to excite harmonic wave of a given 
frequency and it works in two regimes: displacement‑control 
and force‑control. It is not possible to control free surface 
displacement, as it was done in the numerical experiment. 
That is why to study the run‑up amplification, simultaneous 
measurements of the amplitude of free surface displacement 
near the wave maker and maximal run‑up are carried out for 
different frequencies of excitation.

III.  �RESULTS OF MEASURMENTS 

III.1.  �Resonance phenomena

Frequency dependence of the amplitude of free surface 
displacement near the wave maker (a), maximal run‑up (R) 
and coefficient of run‑up amplification (C, C = R/a) are 
shown in fig. 2 for the slope of the bottom tana = 0.263. 
The amplitude of free surface displacement has picks at 
frequencies f1 = 0.44 Hz and f2 = 0.78 Hz. It is resonance 
frequencies of the system. The maximal run‑up does have 
sharp picks, only small increase in the vicinity of f1 and f2 
is observed (fig. 2b), but coefficient of run‑up amplification 
(fig. 2c) increases very sharply in the vicinity of f3 = 0.28 Hz 
and f3 = 0.63 Hz. It is evident that maximal amplification 
of run‑up is observed for frequencies corresponding to  
the minimal amplitude a. In the vicinity of the wavemaker 
the amplitude is sufficiently small and the signal is very 
noisy. That is why the coefficient of run up amplification 
requires rather delicate measurements of free surface dis‑
placement: a band‑pass filter was used to measure the ampli‑
tude of harmonic corresponding to wave‑maker forcing. It is 
important to note that frequency of maximal amplification 
does depend on method of wave excitation. Results pre‑
sented in fig. 2 were obtained for force‑controlled regime 
of wave maker; the same results for coefficient of run‑up 
amplification were obtained for displacement control regime.

Amplification coefficient C was investigated for three 
bottom inclinations. Frequencies of maximal amplification 
depend on angle a and to compare results obtained for differ‑
ent angles a, the non‑dimensional frequency F was introduced: 

	
F f f f K g h K= = ( ) =−/ , / tan , .0 0

1
0 5 23α

where g is for acceleration of gravity, h0 is for water depth 
near wave maker.

Results are presented in fig. 3. Non‑dimensional fre‑
quencies of maximal run‑up amplification F = F1 = 1 for 
different angle a coincide very precisely. The coefficient 
of maximal amplification, corresponding to the frequency 
F1 = 1 is approximately the same for different inclina‑
tions: C ≈ 20 – 25. The second pick of run‑up amplifica‑
tion coefficient is observed for frequency F2 = (2.2 – 2.3)F1. 
Non‑dimensional frequency F2 slightly depends on bottom 
slope; small pick is observed also for frequency F3 ≈ 3.5F1.

It should be noted that for our experimental conditions, lin‑
ear run–up is observed for small frequencies of wave excita‑
tion F < 2, while for higher excitation frequencies F > 2 near 
surface wave becomes strongly nonlinear and run‑up occurs 
after the wave breaking. The wavebreaking does not prevent 

precise determination of maximal run‑up position. Excepting 
high frequencies F > 3 the border of the water on slop beach 
was one dimensional and maximal run‑up did not depend on 
coordinate along direction perpendicular to axis x.

III.2.  �Parametric excitation of edge waves

Wave‑maker allows us to excite harmonic wave propagat‑
ing towards the shore with controlled amplitude and fre‑
quency and to study the characteristics of edge waves using 

Figure 2: Frequency dependence of amplitude on free  
surface displacement (resonance curve) (a), maximal run‑up 
(b) and amplification of run‑up (ration of maximal run‑up 
and amplitude of surface wave) (c) for slope tana = 0.263.

Figure 3: Dependence of run‑up amplification on nor‑
malized frequency for different bottom slopes. Frequency. 
f g H0 5 23= . / tanα.
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simultaneous measurements of the amplitude of free surface 
displacement near the wave maker and run‑up height.

