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Abstract

A trisymplectic structure on a complex 2n-manifold is a three-dimensional space Ω
of closed holomorphic forms such that any element of Ω has constant rank 2n, n or
zero, and degenerate forms in Ω belong to a non-degenerate quadric hypersurface. We
show that a trisymplectic manifold is equipped with a holomorphic 3-web and the Chern
connection of this 3-web is holomorphic, torsion-free, and preserves the three symplectic
forms. We construct a trisymplectic structure on the moduli of regular rational curves
in the twistor space of a hyperkähler manifold, and define a trisymplectic reduction
of a trisymplectic manifold, which is a complexified form of a hyperkähler reduction.
We prove that the trisymplectic reduction in the space of regular rational curves on
the twistor space of a hyperkähler manifold M is compatible with the hyperkähler
reduction on M . As an application of these geometric ideas, we consider the ADHM
construction of instantons and show that the moduli space of rank r, charge c framed
instanton bundles on CP3 is a smooth trisymplectic manifold of complex dimension 4rc.
In particular, it follows that the moduli space of rank two, charge c instanton bundles on
CP3 is a smooth complex manifold dimension 8c− 3, thus settling part of a 30-year-old
conjecture.
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1. Introduction

1.1 An overview
In our previous paper [JV11], we introduced the notion of holomorphic SL(2)-webs, and
argued that manifolds equipped with a holomorphic SL(2)-web structure may be regarded as
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Trihyperkähler reduction and instanton bundles on CP3

the complexification of hypercomplex manifolds. We showed that manifolds M carrying such
structures have a canonical holomorphic connection, called the Chern connection, which is
torsion-free and has holonomy in GL(n,C), where dimCM = 2n.

The main example of holomorphic SL(2)-webs are given by twistor theory: given a
hyperkähler manifold M , then the space of regular holomorphic sections of the twistor fibration
π : Tw(M) → CP 1 is equipped with a holomorphic SL(2)-web. We then exploited this fact
and the Atiyah–Drinfeld–Hitchin–Manin (ADHM) construction of instantons to show that the
moduli space of framed instanton bundles on CP 3 is a holomorphic SL(2)-web.

The present paper is a sequel to [JV11]. Here, we expand in both aspects of our previous
paper. On the one hand, we describe a new geometric structure on complex manifolds, called a
trisymplectic structure. The trisymplectic structure is an important special case of a holomorphic
SL(2)-web. For a trisymplectic structure, we define reduction procedure, allowing us to define a
trisymplectic quotient. Applying these new ideas to the ADHM construction of instantons allows
us to give a better description of the moduli space of framed instanton bundles on CP 3, and to
prove its smoothness and connectness. This allows us to solve a part of a 30-year old conjecture
regarding the moduli space of rank-two instanton bundles on CP 3.

To be more precise, we begin by introducing the notion of trisymplectic structures on complex
manifolds (see Definition 4.1 below), and show that trisymplectic manifolds carry an induced
holomorphic SL(2)-web. Our first main goal is to introduce the notion of a trisymplectic quotient
of a trisymplectic manifold, which would enable us to construct new examples of trisymplectic
manifolds out of known ones, e.g. flat ones.

Next, we introduce the notion of trihyperkähler quotient Sec0(M)////G for a hyperkähler
manifold M , equipped with an action of a Lie group G by considering the trisymplectic quotient
of the space Sec0(M) of regular holomorphic sections of the twistor fibration of M .

Our first main result (Theorem 5.11) is compatibility between this procedure and the
hyperkähler quotient, which we denote by M///G. We show that, under some reasonable
conditions, the trihyperkähler reduction Sec0(M)////G admits an open embedding to the space
Sec0(M///G) of regular sections of the twistor fibration of the hyperkähler quotient M///G.
This shows, in particular, that (similarly to the smoothness of the hyperkähler reduction) the
trihyperkähler reduction of M is a smooth trisymplectic manifold.

Our second main result provides an affirmative answer to a long-standing conjecture
regarding the smoothness and dimension of the moduli space of rank-two instanton bundles
on CP 3, also known as mathematical instanton bundles (see § 8 for precise definitions). More
precisely, the moduli space of mathematical instanton bundles with second Chern class (or
charge) c is conjectured to be an irreducible, nonsingular quasi-projective variety of dimension
8c − 3 (cf. [CTT03, Conjecture 1.2]). The truth of the conjecture for c 6 5 was established by
various authors in the past four decades: Barth settled the c = 1 case in 1977 [Bar77]; Hartshorne
established the case c = 2 in 1978 [Har78]; Ellingsrud and Stromme settled the c = 3 case in
1981 [ES81]; the irreducibility of the c = 4 case was proved by Barth in 1981 [Bar82], while
the smoothness is due to Le Potier [LeP83] (1983) and Coanda–Tikhomirov–Trautmann (2003).
More recently, Tikhomirov has shown in [Tik12] that irreducibility holds for odd values of c.

In the present paper, we apply the geometric techniques established above to the ADHM
construction of instantons, and show that the moduli space of rank r, charge c framed instanton
bundles on CP3 is a smooth, trisymplectic manifold of complex dimension 4rc (see Theorem
8.3 below). It then follows easily (see § 8.3 for details) that the moduli space of mathematical
instanton bundles of charge c is a smooth complex manifold of dimension 8c − 3, thus settling
the smoothness part of the conjecture for all values of c.
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1.2 3-webs, SL(2)-webs and trisymplectic structures
Let M be a real analytic manifold equipped with an atlas {Ui ↪→ Rn} and real analytic transition
functions ψij . A complexification of M (see [Gra58]) is a germ of a complex manifold, covered
by open sets {Vi ↪→ Cn} indexed by the same set as {Ui}, and with the transition function ψC

ij

obtained by analytic extension of ψij into the complex domain.
Complexification can be applied to a complex manifold, by considering it as a real analytic

manifold first. As shown by Kaledin and Feix (see [Fei01], [KKV01] and the argument in
[JV11, § 1]), a complexification of a real analytic Kähler manifold naturally gives a germ of a
hyperkähler manifold. In the paper [JV11] we took the next step by looking at a complexification
of a hyperkähler manifold. We have shown that such a complexification is equipped with an
interesting geometric structure which we called a holomorphic SL(2)-web.

A holomorphic SL(2)-web on a complex manifold M is a collection of involutive holomorphic
sub-bundles St ⊂ TM , rkSt = 1

2 dimM , parametrized by t ∈ CP 1, and satisfying the following
two conditions: first, St ∩St′ = 0 for t 6= t′; and second, the projector operators Πt,t′ of TM onto
St′ along St generate an algebra isomorphic to the algebra Mat(2) of 2 × 2 complex matrices
(cf. Definition 2.1 and § 3.1 below).

This structure is a special case of a notion of 3-web developed in 1930s by Blaschke and Chern.
Let M be an even-dimensional manifold, and S1, S2, S3 a triple of pairwise non-intersecting
involutive sub-bundles of TM of dimension 1

2 dimM . Then S1, S2, S3 is called a 3-web. Any
3-web on M gives a rise to a natural connection on TM , called a Chern connection. A Chern
connection is one which preserves Si, and its torsion vanishes on S1 ⊗ S2; such a connection
exists, and is unique.

Let a, b, c ∈ CP 1 be three distinct points. For any SL(2)-web, Sa, Sb, Sc is clearly a 3-web.
In [JV11] we proved that the corresponding Chern connection is torsion-free and holomorphic;
also, it is independent from the choice of a, b, c ∈ CP 1. We also characterized such connections
in terms of holonomy, and characterized an SL(2)-web in terms of a connection with prescribed
holonomy.

Furthermore, we constructed an SL(2)-web structure on a component of the moduli space
of rational curves on a twistor space of a hyperkähler manifold. By interpreting the moduli
space of framed instanton bundles on CP 3 in terms of rational curves on the twistor space of
the moduli space of framed bundles on CP 2, we obtained a SL(2)-web on the smooth part of the
moduli space of framed instanton bundles on CP 3.

In the present paper we explore this notion further, studying those SL(2)-webs which appear
as moduli spaces of rational lines in the twistor space of a hyperkähler manifold.

It turns out that (in addition to the SL(2)-web structure), this space is equipped with the
so-called trisymplectic structure (see also Definition 4.1).