Sub‑harmonic instability is investigated in the flume for 
different amplitudes and frequencies of wave maker. To 
understand if instability occurs or not, signals at probes P2 
and P3 are analysed. Signals from P2 and P3 are presented 
in fig. 4. At the beginning of perturbation evolution time 
series is presented in fig. 4, left block. One can observe that 
signals at two probes have the same frequency as the one of 
the wave maker (f = 1.06 Hz) and are in phase. On the back‑
ground of oscillations with frequency of wave maker, sub 
harmonic oscillations (with frequency f = 0.53 Hz) appear. 
Filtering of signal shows that amplitude of sub harmonic at 
initial stage grows exponentially from very small value and 
asymptotically approaches a constant value at large time. For 
developed parametric instability, the period of oscillations is 
two times more than period of wave maker. The phase dif‑
ference between the two signals measured by probes P2 and 
P3 is equal p (fig. 4, right block). It means that sub‑harmonic 
generation of edge mode (standing wave) is observed in the 
flume. The motion of shoreline due to edge wave excita‑
tion is registered by camera. Analysis of movies shows that 
sub‑harmonic oscillations represent the first mode: maxima 
of horizontal displacement (anti nodes) are near the lateral 
walls of the flume, zero displacement (node) is at the center 
of the channel. Instability begins with the exponential growth 
of small perturbations. In some cases noise perturbations 
were so small that instability cannot be observed for reason‑
able time. In this case we introduced small perturbations 
artificially by an oscillating plate for several seconds in the 
vicinity of coastline. Instability occurs if the frequency of 
excitation is close to double frequency of the first edge mode. 
Example of instability is shown in fig. 4.

To describe the instability in the system, partition of 
plane (aL,f) into regions with different stability is performed. 
Results are presented in fig. 5 (aL is for amplitude of free 

surface displacement near the wave maker, f is for wave 
maker frequency).

Amplitude of edge waves bifurcating from the zero value 
grows continuously with the amplitude surface wave aL near 
the wave maker, if it exceeds the critical value. The growth 
of wave amplitude leads to appearance of wave breaking 
in surface waves propagating along the flume. When wave 
breaking is developed sub harmonic instability is suppressed. 

The run‑up amplitudes before and after the development 
of parametric instability are also measured. Results are pre‑
sented in fig. 6. This figure demonstrates dependence of 
run‑up amplitude due to edge waves on amplitude of run‑up 
of surface waves, exciting parametric instability. One can see 
that for small amplitude of parametric excitation, amplitude 
of run‑up increases in two times. Amplification decreases for 
large amplitude of excitation when wave breaking appears.

IV.  �DISCUSSION OF EXPERIMENTAL RESULTS

IV.1.  �Resonance phenomena

To study frequency dependence of run‑up amplification 
more precisely, the spatial structures of the free surface 
oscillations occurring at frequencies corresponding to the 
resonant frequencies of the system (f1 , f2) and at frequen‑
cies of maximum run‑up amplification (f3 , f4) have been 
investigated. The results are shown in fig. 7 for bottom slop 
tana = 0.168. Amplitude and phase of free surface displace‑
ment are shown by rhombs and circles. Experimental data 
are compared with well know analytical solution for free 
surface displacement h,

	 η
ω

α
ω=











J x
g

t0

24
tan

cos( ) 	 (1)

Figure 4: Temporal evolution of small initial perturbations. f=1.06Hz, aL=0.43 cm: time series recorded at time interval  
50 s < t <145 s. At the beginning of perturbation evolution (50 s < t < 55 s) time series recoded by probes P2 (thin curve) and 
P3 (thick curve) have the same phase (left block), for developed parametric instability (140 s < t < 145 s) period doubling is 
observed and phase difference between signals recoded by probes P2 and P3 is p (right block).
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Figure 5: Diagram of stability/instability regimes. Circles correspond to parametric instability, diamonds correspond to stability 
regimes.

Figure 6: Dependences of run‑up amplitude on wave amplitude near wave maker (f = 1.06 Hz) without parametric excitation of 
edge waves (diamantes) and with parametric excitation of edge waves (squares).

Figure 7: Comparison of the experimental values of amplitude (diamonds) and phase (circles) with theoretical values of ampli‑
tude (thick solid lines) and phase (thick dashed lines) obtained from the equation x = (4w²x/g.tana)1/2, tana = 0.168; ends of 
horizontal axes correspond the positions of the wave‑maker edge.
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This solution was obtained in a shallow water with linear 
increasing of water depth h0: h0 = tanax Theoretical depend‑
ences are shown in fig. 7 by thick lines. The amplitude is 
chosen as a = |J0|, and f = 0 if J0 > 0 and f = p if J0 < 0. 
One can find in fig. 7 that in the experiment the amplitude 
does not go to zero and phase changes smoothly for all 
frequencies. Note that frequencies of maximal run‑up ampli‑
fication (f3 = 0.205 Hz, f4 = 0.46 Hz) correspond to spatial 
modes having minimal amplitudes near the wave maker; 
resonance frequencies (f1, f2) have maximum amplitude of 
free surface displacement near the wave maker. It should be 
noted that according solution (1), frequencies of maximal 
run‑up amplification correspond to the spatial modes with 
boundary condition h|x=L = 0, and resonant frequencies cor‑
respond to mode with boundary conditions:

	 ∂
∂

=
=

η
x x L

0.	

In other words, if one uses linear solution (1), the coef‑
ficient of run‑up amplification in this approximation would 
be infinite: a = 0 at x = L. In experiment amplitude is small, 
but finite. Comparison of curves presented in fig. 7 shows 
that difference between theoretical solution and experimental 
data increases with frequency of excitation. For example, 
these differences much more for f2 than for f3.

Let us compare the experimental results with numerical 
simumateons [Stefanakis et al. 2011 ]. In the experiment, 
unlike the numerical calculations, it is not possible to intro‑
duce the waves with fixed free surface displacement at difinit 
coordinate. In our opinion this point is not principal. Instead 
it, the simultenious measurements of the free surface dis‑
placemnt and maximal run‑up have been performed. In our 
experiment the frequencies of maximal run‑up amplification 
are very close to those that were obtained in the numerical 
calculation. We estimated the frequencies of the first pick 
as: f K g h K3

1
0
1 2 5 23= ( ) ≅− / tan ; ./ α ; in [Stefanakis et al. 

2011] coefficient is estimated as K@5.1. Second pick f4 in 
the experimental frequency dependence of run‑up is more 
visible than in numerical simulation [Stefanakis et al. 2011]. 
Authors [Stefanakis et al. 2011] did not give any estimations 
of second pick frequency, but if one use their data it is possi‑
ble to conclude that frequency of the second pick is 2.5 – 2.7 
times more frequency of the first one. In our experiments 
frequency of the second pick exceeds the frequency of first 
one in 2.2 – 2.3 times. Experimental values of frequencies f3‑4 
practically coincide with frequencies of modes having nodes 
near the wave maker; numerical values exceed this frequency 
by 2.5% for all bottom inclinations. The reason of such dif‑
ferences is not clear yet. Non linearity, wave dispersion, vis‑
cous dissipation influence the frequency of these picks, but 
simple estimations for linear waves in shallow water with 
zero viscosity provide values which are close to experimental 
data. Authors [Stefanakis et al. 2011] do not mention any dis‑
sipation of energy neither non –linear parameter, which they 
use in numerical simulations. As for the coefficient of run‑up 
amplification, the maximal value that was observed in experi‑
ment is C = 20 – 25, whereas in [Stefanakis et al. 2011] this 
value reaches C = 50 – 60. The difference is apparently due 
to viscous dissipation, which is essential in our experiments.

IV.2.  �Parametric excitation of edge waves

Our experiments have shown that the generation of edge 
waves is significantly affected by wave breaking of the 

surface wave propagating toward the shore. To discuss this 
effect, we primarily consider how to explain the generation 
of sub‑harmonic in the absence of wave breaking. Temporal 
evolution of complex amplitude b of parametrically excited 
edge wave modes is described by equation [Yang 1995]:

	 ∂
∂

= − + + + −b
t

b hb i b i b bγ σ ρ* ( )∆ 2 	 (2)

Here g is a wave decrement due to viscose dissipation, 
h = a0w

3S(a)/4gtan2a, S(a) is a function of inclination 
angle a determined in [Minzoni et al. 1977], a0 is for surface 
wave amplitude at x = 0, * means complex conjugation, 
D = W ‑ w/2 is for detuning between wave frequency and 
frequency of external parametric forcing, s is a non‑linear 
frequency shift, r is a non‑linear damping coefficient. 