Definition 1.1. A weakly trisymplectic structure on a complex manifold M is a
three-dimensional subspace Ω of Ω2M generated by a triple of holomorphic symplectic forms
Ω1,Ω2,Ω3, such that any linear combination of Ω1,Ω2,Ω3 has rank n = dimM , 1

2n, or zero. If
the set of degenerate forms in Ω belongs to a non-degenerate quadric, Ω is called a trisymplectic
structure, and (M,Ω) a trisymplectic manifold.

In differential geometry, similar structures known as hypersymplectic structures were studied
by Arnol′d, Atiyah, Hitchin and others (see, e.g., [Arn01]). The hypersymplectic manifolds
are similar to hyperkähler, but instead of quaternions one deals with an algebra Mat(2,R)
of split quaternions. As one passes to complex manifolds and complex-valued holomorphic
symplectic forms, the distinction between quaternions and split quaternions becomes irrelevant.
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Therefore, trisymplectic structures serve as complexifications of both hypersymplectic and
hyperkähler structures.

Consider a trisymplectic manifold (M,Ω1,Ω2,Ω3). In Theorem 4.4 we show that the set of
degenerate linear combinations of Ωi is parametrized by CP 1 (up to a constant), and the null-
spaces of these 2-forms form an SL(2)-web. We also prove that the Chern connection associated
with this SL(2)-web preserves the 2-forms Ωi (Theorem 4.6). This allows one to characterize
trisymplectic manifolds in terms of the holonomy, similarly as it is done in [JV11] with SL(2)-
webs.

Claim 1.2. Let M be a complex manifold. Then there is a bijective correspondence between
trisymplectic structures on M , and holomorphic connections with holonomy which lies in G =
Sp(n,C) acting on C2n ⊗C C2 trivially on the second tensor multiplier and in the usual way on
C2n.

Proof. This follows immediately from Theorem 4.6. 2

1.3 Trisymplectic reduction
In complex geometry, the symplectic reduction is understood as a way of constructing the
geometric invariant theory (GIT) quotient geometrically. Consider a Kähler manifoldM equipped
with an action of a compact Lie group G. Assume that G acts by holomorphic isometries, and

admits an equivariant moment map M
µ−→ g∗, where g∗ is the dual of the Lie algebra of G. The

symplectic reduction M//G is the quotient of µ−1(0) by G. This quotient is a complex variety,
Kähler outside of its singular points. When M is projective, one can identify M//G with the GIT
quotient of M by the action of the complexified Lie group GC. For more details on GIT and its
relation to the symplectic quotient, please see [MFK94].

A hyperkähler quotient is defined in a similar way. Recall that a hyperkähler manifold is a
Riemannian manifold equipped with a triple of complex structures I, J,K which are Kähler and
satisfy the quaternionic relations. Suppose that a compact Lie group acts on (M, g) by isometries
which are holomorphic with respect to I, J,K; such maps are called hyperkähler isometries.
Suppose, moreover, that there exists a triple of moment maps µI , µJ , µK : M −→ g∗ associated
with the symplectic forms ωI , ωJ , ωK constructed from g and I, J,K. The hyperkähler quotient
[HKLR87] M///G is defined as

(
µ−1
I (0) ∩ µ−1

J (0) ∩ µ−1
K (0)

)
/G. Similarly to the Kähler case, this

quotient is known to be hyperkähler outside of the singular locus.
This result is easy to explain if one looks at the 2-form Ω := ωJ +

√
−1ωK . This form

is holomorphically symplectic on (M, I). Then the complex moment map µC := µJ +
√
−1µK is

holomorphic on (M, I), and the quotient M///G := µ−1
C //GC is a Kähler manifold. Starting from

J and K instead of I, we construct other complex structures on M///G; an easy linear-algebraic
argument is applied to show that these three complex structures satisfy the quaternionic relations.

Carrying this argument a step farther, we repeat it for trisymplectic manifolds, as follows.
Let (M,Ω1,Ω2,Ω3) be a trisymplectic manifold, that is, a complex manifold equipped with a
triple of holomorphic symplectic forms satisfying the rank conditions of Definition 1.1, and GC a
complex Lie group acting on M by biholomorphisms preserving Ω1,Ω2, and Ω3. Let µ1, µ2, and
µ3 be the triple of holomorphic moment maps, associated to Ω1,Ω2, and Ω3, which are assumed
to be equivariant.1

The trisymplectic reduction is the quotient of µ−1
1 (0) ∩ µ−1

2 (0) ∩ µ−1
3 (0) by GC.

1 Equivariance of a moment map is sometimes assumed in the definition, but we consider it as an additional
constraint; please see § 4.3 for more details and a precisely worded definition.

1839



M. Jardim and M. Verbitsky

Under some reasonable non-degeneracy assumptions, we can show that a trisymplectic

quotient is also a trisymplectic manifold (Theorem 4.9).

Note that since GC is non-compact, this quotient is not always well-defined. To rectify this,

a trisymplectic version of GIT quotient is proposed (§ 5.3), under the name of trihyperkähler

reduction.

1.4 Trihyperkähler reduction

Let M be a hyperkähler manifold, and Tw(M)
π−→ CP 1 its twistor space (§ 2.2). A holomorphic

section of π is called regular if the normal bundle to its image is isomorphic to a sum of dimM

copies of O(1). Denote by Sec0(M) the space of regular sections of π (cf. Definition 2.10).

One may think of Sec0(M) as of a complexification of a hyperkähler manifold M . It is the

main example of a trisymplectic manifold used in this paper.

The trisymplectic structure on Sec0(M) is easy to obtain explicitly. Let L be a complex

structure on M induced by the quaternions (§ 2.2), and ΩL the corresponding holomorphic

symplectic form on (M,L). Let

evL : Sec0(M)−→ (M,L)

be the evaluation map sending a twistor section s : CP 1 −→ Tw(M) to s(L) (we use the standard

identification of the space of induced complex structures with CP 1). Let Ω be the three-

dimensional space of holomorphic 2-forms on Sec0(M) generated by ev∗I(ΩI), ev∗J(ΩJ), and

ev∗K(ΩK). Then Ω defines a trisymplectic structure (Claim 5.4).

In this particular situation, the trisymplectic quotient can be defined using a GIT-like

construction as follows.

Let G be a compact Lie group acting on a hyperkähler manifold M by hyperkähler isometries.

Then G acts on Sec0(M) preserving the trisymplectic structure described above. Moreover, there

is a natural Kähler metric on Sec0(M) constructed in [KV98] as follows. The twistor space

Tw(M) is naturally isomorphic, as a smooth manifold, to M × CP 1. Consider the product

metric on Tw(M), and let ν : Sec0(M)−→ R+ be a map associating to a complex curve its

total Riemannian volume. In [KV98] it was shown that ν is a Kähler potential, that is, ddcν is

a Kähler form on Sec0(M).

Let Ω be the standard three-dimensional space of holomorphic 2-forms on Sec0(M),

Ω = 〈ev∗I(ΩI), ev
∗
J(ΩJ), ev∗K(ΩK)〉.

Then the corresponding triple of holomorphic moment maps is generated by µCI ◦ evI , µCJ ◦ evJ ,

µCK ◦evK , where µCL is a holomorphic moment map of (M,L). This gives a description of the zero

set of the trisymplectic moment map µC : Sec0(M)−→ g∗ ⊗R C3,

As follows from Proposition 5.5, a rational curve s ∈ Sec0(M) lies in µ−1
C (0) if and only

if s lies in a set of all pairs (m, t) ∈ M × CP 1 ' Tw(M) satisfying µCt (m) = 0, where µCt :

(M, t)−→ g∗ ⊗R C is the holomorphic moment map corresponding to the complex structure t.

Now, the zero set µ−1
C (0) of the trisymplectic moment map is a Kähler manifold, with

the Kähler metric ddcν defined as above. Therefore, one could define the symplectic quotient

µ−1
C (0)//G. This quotient, denoted by Sec0(M)////G, is called the trihyperkähler quotient of

Sec0(M) (see Definition 5.9 for further details).

One of the main results of the present paper is the following theorem relating the

trihyperkähler quotient and the hyperkähler quotient.
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Theorem 1.3. Let M be flat hyperkähler manifold, and G a compact Lie group acting
on M by hyperkähler automorphisms. Suppose that the hyperkähler moment map exists,
and the hyperkähler quotient M///G is smooth. Then there exists an open embedding

Sec0(M)////G
Ψ−→ Sec0(M///G), which is compatible with the trisymplectic structures on

Sec0(M)////G and Sec0(M///G).

Proof. This is Theorem 5.11. 2

The flatness of M , assumed in Theorem 1.3, does not seem to be necessary, but we were
unable to prove it without this assumption.

1.5 Framed instanton bundles on CP 3

In § 8, the geometric techniques introduced in the previous sections are applied to the study of
the moduli space of framed instanton bundles on CP 3.

Recall that a holomorphic vector bundle E → CP 3 is called an instanton bundle if c1(E) = 0
and H0(E(−1)) = H1(E(−2)) = H2(E(−2)) = H3(E(−3)) = 0. The integer c := c2(E) is called
the charge of E.

This nomenclature comes from the fact that instanton bundles which are trivial on the lines
of the twistor fibration CP 3

→ S4 (also know as real lines) are in one-to-one correspondence, via
twistor transform, with non-Hermitian anti-self-dual connections on S4 (see [JV11, § 3]). Note,
however, that there are instanton bundles which are not trivial on every real line.

Moreover, given a line ` ⊂ P 3, a framing on E at ` is the choice of an isomorphism φ : E|` →

O⊕rkE
` . A framed instanton bundle is a pair (E, φ) consisting of an instanton bundle E restricting

trivially to ` and a framing φ at `. Two framed bundles (E, φ) and (E′, φ′) are isomorphic if
there exists a bundle isomorphism Ψ : E → E′ such that φ′ = φ ◦ (Ψ|`).

Frenkel and the first named author established in [FJ08] a one-to-one correspondence between
isomorphism classes of framed instanton bundles on CP 3 and solutions of the complex ADHM
equations (also known as the one-dimensional ADHM equation) in [Jar08]).

More precisely, let V and W be complex vector spaces of dimension c and r, respectively,
and consider matrices (k = 1, 2) Ak, Bk ∈ End(V ), Ik ∈ Hom(W,V ) and Jk ∈ Hom(V,W ). The
one-dimensional ADHM equations are

[A1, B1] + I1J1 = 0,

[A2, B2] + I2J2 = 0,

[A1, B2] + [A2, B1] + I1J2 + I2J1 = 0.

(1.1)

One can show [FJ08, Main Theorem] that the moduli space of framed instanton bundles on
CP 3 coincides with the set of globally regular solutions (see Definition 8.1 below) of the one-
dimensional ADHM equations modulo the action of GL(V ).

It turns out that the three equations in (1.1) are precisely the three components of a
trisymplectic moment map µC : Sec0(M) → u(V )∗ ⊗R Γ(OCP1(2)) on (an open subset of) a flat
hyperkähler manifold M , so that the moduli space of framed instanton bundles coincides with
a trihyperkähler reduction of a flat space (Theorem 8.2). It then follows that the moduli space
of framed instanton bundles on CP 3 of rank r and charge c is a smooth trisymplectic manifold of
dimension 4rc.

On the other hand, a mathematical instanton bundle is a rank-two stable holomorphic vector
bundle E → CP 3 with c1(E) = 0 and H1(E(−2)) = 0. It is easy to see, using Serre duality and
stability, that every mathematical instanton bundle is a rank-two instanton bundle. Conversely,
every rank-two instanton bundle is stable, and thus a mathematical instanton bundle. We explore
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this fact to complete the paper in § 8.3 by showing how the smoothness of the moduli space of
framed rank-two instanton bundles settles the smoothness part of a conjecture on the moduli
space of mathematical instanton bundles; for its precise formulation, see [CTT03, Conjecture 1.2].

2. The SL(2)-webs on complex manifolds

In this section, we repeat basic results about SL(2)-webs on complex manifolds. We follow [JV11].

2.1 The SL(2)-webs and twistor sections
The following notion is based on a classical notion of a 3-web, developed in the 1930s by Blaschke
and Chern, and much studied since then.

Definition 2.1. Let M be a complex manifold, dimCM = 2n, and St ⊂ TM a family of
n-dimensional holomorphic sub-bundles, parametrized by t ∈ CP 1. This family is called a
holomorphic SL(2)-web if the following conditions are satisfied:

(i) each St is involutive (integrable), that is, [St, St] ⊂ St;
(ii) for any distinct points t, t′ ∈ CP 1, the foliations St, St′ are transversal: St ∩ St′ = ∅;

(iii) the projections Pt,t′ : TM −→ St ↪→ TM of TM to St along St′ generate a four-dimensional
sub-bundle a within End(TM), which is closed under multiplication;

(iv) each fiber of a is isomorphic to the algebra Mat(2) of two-dimensional matrices.

Since St and St′ are mid-dimensional, transversal foliations, it follows that TmM = St(m)⊕
St′(m) for each point m ∈ M . According to this splitting, Pt,t′(m) is simply a projection onto
the first factor.

Definition 2.2 (see, e.g., [Ati57]). Let B be a holomorphic vector bundle over a complex
manifold M . A holomorphic connection on B is a holomorphic differential operator ∇ :
B −→B ⊗ Ω1M satisfying ∇(fb) = b⊗ df + f∇(b), for any holomorphic function f on M .

Remark 2.3. Let ∇ be a holomorphic connection on a holomorphic bundle, considered as a map
∇ : B −→B ⊗ Λ1,0M , and ∂̄ : B −→B ⊗ Λ0,1M the holomorphic structure operator. The sum
∇f := ∇+ ∂̄ is clearly a connection. Since ∇ is holomorphic, ∇∂̄ + ∂̄∇ = 0, hence the curvature
∇2
f is of type (2, 0). The converse is also true: a (1, 0)-part of a connection with curvature of type

(2, 0) is always a holomorphic connection.

Proposition 2.4 [JV11]. Let St, t ∈ CP 1 be an SL(2)-web. Then there exists a unique torsion-
free holomorphic connection preserving St, for all t ∈ CP 1.

Definition 2.5. This connection is called a Chern connection of an SL(2)-web.

Theorem 2.6 [JV11, Theorem 2.13]. Let M be a manifold equipped with a holomorphic
SL(2)-web. Then its Chern connection is a torsion-free affine holomorphic connection with
holonomy in GL(n,C) acting on C2n as a centralizer of an SL(2)-action, where C2n is a direct
sum of n irreducible GL(2)-representations of weight one. Conversely, every connection with such
holonomy preserves a holomorphic SL(2)-web.

2.2 Hyperkähler manifolds
Definition 2.7. Let (M, g) be a Riemannian manifold, and I, J,K endomorphisms of the
tangent bundle TM satisfying the quaternionic relations

I2 = J2 = K2 = IJK = −1TM .
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The triple (I, J,K) together with the metric g is called a hyperkähler structure if I, J and K are
integrable and Kähler with respect to g.

Consider the Kähler forms ωI , ωJ , ωK on M :

ωI(·, ·) := g(·, I·), ωJ(·, ·) := g(·, J ·), ωK(·, ·) := g(·,K·). (2.1)

An elementary linear-algebraic calculation implies that the 2-form

Ω := ωJ +
√
−1ωK (2.2)

is of Hodge type (2, 0) on (M, I). This form is clearly closed and non-degenerate, hence it is a
holomorphic symplectic form.

In algebraic geometry, the word ‘hyperkähler’ is essentially synonymous with ‘holomorphically
symplectic’, due to the following theorem, which is implied by Yau’s solution of Calabi conjecture
[Bea83, Bes87].

Theorem 2.8. Let M be a compact, Kähler, holomorphically symplectic manifold, ω its Kähler
form, dimCM = 2n. Denote by Ω the holomorphic symplectic form on M . Assume that

∫
M ω2n =∫

M (Re Ω)2n. Then there exists a unique hyperkähler metric g within the same Kähler class as
ω, and a unique hyperkähler structure (I, J,K, g), with ωJ = Re Ω, ωK = Im Ω.

Every hyperkähler structure induces a whole two-dimensional sphere of complex structures
on M , as follows. Consider a triple a, b, c ∈ R, a2 + b2 + c2 = 1, and let L := aI + bJ + cK be
the corresponding quaternion. Quaternionic relations imply immediately that L2 = −1, hence L
is an almost complex structure. Since I, J,K are Kähler, they are parallel with respect to the
Levi-Civita connection. Therefore, L is also parallel. Any parallel complex structure is integrable
and Kähler. Complex structures of the form L = aI + bJ + cK are called the complex structures
induced by the hyperkähler structure. The corresponding complex manifold is denoted by (M,L).
There is a two-dimensional holomorphic family of induced complex structures, and the total space
of this family is called the twistor space of a hyperkähler manifold; it is constructed as follows.