To estimate the decrement g of harmonic edge wave, we 
investigate the time evolution of amplitude of edge wave 
after the stopping the parametric excitation. Edge waves 
decay exponentially and we measured the wave decrement 
g~0.13 s‑1 within a precision of 2%.

The frequency of basic edge mode W [Yang 1995]: 

	 Ω = ≈g L rad
sπ αtan / .3 41 ,	 (3)

or f0 = W/2p ≈ 0.54Hz. 
For the threshold of parametric excitation hth from eq.(2), 

we have: hth = (g2 + D2)1/2. For the resonance D = 0, para‑
metric instability appears at the minimum external forcing 
hth,min = g. It allows us to calculate theoretical critical ampli‑
tude of wave |a0,th|: 

	 a g Sth0
2 34 0 71, tan / ( ) .= ( ) ( ) ≈γ α ω α cm 	 (4)

In our experiment the amplitude of surface wave dis‑
placement is measured at x = L. To compare theoretical 
and experimental values of instability threshold, we used 
correlation between amplitude a0 and aL, see [Yang 1995]. 
Comparison of instability thresholds is presented in fig. 8.

Figure 8: Experimental tang of instability (diamonds) and 
theoretical curves: triangles correspond to the model without 
dissipation: hth = |D|, curve indicated by squares is obtai‑
ned for experimentally measured decrement of edge waves:  
hth = (g2 + D2)1/2.
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A small shift between experimentally obtained frequency 
f ~ 1.04 Hz and theoretical value f = 2f0 ~ 1.08 Hz is 
observed. The similar shift was observed also in [Ezersky 
et al. 2013]. In our opinion such difference may be con‑
nected with influence of wettability of plate on eigen 
frequency. Besides it, experimentally found region of insta‑
bility is narrower than theoretical prediction (see fig. 8). 
This effect may be connected with additional dissipation 
of energy appearing with increasing of wave amplitude 
surface wave. 

We found that wave breaking leads to decreasing of edge 
wave amplitude and finally suppresses parametric instabil‑
ity. How to explain this effect using eq.(2) and what is the 
physical mechanism that is responsible for such suppres‑
sion? Evidently, there are two possible mechanisms. First, 
the wave breaking leads to appearance of non‑regularity in 
surface wave: amplitude and phase of the wave vary chaoti‑
cally. Second, the wave breaking leads also to appearance of 
water‑air bubbles mixture and small‑scale turbulence in the 
near shore zone increasing the wave damping. We discuss 
the impact of these two physical mechanisms to the suppres‑
sion of parametric instability.

It should be noted that parametric excitation of waves by 
non‑regular oscillating field was investigated in [Petrelis 
et al. 2005]. It was shown that chaotic amplitude and cha‑
otic phase of external field caused increasing of threshold 
of parametric excitation and decreasing of the amplitude of 
parametrically excited oscillations. We verify the applicabil‑
ity of these results for explanation of decreasing of edge 
wave when breaking surface waves appears. For this purpose 
using Hilbert transformation we calculated amplitude a and 
phase F of external surface wave a0 = aexp(iF) for a regime 
of developed wave breaking. Root mean square fluctuations 
of amplitude and phase for f = 1.06 Hz, aL = 1.3 cm are 

determined: < > ≈Φ2 0 11. , < − < >( ) > < >≈a a a2 0 1/ . .
If we suppose that wave breaking leads to Gaussian noise, 

decreasing of parametric forcing may be estimated as [29]: 
1 – exp(‑<F2>/2) ≈ 0.005. The small decreasing of effective 
external forcing cannot explain suppression of parametric 
excitation for wave breaking regime. Consequently the first 
mechanism is apparently ineffective. 