Let M be a hyperkähler manifold. Consider the product Tw(M) = M × S2. Embed the
sphere S2 ⊂ H into the quaternion algebra H as the subset of all quaternions J with J2 = −1.
For every point x = m×J ∈X = M×S2 the tangent space Tx Tw(M) is canonically decomposed
TxX = TmM ⊕TJS2. Identify S2 with CP 1, and let IJ : TJS

2
→ TJS

2 be the complex structure
operator. Consider the complex structure Im : TmM → TmM on M induced by J ∈ S2 ⊂ H.

The operator ITw = Im ⊕ IJ : Tx Tw(M) → Tx Tw(M) satisfies ITw ◦ ITw = −1. It depends
smoothly on the point x, hence it defines an almost complex structure on Tw(M). This almost
complex structure is known to be integrable (see, e.g., [Sal82]).

Definition 2.9. The space Tw(M) constructed above is called the twistor space of the
hyperkähler manifold M .

2.3 An example: rational curves on a twistor space
The basic example of holomorphic SL(2)-webs comes from hyperkähler geometry. Let M be a
hyperkähler manifold, and Tw(M) its twistor space. Denote by Sec(M) the space of holomorphic

sections of the twistor fibration Tw(M)
π−→ CP 1, also known as twistor sections.

We consider Sec(M) as a complex variety, with the complex structure induced from the
Douady space of rational curves on Tw(M). Clearly, for any C ∈ Sec(M), TCSec(M) is a subspace
in the space of sections of the normal bundle NC . This normal bundle is naturally identified with
Tπ Tw(M)|

C
, where Tπ Tw(M) denotes the vertical tangent bundle.
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For each point m ∈ M , one has a horizontal section Cm := {m} × CP 1 of π. The space
of horizontal sections of π is denoted by Sechor(M); it is naturally identified with M . It is
easy to check that NCm = O(1)dimM , hence some neighbourhood of Sechor(M) ⊂ Sec(M) is a
smooth manifold of dimension 2 dimM . It is easy to see that Sec(M) is a complexification of
M ' Sechor(M), considered as a real analytic manifold (see [Ver99]); in fact, the real analytic
structure on M is constructed by identifying a germ of Sec(M) with a complexification.

Definition 2.10. A twistor section C ∈ Sec(M) whose normal bundle NC is isomorphic to
O(1)dimM is called regular.

Let Sec0(M) be the subset of Sec(M) consisting of regular twistor sections. Clearly, Sec0(M)
is a smooth, Zariski open subvariety in Sec(M), containing the set Sechor(M) of horizontal twistor
sections.

Proposition 2.11. The space Sec0(M) of regular twistor sections admits the structure of a
holomorphic SL(2)-web.

Proof. A holomorphic SL(2)-web on Sec0(M) can be constructed as follows. For each C ∈
Sec0(M) and t ∈ CP 1 = C, define St ⊂ TC = ΓC(NC) as the space of all sections of NC

vanishing at t ∈ C.
It is not difficult to check that this is a holomorphic SL(2)-web. Transversality of St and

St′ follows easily from the fact that a section of O(1) vanishing at two points must be zero.
Integrability of St is also clear, since the leaves of St are fibers of the evaluation map evt :
Sec(M)−→ Tw(M), mapping C : CP 1 −→ Tw(M) to C(t).

Moreover, let S be a complex vector space of dimension dimM , so that NC ' S ⊗ O(1).
Note that ΓC(NC) ' S ⊗C C2 and that the projection maps Pt,t′ act on V ⊗C C2 only through
the second component; it is then easy to see that conditions (iii) and (iv) in Definition 2.1 are
also satisfied. 2

The space Sec0(M) is the main example of an SL(2)-web manifold we consider in this paper;
the structure defined in the proof above is called the standard holomorphic SL(2)-web structure
on Sec0(M).

3. Trisymplectic structures on vector spaces

3.1 Trisymplectic structures and Mat(2)-action
This section is dedicated to the study of the following linear algebraic objects, which will be the
basic ingredient in the new geometric structures we will introduce later.

Definition 3.1. Let Ω be a three-dimensional space of complex linear 2-forms on an even
dimensional complex vector space V . Assume that:

(i) Ω contains a non-degenerate form;

(ii) for each non-zero degenerate Ω ∈ Ω, one has rkΩ = 1
2 dimV .

Then Ω is called a weakly trisymplectic structure on V , and (V,Ω) a weakly trisymplectic space.
The pair (V,Ω) is called a trisymplectic space if, in addition, the set S of all degenerate forms

Ω ∈ Ω lies in a non-degenerate quadric R ⊂ Ω.

Remark 3.2. If V is not a complex, but a real vector space, this notion defines either a
quaternionic Hermitian structure, or a structure known as hypersymplectic and associated with
a action of split quaternions, cf. [Arn01].
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Example 3.3. Let V = V1⊕V ∗1 be a 2n-dimensional vector space (n > 1) equipped with a scalar
product 〈·, ·〉 in a usual way, Cl(V ) = Mat(W ) its Clifford algebra, h the standard metric on the
spinorial representation W := Λ∗V1, and V ↪→ so(W,h) the Clifford action. Identifying so(W )

with Λ2W , we obtain a map V
φ
↪→ Λ2W . It is easy to see that rkφ(v) = dim Λ2W unless v ∈ V1

or v ∈ V ∗1 , and in the latter case rkφ(v) = 1
2 dim Λ2W . If L is a non-isotropic three-dimensional

subspace V , then the pair (V, φ(L)) yields an example of a weakly trisymplectic space. Moreover,
if the restriction 〈·, ·〉|

L
is non-degenerate, then the pair (V, φ(L)) is a trisymplectic space.

Lemma 3.4. Let (V,Ω) be a trisymplectic space, and Ω1,Ω2 ∈Ω two non-zero, degenerate forms
which are not proportional. Then the annihilator Ann(Ω1) does not intersect Ann(Ω2).

Proof. Let Ω1 and Ω2 be non-proportional elements in Ω with a common vector v in their
annihilators. Then any linear combination of Ω1 and Ω2 annihilates v. This implies that a set R
of degenerate Ω ∈ Ω contains a line, hence it cannot be a smooth quadric. 2

Given two non-proportional, degenerate forms Ω1,Ω2 ∈ Ω, one has that V = Ann(Ω1) ⊕
Ann(Ω2) by the previous Lemma. Thus one can consider projection operators ΠΩ1,Ω2 of V onto
Ann(Ω1) along Ann(Ω2). It turns out that the Clifford algebra action used in Example 3.3 can
be reconstructed from the trisymplectic structure.

Proposition 3.5. Let (V,Ω) be a trisymplectic vector space, and let H ⊂ End(V ) be the
subspace generated by projections ΠΩ1,Ω2 for all pairs of non-proportional, degenerate forms
Ω1,Ω2 ∈ Ω. Then H is a four-dimensional subalgebra of End(V ), isomorphic to a matrix algebra
Mat(2).

Proof. Step 1. We prove that the space H ⊂ End(V ) is an algebra, and satisfies dimH 6 4.
Let Ω1,Ω2 ∈ Ω be two forms which are not proportional, and assume Ω2 is non-degenerate.

Consider the operator φΩ1,Ω2 ∈ End(V ), defined by φΩ1,Ω2 := Ω1 ◦ Ω−1
2 , where Ω1,Ω2 are

understood as operators from V to V ∗. As in the proof of Lemma 3.4, consider an eigenvector v
of φΩ1,Ω2 , with the eigenvalue λ. Then Ω1(v, x) = λΩ2(v, x), for each x ∈ V , hence v lies in the
annihilator of Ω := Ω1−λΩ2. Since Ωi are non-proportional, Ω is non-zero, hence rkΩ = 1

2 dimV .
This implies that each eigenspace of φΩ1,Ω2 has dimension 1

2 dimV . Choosing another eigenvalue
λ′ and repeating this procedure, we obtain a 2-form Ω′ := Ω1−λ′Ω2, also degenerate. Let S and
S′ be the annihilators of Ω and Ω′, respectively. Let also ΠS,S′ and ΠS′,S be the projections of
V onto S or S′ along S′ or S. It follows that

φΩ1,Ω2 = λΠS′,S + λ′ΠS,S′ (3.1)

and φΩ1,Ω2 can be expressed in an appropriate basis by the matrix

φΩ1,Ω2 =



λ 0 0 . . . 0 0 0
0 λ 0 . . . 0 0 0
0 0 λ . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . λ′ 0 0
0 0 0 . . . 0 λ′ 0
0 0 0 . . . 0 0 λ′


. (3.2)

From (3.1) it is clear that the space H is generated by all φΩ1,Ω2 . It is also clear that when
Ω2 is also non-degenerate, the operator φΩ2,Ω1 can be expressed as a linear combination of φΩ1,Ω2

and φΩ1,Ω1 = IdV .
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Since non-degenerate forms constitute a dense open subset of Ω, one can choose a basis
Ω1,Ω2,Ω3 consisting of non-degenerate forms. Since φΩi,Ω is expressed as a linear combination
of φΩ,Ωi and IdV , and φΩ,Ωi is linear in Ω, the vector space H is generated by φΩi,Ωj , i < j, and
IdV . Therefore, H is at most four-dimensional. From (3.1) it is clear that for any non-degenerate
Ω1, Ω2, the operator φΩ1,Ω2 can be expressed through φΩ2,Ω1 = φ−1

Ω1,Ω2
and IdV :

φΩ2,Ω1 = aφΩ2,Ω1 + b IdV . (3.3)

Since
φΩi,Ωj ◦ φΩj ,Ωk

= φΩi,Ωk
, (3.4)

the space H is a subalgebra in End(V ) (to multiply some of φΩi,Ωj and φΩi′ ,Ωj′ , you would have
to reverse the order when necessary, using (3.3), and then apply (3.4)).

We proved that H is an algebra, spanned by φΩi,Ωj , and dimH 6 4.

Step 2. We prove that a general element of H can be written as h = φΩ,Ω′ , for some Ω,Ω′ ∈ Ω.
Indeed, as we have shown, a general element of H has form

h = aφΩ1,Ω2 + bφΩ1,Ω3 + cφΩ2,Ω3 + d IdV , (3.5)

where Ω1,Ω2,Ω3 is a basis of non-degenerate forms for Ω. Since φ is linear in the first argument,
this gives

h = aφΩ1,Ω2 + φbΩ1+cΩ2,Ω3 + dc IdV . (3.6)

If the form bΩ1 + cΩ2 is non-degenerate, we use the reversal as indicated in (3.3), obtaining

φbΩ1+cΩ2,Ω3 = λφΩ3,bΩ1+cΩ2 + λ′ IdV ,

write, similarly,
aφΩ1,Ω2 = µφΩ1,bΩ1+cΩ2 + µ′λ′ IdV ,

then, adding the last two formulae, obtain

h = (µ+ 1)φΩ1+Ω3,bΩ1+cΩ2 + (λ′ + µ′ + d) IdV .

Finally, φΩ,Ω′ + c IdV = φΩ,Ω′+cΩ. This implies that a general h ∈ H can be written as φΩ,Ω′ , for
appropriate Ω,Ω′.

Step 3. We prove that H is a quotient of a Clifford algebra. From Step 2 and (3.2) it follows
that a characteristic polynomial of any h ∈ H has form

charh(t) = Ph(t)2n, (3.7)

where 4n = dimV , and Ph(t) = t2 + a(h)t+ b(h) is a quadratic polynomial with roots λ, λ′. The
map h−→ b(h) is a homogeneous polynomial function of degree two on H, and a(h) is linear,
a(h) = −Tr(h)/2n. From (3.2) the following analogue of Cayley–Hamilton theorem is apparent:
Ph(h) = 0, giving h2 − a(h)h+ b(h) = 0. Applying this to h = x+ y, we obtain

(x+ y)2 − (a(x) + a(y))(x+ y) + b(x+ y) = 0. (3.8)

Denote by q(x, y) the bilinear form q(x, y) := b(x+ y)− b(x)− b(y). Consider the homogeneous
part of the (3.8) of homogeneity one on x and y. We obtain that the following equation holds
for all x, y ∈ H:

xy + yx = (a(x)y + a(y)x− q(x, y)). (3.9)

1846



Trihyperkähler reduction and instanton bundles on CP3

Choose now x, y ∈H in such a way that a(x) = a(y) = 0. We pick x = φΩ1,Ω2 and y = φΩ2,Ω3 ,
for linearly independent, non-degenerate Ωi. Then adjust Ω1 and Ω3 by replacing it with Ω1+cΩ2

and Ω3+c′Ω2 in such a way that a(x) = a(y) = 0 (this is possible, as follows from (3.2)). Then (3.9)
gives xy+yx = −q(x, y). We have shown that x, y satisfy relations for the Clifford algebra. Also,
x and y generate H (Step 2). This gives a surjection Ψ : Cl(W, q)−→H, where W = 〈x, y〉.

Step 4. We have constructed a surjective homomorphism Ψ : Cl(W, q)−→H. Since Ω is a
trisymplectic structure, q us non-degenerate. Therefore, the corresponding Clifford algebra is
Mat(2). Since it is simple, Ψ is also injective.

We proved Proposition 3.5. 2

Remark 3.6. Let (V,Ω) be a trisymplectic vector space, and let H ∼= Mat(2) be the algebra
constructed in Claim 3.5. Then Ω is invariant under the Lie algebra action induced by H.
Moreover, there exists a non-degenerate, g-invariant quadratic form Q on Ω, unique up to a
constant, such that Ω ∈Ω is degenerate if and only ifQ(Ω,Ω) = 0. Indeed, the space of degenerate
forms in Ω is a non-degenerate quadric.

In a similar way, we obtain the following useful corollary.

Claim 3.7. Let (V,Ω) be a trisymplectic space, and W ⊂ V a complex subspace. Then Ω|
W

is
a trisymplectic space if and only if the following two assumptions hold:

(i) the space W is H-invariant, where H ∼= Mat(2) is the subalgebra of End(V ) constructed in
Proposition 3.5;

(ii) a general 2-form Ω ∈ Ω is non-degenerate on W .

Proof. Let Z ⊂H be the set of idempotents in H. Consider the standard action of g ∼= sl(2) on V
constructed in Proposition 3.5. Clearly, V is a direct sum of several two-dimensional irreducible
representations of sl(2).

It is easy to see that for every Π ∈ Z there exists a Cartan subalgebra h ⊂ g such that Π
is a projection of V onto one of two weight components of the weight decomposition associated
with h. If W ⊂ V is an H-submodule, then Π|

W
is a projection to a weight component W0 ⊂W of

dimension 1
2 dimW . From (3.1) it is also clear that for any degenerate form Ω ∈Ω, an annihilator

of a restriction Ω|
W

is equal to the weight component W0, for an appropriate choice of Cartan
subalgebra. Therefore,

dim(Ann Ω|
W

) = 1
2 dimW.

Similarly, (3.1) implies that a non-degenerate form is restricted to a non-degenerate form. We
obtain that the restriction Ω|

W
to an H-submodule is always a trisymplectic structure on W .

To obtain the converse statement, take two non-degenerate, non-collinear forms Ω1,Ω2 ∈ Ω,
and note that there exist precisely two distinct numbers t = λ, λ′ for which Ω1 +tΩ2 is degenerate
(see Proposition 3.5, Step 1). Let S, S′ be the corresponding annihilator spaces. By construction,
the algebra H is generated, as a linear space, by the projection operators ΠS,S′ , projecting V
to S along S′. For any W ⊂ V such that the restriction Ω|

W
is trisymplectic, one has W =

S ∩W ⊕ S′ ∩W , hence ΠS,S′ preserves W . Therefore, W is an H-submodule. 2

Definition 3.8. Let (V,Ω) be a trisymplectic space, and W ⊂ V a vector subspace. Consider
the action of H ' Mat(2) on V induced by the trisymplectic structure. A subspace W ⊂ V is
called non-degenerate if the subspace H ·W ⊂ V is trisymplectic.
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Remark 3.9. By Claim 3.7, W is non-degenerate if and only if the restriction of Ω to H ·W is
non-degenerate for some Ω ∈ Ω.

3.2 Trisymplectic structures and invariant quadratic forms on vector spaces with
Mat(2)-action

Let V be a complex vector space with a standard action of the matrix algebra Mat(2), i.e. V ∼=
V0 ⊗C2 and Mat(2) acts only through the second factor. An easy way to obtain a trisymplectic
structure is to use non-degenerate, invariant quadratic forms on V .