The second mechanism seems more realistic because the 
influence of turbulence is more important. The wave break‑
ing causes generation of turbulence; characteristic turbulent 
velocity u is proportional to the wave height H [Longo et al. 
2002]: u ∝ H(g/hT)1/3, where h is the local water depth and 
T is wave period. The turbulence leads to the appearance 
of eddy viscosity ned. The eddy viscosity is proportional to 
kinetic energy of turbulence and for wave breaking case it 
is possible to consider that ned ∝ a0

2. In this case, the wave 
decrement g has the following form: g = g0 + g1|a0

2|, where 
g0 is exponential decaying of edge wave in the absence of 
wave breaking, and g1 is responsible for dissipation of energy 
due to eddy viscosity. The parametric instability occurs if: 

	 h a> +( ) +γ γ0 1 0
2 2 2∆ ,	 (5)

where h a S g= ( )0
3 24ω α α/ tan .

Since the external forcing h grows linearly with surface 
wave amplitude a0 and dissipation grows as the amplitude 
squared, the parametric instability is suppressed for large 
surface waves. Exactly this effect is observed in experiment 
when developed wave breaking occurs. 

V.  �CONCLUSIONS

On the basis of the experiments, we can conclude firstly, 
that the value of amplification coefficients and frequencies at 
which run‑up amplification maxima are observed correlate 
with results of numerical simulations [Stefanakis 2011]. The 
most important conclusion is that the existence of an abnor‑
mally large increase of the coefficient C is due to resonator 
modes; this coefficient becomes very large because for its 
determination the amplitude at the mode node is taken as 
the amplitude of free surface displacement. This effect is 
very important for the prediction of tsunami run‑up using the 
tide‑gauge data. It is not sufficient to know the amplitude of 
free surface displacement in the near‑shore zone; to provide 
the correct predictions of run‑up, it is necessary to know if 
this value corresponds to the amplitude A of a propagating 
wave or to the amplitude a of a standing wave at a fixed 
point. Therefore, it is necessary to install several gauges in 
the coastal zone.

Secondly, the parametric generation of edge waves was 
investigated for different regimes of surface wave propaga‑
tion. It is shown that the threshold amplitude of parametric 
excitation is very close to the theoretically calculated value. 
It is found experimentally that increasing of the surface 
wave amplitude leads to the appearance of wave breaking. 
The wave‑breaking regime does not prevent parametric gen‑
eration of edge wave; only developed wave breaking can 
suppress parametric excitation of edge waves. We compared 
two mechanisms of suppression and found that the most 
probable mechanism is the increasing of threshold of para‑
metric excitation due to generation of turbulence. 

It was found that parametric generation of edge wave 
could amplify run‑up process. Maximal run‑up heights in 
this case exceed maximal run‑up heights in the absence of 
parametric excitation in two or more times. Such amplifica‑
tion is significant in the absence of wave breaking.

VI.  �ACKNOWLEGMENTS AND THANKS

EP thanks for support from State Contract 2014/133 (pro‑
ject 2839) and RFBR grant 15-55-45053.

VII.  �REFERENCES

Akylas T.R. (1983) — Large‑scale modulations of edge waves.  
J. Fluid Mech., 132, 197‑208.

Antuono M.& Brocchini M. (2010) — Solving the nonlinear shal‑
low‑water equations in physical sense. J. Fluid Mech., 643. 
207‑232

Buchan S. J. & Pritchard W. G. (1995) — Experimental observa‑
tions of edge waves. J . Fluid Mech. 288. 1‑35

Blondeaux P., & Vittori G. (1995) — The nonlinear excitation of 
synchronous edge waves by a monochromatic wave normally 
approaching a plane beach. J Fluid Mech., 301. 251‑268

Carrier G.F., Wu T.T., & Yeh H. (2003) — Tsunami run‑up and 
draw‑down on a plane beach. J. Fluid Mech. 475 79‑99

Carter R.W.G. (2002) — An introduction to the physical, ecolo‑
gical and cultural systems of coastlines. ACADEMIC PRESS, 
London, San Diego. 620 p.