Consider the natural SL(2)-action on V induced by Mat(2), and extend it multiplicatively to
all tensor powers of V . Let g ∈ Sym2

C(V ) be an SL(2)-invariant, non-degenerate quadratic form
on V , and let {I, J,K} be a quaternionic basis in Mat(2), i.e. {IdV , I, J,K} is a basis for Mat(2)
and I2 = J2 = K2 = IJK = −1. Then

g(x, Iy) = g(Ix, I2y) = −g(Ix, y),

hence the form ΩI(·, ·) := g(·, I·) is a symplectic form, obviously non-degenerate; similarly, the
forms ΩJ(·, ·) := g(·, J ·) and ΩK(·, ·) := g(·,K·) have the same properties. It turns out that this
construction gives a trisymplectic structure, and all trisymplectic structures can be obtained in
this way.

Theorem 3.10. Let V be a vector space equipped with a standard action of the matrix algebra

Mat(2)
ρ−→ End(V ), and {I, J,K} a quaternionic basis in Mat(2). Consider the corresponding

action of SL(2) on the tensor powers of V .
(i) Given a non-degenerate, SL(2)-invariant quadratic form g ∈ Sym2(V ), consider the space

Ω ⊂ Λ2V generated by the symplectic forms ΩI ,ΩJ ,ΩK defined as above,

ΩI(·, ·) := g(·, I·), ΩJ(·, ·) := g(·, J ·), ΩK(·, ·) := g(·,K·). (3.10)

Then Ω is a trisymplectic structure on V , with the operators Ω−1
K ◦ΩJ and Ω−1

K ◦ΩI , generating
the algebra H ∼= Mat(2) := Im (ρ) ⊂ End(V ) as in Proposition 3.5.

(ii) Conversely, for each trisymplectic structure Ω inducing the action of H ∼= Mat(2) on V
given by ρ, there exists a unique (up to a constant) SL(2)-invariant non-degenerate quadratic
form g inducing Ω as in (3.10).

Proof. First, consider the three-dimensional subspace of Λ2V generated by ΩI ,ΩJ ,ΩK . Regard
ΩI as an operator from V to V ∗, x 7→ ΩI(x, ·), and similarly for ΩJ and ΩK ; let h := Ω−1

K ◦ΩJ ∈
End(V ). Then

h(x) = Ω−1
K (−g(Jx, ·)) = −KJx = Ix,

hence h = I. Similarly, one concludes that Ω−1
K ◦ΩI = J , hence Ω−1

K ◦ΩJ and Ω−1
K ◦ΩI generate

H as an algebra.
To complete the proof of the first claim of the theorem, it remains for us to show that Ω

is a trisymplectic structure. To show that Ω is weakly trisymplectic, it would suffice to show
that any non-zero, degenerate form Ω ∈ Ω has rank 1

2 dimV . Consider V as a tensor product
V = V0 ⊗ C2, with Mat(2) acting on the second factor. Choose a basis {x, y} in C2, so that
V = V0⊗x⊕V0⊗ y. From SL(2)-invariance it is clear that g(v0⊗ ζ) = g(v0⊗ ξ) for any non-zero
ζ, ξ ∈ C2. Therefore, V0 ⊗ x ⊂ V and V0 ⊗ y ⊂ V are isotropic subspaces, dual to each other.
Denote by ΩV0 the corresponding bilinear form on V0:

ΩV0(v, v′) := g(v ⊗ x, v′ ⊗ y).
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Since the group SL(2) acts transitively on the set of all ζ, ξ ∈ C2 satisfying ζ ∧ ξ = x ∧ y, we
obtain

ΩV0(v, v′) = g(v ⊗ x, v′ ⊗ y) = −g(v ⊗ y, v′ ⊗ x) = −ΩV0(v′, v).

Therefore, ΩV0 is skew-symmetric. Conversely, g can be expressed through ΩV0 , as follows. Given
x′, y′ ∈ C2 such that x′ ∧ y′ 6= 0, and v⊗ x1, w⊗ y1 ∈ V , we find h ∈ SL(2) such that h(x′) = λx
and h(y′) = λy with λ = (x1 ∧ y1)/(x ∧ y). Since g is SL(2)-invariant, one has

g(v ⊗ x′, w ⊗ y′) = λ2g(v ⊗ x,w ⊗ y).

Therefore, for appropriate symplectic form ΩC2 on C2, one would have

g(v ⊗ x′, w ⊗ y′) = ΩV0(v, w) · ΩC2(x′, y′). (3.11)

This gives us a description of the group St(H, g) ⊂ End(V ) which fixes the algebra H ⊂
End(V ) and g. Indeed, from (3.11), we obtain that St(H, g) ∼= Sp(V0,ΩV0) acting on V = V0⊗C2

in a standard way, i.e. trivially on the second factor.
Since all elements of Ω are by construction fixed by St(H, g) ∼= Sp(V0,ΩV0), for any Ω ∈ Ω,

the annihilator of Ω is Sp(V0,ΩV0)-invariant. However, V ∼= V0 ⊕ V0 is isomorphic to a sum of
two copies of the fundamental representation of Sp(V0,ΩV0), hence any Sp(V0,ΩV0)-invariant
space has dimension zero, 1

2 dimV , or dimV . We have shown that Ω is weakly trisymplectic.
To show that it is trisymplectic, we note that Ω is equipped with an SL(2,C)-action compatible
with the trisymplectic structure, and the set of degenerate elements of Ω is homogeneous, hence
non-singular. Therefore, it is a smooth quadric. We have finished the proof of Theorem 3.10(i).

The proof of the second part of Theorem 3.10 is divided into several steps. The idea is to
emulate over complex numbers a linear-algebraic argument which is used to obtain a quaternionic
Hermitian metric from a triple of symplectic structures inducing a quaternionic structure.

Step 1. Let I ∈ Mat(2) be such that I2 = −IdV . Consider the action ρI : U(1)−→ End(V )
generated by t−→ cos t IdV + sin tρ(I).As shown in Remark 3.6, Ω is an SL(2)-subrepresentation
of Λ2V . This representation is by construction irreducible. Since it is three-dimensional, it
is isomorphic to the adjoint representation of SL(2); let φ : sl(2)−→ Ω be an isomorphism.
Therefore, there exists a 2-form ΩI ∈ Ω fixed by the action of ρI , necessarily unique up to a
constant multiplier. Write gI(x, y) := −ΩI(x, Iy). Then

gI(y, x) = ΩI(y, Ix) = −ΩI(Ix, y) = −ΩI(I
2x, Iy) = Ω(x, Iy) = gI(x, y),

hence gI is symmetric, i.e. gI ∈ Sym2
C(V ).

Step 2. Now let {I, J,K} be the quaternionic basis for Mat(2). We prove that the symmetric
tensor gI constructed in Step 1 is fixed by the subgroup {±1,±I,±J,±K} ⊂ SL(2) ⊂ Mat(2),
for an appropriate choice of ΩI ∈ Ω.

Using the SL(2)-invariant isomorphism φ : sl(2)−→ Ω constructed in Step 1, and the
identification of sl(2) with the subspace of Mat(2) generated by I, J and K, we fix a choice
of ΩI by requiring that φ(I) = ΩI . Then, J and K, considered as elements of SL(2), act on ΩI

by −1:

ΩI(J ·, J ·) = −ΩI(·, ·), ΩI(K·,K·) = −ΩI(·, ·).

This gives

gI(J ·, J ·) = ΩI(J ·, IJ ·) = −ΩI(J ·, JI·) = ΩI(·, I·) = g(·, ·).
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We have shown that J , considered as an element of SL(2), fixes gI . The same argument applied
to K implies that K also fixes gI . We have shown that gI is fixed by the Klein subgroup
K := {±1,±I,±J,±K} ⊂ SL(2).

Step 3. We prove that gI is SL(2)-invariant.
Consider Sym2 V as a representation of SL(2). Since V is a direct sum of weight-one

representations, Clebsch–Gordon theorem implies that Sym2 V is a sum of several weight-two and
trivial representations. However, no element on a weight-two representation can be K-invariant.
Indeed, a weight-two representation W2 is isomorphic to an adjoint representation, that is, a
complex vector space generated by the imaginary quaternions: W2 := 〈I, J,K〉 ⊂Mat(2) Clearly,
no non-zero linear combination of I, J,K. can be K-invariant. Since gI is K-invariant, this implies
that gI lies in the SL(2)-invariant part of Sym2

C V.

Step 4. We prove that gI is proportional to gI′ , for any choice of quaternionic triple I ′, J ′,
K ′ ∈Mat(2). The ambiguity here is due to the ambiguity of a choice of ΩI in a centralizer of ρI .
The form ΩI is defined up to a constant multiplier, because this centralizer is one-dimensional.

The group SL(2) acts transitively on the set of quaternionic triples. Consider h ∈ SL(2) which
maps I, J,K to I ′, J ′,K ′ ∈ Mat(2). Then h(gI) is proportional to gI′ .

Step 5. To finish the proof of Theorem 3.10(ii), it remains to show that the SL(2)-invariant
quadratic form g defining the trisymplectic structure Ω is unique, up to a constant. Indeed, let
g be such a form; then g = Ω(·, I·), for some Ω ∈ Ω and I ∈Mat(2), satisfying I2 = −1. Since g
is SL(2)-invariant, the form Ω is ρI -invariant, hence g is proportional to the form gI constructed
above.

We have proved Theorem 3.10. 2

4. The SL(2)-webs and trisymplectic structures

In this section we introduce the notion of trisymplectic structures on manifolds, study its
reduction to quotients, and explain how they are related to holomorphic SL(2)-webs.

The trisymplectic structures and trisymplectic reduction were previously considered in a
context of framed instanton bundles by Hauzer and Langer [HL11, §§ 7.1 and 7.2]. However,
their approach is significantly different from ours, because they do not consider the associated
SL(2)-web structures.

4.1 Trisymplectic structures on manifolds
Definition 4.1. A (weakly) trisymplectic structure on an even dimensional complex manifold M
is a three-dimensional space Ω ⊂ Ω2M of closed holomorphic 2-forms such that at any x ∈M , the
evaluation Ω(x) gives a (weakly) trisymplectic structure on the tangent space TxM . A complex
manifold equipped with a (weakly) trisymplectic structure is called a (weakly) trisymplectic
manifold.

Clearly, trisymplectic manifolds must have even complex dimension. Note also that
Theorem 3.10 implies the equivalence between the definition above and Definition 1.1.

A similar notion is called a hypersymplectic structure by Hauzer and Langer in [HL11,
Definition 7.1]. A complex manifold (X, g) equipped with a non-degenerate holomorphic
symmetric form is called hypersymplectic in [HL11] if there are three complex structures I,
J , and K satisfying quaternionic relations and g(Iv, Iw) = g(Jv, Jw) = g(Kv,Kw) = g(v, w).
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Clearly, one can then define three non-degenerate symplectic forms ω1(v, w) = g(Iv, w),
ω2(v, w) = g(Jv,w), and ω3(v, w) = g(Kv,w) which generate a three-dimensional subspace of
holomorphic 2-forms Ω ⊂ Ω2,0X. If every non-zero, degenerate linear combination of ω1, ω2

and ω3 has rank dimX/2, then (X,Ω) is a weakly trisymplectic manifold. Furthermore, if in
addition every degenerate form in Ω belong to a non-degenerate quadric hypersurface in Ω2,0X,
then (X,Ω) is a trisymplectic manifold.

We prefer, however, to use the term ‘trisymplectic’ to avoid confusion with the
hypersymplectic structures known in differential geometry (see [AD06, DS08]), where a hyper-
symplectic structure is a three-dimensional space W of differential 2-forms on a real manifold
which satisfy the same rank assumptions as in Definition 4.1, and, in addition, contain a
non-trivial degenerate 2-form (for complex-linear 2-forms, this last assumption is automatic).

Definition 4.2. Let η be a (p, 0)-form on a complex manifold M . The set

Nullη = {v ∈ T 1,0M | η y v = 0},

where y denotes the contraction, is called the null-space, or an annihilator, of η.

Lemma 4.3. Let η be a closed (p, 0)-form for which Nullη is a sub-bundle in T 1,0(M). Then
Nullη is holomorphic and involutive, that is, satisfies

[Nullη,Nullη] ⊂ Nullη.

Proof. The form η is closed and hence holomorphic, therefore Nullη is a holomorphic bundle.
To prove that Nullη is involutive, we use the Cartan’s formula, expressing de Rham differential
in terms of commutators and Lie derivatives. Let X ∈ T 1,0(M), Y,Z ∈ Nullη. Then Cartan’s
formula gives 0 = dη(X,Y, Z) = η(X, [Y,Z]). This implies that [Y, Z] lies in Nullη. 2

Lemma 4.3 can be used to construct holomorphic SL(2)-webs on manifolds, as follows.

Theorem 4.4. Let M be an even dimensional complex manifold, and let Ω ⊂ Ω2,0(M) be a
trisymplectic structure on M . Then there is a holomorphic SL(2)-web (M,St), t ∈ CP 1 on M
such that each sub-bundle St is a null-space of a certain Ωt ∈ Ω.

Proof. Theorem 4.4 follows immediately from Proposition 3.5, Claim 3.5, and Lemma 4.3. Indeed,
at any point x ∈ M , the three-dimensional space Ω(x) ∈ Λ2,0(TxM) satisfies assumptions of
Claim 3.5, hence it induces an action of the matrix algebra H ∼= Mat(2) on TxM . Denote
by Z ⊂ Ω the set of degenerate forms. From Remark 3.6 we obtain that the projectivization
PZ ⊂ PΩ is a non-singular quadric, isomorphic to CP 1. For each t ∈ Z, the corresponding
zero-space St ⊂ TM is a sub-bundle of dimension 1

2 dimM , and for distinct t, the bundles St are
obviously transversal. Also, Lemma 4.3 implies that the bundles St are involutive. Finally, the
projection operators associated to St, S

′
t generate a subalgebra isomorphic to Mat(2), as follows

from Claim 3.5. We have shown that St, t ∈ PZ ∼= CP 1 is indeed a holomorphic SL(2)-web. 2

In particular, every trisymplectic manifold has an induced holomorphic SL(2)-web.

Definition 4.5. Let (M,St), t ∈ CP 1, be a complex manifold equipped with a holomorphic
SL(2)-web. Assume that there is a trisymplectic structure Ω ⊂ Ω2,0(M) such that for each
t ∈ CP 1 there exists Ωt ∈ Ω satisfying St = NullΩt . Then Ω is called a trisymplectic structure
generating the SL(2)-web St, t ∈ CP 1.
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4.2 Chern connection on SL(2)-webs and trisymplectic structures
The following theorem is proven in the same way as one proves that the Kähler forms on a
hyperkähler manifold are preserved by the Obata connection. Indeed, a trisymplectic structure
is a complexification of a hyperkähler structure, and the Chern connection corresponds to a
complexification of the Obata connection on a hyperkähler manifold.

Theorem 4.6. Let Ω be a trisymplectic structure generating a holomorphic SL(2)-web on a
complex manifold M . Denote by ∇ the corresponding Chern connection. Then ∇Ω = 0, for each
Ω ∈ Ω.

Proof. Let (M,Ω) be a trisymplectic manifold, and

ρ : sl(2)−→ End(Λ∗M)

the corresponding multiplicative action of sl(2) associated to the Lie algebra g ∼= sl(2) ⊂
End(TM), g = [H,H], where the algebra H = Mat(2) is constructed in Claim 3.5. By
Remark 3.6, Ω is an irreducible sl(2)-module. Choose a Cartan subalgebra in sl(2), and let
Ωi(M) =

⊕
p+q=i Ωp,q(M) be the multiplicative weight decomposition associated with this

Cartan subalgebra, with Ωi(M) := Λi,0(M). We write the corresponding weight decomposition
of Ω as

Ω = Ω2,0 ⊕Ω1,1 ⊕Ω0,2.