Coco G., Burnet T.K. & Werner B.T. (2003) — Test o self‑ 
organisation in beach cusp. doi:10.1029/2002JC001496.  
J. Geoph. Res. 108 C3, 3101



64

DOI 10.1051/lhb/2016008 La Houille Blanche, n° 1, 2016, p. 57-64

Didenkulova I. & Pelinovsky E. (2011) — Rogue waves in 
nonlinear hyperbolic systems (shallow‑water framework). 
Nonlinearity. 24 R1‑R18

Dubinina V.A., Kurrhin A.A., Pelinovsky E.N. & Poloukhina O.E.  
(2004) — Weakly nonlinear periodic Stokes edge waves. 
Izvestiya, Atmospheric and Oceanic Physics. 40 464‑469

Ezersky A., Abcha N. & Pelinovsky E. (2013) — Physical simu‑
lation of resonant wave run‑up on a beach. Nonlin. Processes 
Geophys. 20 35‑40

Ezersky A., Tiguercha D. & Pelinovsky E.N. (2013) — 
Resonance phenomena at the long wave run‑up on the coast. 
Natural Hazards and Earth System Sciences. 13 2745‑2752

Grimshaw R. (1974) — Edge waves: a long –wave theory for 
oceans of finite depth. J. Fluid Mech. 62 775‑791

Guza R.T. & Davis R.E. (1974) — Excitation of edge waves by 
waves incident on beach. J Geophys. Research. 79 1285‑1291

Huntley D.A. & Bowen A.J. (1978) — Bach cups and edge 
waves. Proc. 16th Coastal Engineering Conference, Hamburg. 
1378‑1393

Johnson R.S. (2005) — Some contributions to the theory of edge 
waves. J.Fluid Mech. 524 81‑97

Johnson R.S. (2007) — Edge waves: theories past and present. 
Phyl. Trans. R. Soc. A. 365 2359‑2376

Kurkin A. & Pelinovsky E. N. (2002) — Focusing of edge waves 
above sloping beach. European Journal of Mechanics –  
B/Fluid. 21 561‑577

Longo S., Petti M. & Losada I. (2002) — Turbulence in the swash 
and surf zones: a review. Coastal Engineering. 45 129‑147

Minzoni A.A. & Whitham G.B. (1977) — On the excitation of 
edge waves on beaches. J. Fluid Mech. 79

Neetu S., Suresh I., Shankar R., Nagarajan B.& Sharma R. 
(2011) — Trapped waves of the 27 November 1945 tsunami: 
observations and numerical modeling. Natural Hazards and 
Earth System Sciences. 59 1609‑1618

Nikolkina I. & Didenkulova I. (2011) — Rogue waves in 
2006‑2010. Natural Hazards and Earth System Sciences.  
11 2913‑2924

Nikolkina I. & Didenkulova I. (2012) — Catalogues of rogue 
waves reported in media in 2006‑2010. Natural Hazards and 
Earth System Sciences. 61 989 – 1006

Pelinovsky E. (1982) — Nonlinear dynamics of tsunami waves. 
Institute of Applied Physics, Nizhny Novgorod, (in Russian). 

Pelinovsky E. & Mazova R. (1992) — Exact analytical solutions 
of nonlinear problems of tsunami wave run‑up on slopes with 
different profiles. Natural Hazards and Earth System Sciences. 
6 227‑249

Pelinovsky E. N.., Polukhina O. & Kurkin A. (2010) — Rogue 
edge waves in the ocean. European Physical Journal Special 
Topics. 185 35‑44

Petrelis F., Aumaitre S. & Fauve S. (2005) — Effect of phase 
noise on parametric instabilities. Phys; Rev. Lett. 07060397

Slunyaev A., Didenkulova I. & Pelinovsky E. (2011) — Rogue 
waters. Contemporary Physics. 52 571‑590

Stefanakis T.S., Dias F. & Dutykh D. (2011) — Local run‑up 
amplification by resonant wave interaction. Phys.Rev. Lett. 107 
124502

Synolakis C. (1987) — The runup of solitary waves. J. Fluid 
Mech. 185 523‑545

Yang J. (1995) — The stability and nonlinear evolution of edge 
waves. Studies in applied mathematics. 95 229‑246