Clearly

Ωi(M) =
⊕
p+q=i

Ωp,0(M)⊗ Ω0,q(M), (4.1)

since Ωp,0(M)⊗ Ω0,q(M) = Ωp,q(M).
Consider the Chern connection as an operator

Ωi(M)
∇−→ Ωi(M)⊗ Ω1(M)

(this makes sense, because ∇ is a holomorphic connection), and let

Ωp,q(M)
∇1,0

−→ Ωp,q(M)⊗ Ω1,0(M), Ωp,q(M)
∇0,1

−→ Ωp,q(M)⊗ Ω0,1(M)

be its weight components. Since ∇ is torsion-free, one has

∂η = Alt(∇η), (4.2)

where ∂ is the holomorphic de Rham differential, and

Alt : Ωi(M)⊗ Ω1(M)−→ Ωi+1(M)

the exterior multiplication. Denote by Ω0,2, Ω2,0 generators of the one-dimensional spaces
Ω2,0,Ω0,2 ⊂ Ω. Since ∂Ω2,0 = 0, and the multiplication map Ω0,1(M) ⊗ Ω2,0(M)−→ Ω3(M)
is injective by (4.1), (4.2) implies that ∇0,1(Ω2,0) = 0. Similarly, ∇1,0(Ω0,1) = 0. However, since
Ω is irreducible as a representation of sl(2), there exist an expression of form Ω2,0 = g(Ω0,2),
where g ∈ Ug is a polynomial in g. Since the Chern connection ∇ commutes with g, this implies
that

0 = g(∇1,0Ω0,2) = ∇1,0(gΩ0,2) = ∇1,0Ω2,0.

We have proved that both weight components of ∇Ω2,0 vanish, thus ∇Ω2,0 = 0. Acting on Ω2,0

by sl(2) again, we obtain that ∇Ω = 0 for all Ω ∈ Ω. 2
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4.3 Trisymplectic reduction
Definition 4.7. Let G be a compact Lie group acting on a complex manifold equipped with a
trisymplectic structure Ω generating an SL(2)-web. Assume that G preserves Ω. A trisymplectic
moment map µC : M −→ g∗ ⊗R Ω∗ takes vectors Ω ∈ Ω, g ∈ g = Lie(G) and maps them to a
holomorphic function f ∈ OM , such that df = Ω y g, where Ω y g denotes the contraction of Ω
and the vector field g. A moment map is called equivariant if it is equivariant with respect to
the coadjoint action of G on g∗ Further on, we shall always assume that all moment maps we
consider are equivariant.

Since dΩ = 0, and Lieg Ω = 0, Cartan’s formula gives 0 = Lieg(Ω) = d(Ω y g), hence the
contraction Ω y g is closed. Therefore, existence of a moment map is equivalent to exactness of
this closed 1-form for each Ω ∈ Ω, g ∈ g = Lie(G). Therefore, the existence of a moment map is
assured whenever M is simply connected. The existence of an equivariant moment map is less
immediate, and depends on certain cohomological properties of G (see, e.g., [HKLR87]).

Definition 4.8. Let (M,Ω) be a trisymplectic manifold. Assume that M is equipped with an
action of a compact Lie group G preserving Ω, and an equivariant trisymplectic moment map

µC : M −→ g∗ ⊗R Ω∗.

Consider a G-invariant vector c ∈ g∗ ⊗R Ω∗ (usually, one sets c = 0), and let µ−1
C (c) be the

corresponding level set of the moment map. Consider the action of the corresponding complex
Lie group GC on µ−1

C (c), obtained as a complexification. Assume that µ−1
C (c) is smooth, and that

the action of GC on µ−1
C (c) is free and proper, so that the quotient µ−1

C (c)/GC is Hausdorff and
smooth.2 Then the quotient µ−1

C (c)/GC is called the trisymplectic quotient of (M,Ω), denoted
by M////G.

As we shall see, the trisymplectic quotient is related to the usual hyperkähler quotient
in the same way as the hyperkähler quotient (denoted by ///) is related to the symplectic
quotient, denoted by //. In heuristic terms, the hyperkähler quotient can be considered
as a ‘complexification’ of a symplectic quotient; similarly, the trisymplectic quotient is a
‘complexification’ of a hyperkähler quotient.

The non-degeneracy condition of Theorem 4.9 below is necessary for the trisymplectic
reduction process, in the same way as one would need some non-degeneracy if one tries to
perform the symplectic reduction on a pseudo-Kähler manifold. On a Kähler (or a hyperkähler)
manifold it is automatic because the metric is positive definite, but otherwise it is easy to
obtain counterexamples (even in the simplest cases, such as S1-action on C2 with an appropriate
pseudo-Kähler metric).

Theorem 4.9. Let (M,Ω) be a trisymplectic manifold. Assume that M is equipped with an
action of a compact Lie group G preserving Ω and a trisymplectic moment map µC :M −→ g∗⊗R
Ω∗. Assume, moreover, that the image of g = Lie(G) in TM is non-degenerate at any point
(in the sense of Definition 3.8). Suppose that the quotient µ−1

C (c)/GC is Hausdorff. Then the
trisymplectic quotient M////G defined as M////G := µ−1

C (0)/GC is naturally equipped with a
trisymplectic structure.

For a real version of this theorem, please see [DS08].
The proof of Theorem 4.9 takes the rest of this section. First, we shall use the following

definition and observation.

2 In this case µ−1
C (c)/GC is a complex manifold: see, e.g., [Huy05, Example 2.1.12].
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Definition 4.10. Let B ⊂ TM be an involutive sub-bundle in a tangent bundle to a smooth
manifold M . A form η ∈ ΩiM is called basic with respect to B if for any X ∈ B, one has η yX = 0
and LieX η = 0.

The following claim is clear.

Claim 4.11. Let B ⊂ TM be an involutive sub-bundle in a tangent bundle to a smooth manifold
M . Consider the projection M

π−→ M ′ onto its leaf space, which is assumed to be Hausdorff.
Let η ∈ ΩiM be a basic form on M . Then η = π∗η′, for an appropriate form η′ on M ′.

Return to the proof of Theorem 4.9. Let I, J,K be a quaternionic basis in Mat(2), ΩI ∈ Ω
a ρI -invariant form chosen as in Theorem 3.10(ii), and g := ΩI(·, I·) the corresponding non-
degenerate, complex linear symmetric form on M . By its construction, g is holomorphic, and by
Theorem 3.10(ii), SL(2)-invariant. Let N ⊂ M be a level set of the moment map N := µ−1

C (c).
Choose a point m ∈ N , and let gm ⊂ TmM be the image of g = LieG in TmM . Then, for each
v ∈ gm, one has

dµI(v, ·) = ΩI(v, ·), (4.3)

where µI : M → g∗ is the holomorphic moment map associated with the symplectic form ΩI .
On the other hand, ΩI(v, ·) = −g(Iv, ·). Therefore, TmN ⊂ TmM is an orthogonal

complement (with respect to g) to the space 〈Igm, Jgm,Kgm〉 generated by I(gm), J(gm),K(gm):

TmN = 〈Igm, Jgm,Kgm〉⊥g . (4.4)

By (4.3), for any v ∈ gm, and w ∈ TmN , one has ΩI(v, w) = 0. Also, G preserves all forms from
Ω, hence Liev Ωi = 0. Therefore, ΩI is basic with respect to the distribution V ⊂ TN generated
by the image of Lie algebra g−→ TN .

Consider the quotient mapN
π−→ N/GC =M ′. To prove thatM ′ is a trisymplectic manifold,

we use Claim 4.11, obtaining a three-dimensional space of holomorphic 2-forms Ω′ ⊂ Λ2,0(M ′),
with Ω|

N
= π∗Ω′. To check that Ω′ is a trisymplectic structure, it remains only to establish the

rank conditions.
Let W ⊂ TmN be a subspace complementary to gm ⊂ TmN . Clearly, for any Ω ∈ Ω, the rank

of the corresponding form Ω′ ∈ Ω′ at the point m′ = π(m) is equal to the rank of Ω|
W

.
Let W1 ⊂ TmM be a subspace obtained as H · gm, where H ∼= Mat(2) ⊂ End(TmM) is the

standard action of the matrix algebra defined as in § 3.1. By the non-degeneracy assumption
of Theorem 4.9, the restriction g|

W1
is non-degenerate, hence the orthogonal complement W⊥1

satisfies TmM = W1⊕W⊥1 . From (4.4) we obtain W⊥1 ⊂ TmN , with W⊥1 ⊕gm = TmN . Therefore,
W := W⊥1 is complementary to gm in TmN . The space (W,Ω|

W
) is trisymplectic, as follows from

Claim 3.7. Therefore, the forms Ω′ ⊂ Λ2,0(M ′) define a trisymplectic structure on M ′. We have
proved Theorem 4.9.

5. Trihyperkähler reduction

5.1 Hyperkähler reduction
Let us start by recalling some well-known definitions.

Definition 5.1. Let G be a compact Lie group acting on a hyperkähler manifold M by
hyperkähler isometries. A hyperkähler moment map is a smooth map µ : M → g∗ ⊗ R3 such
that:

(1) µ is G-equivariant, i.e. µ(g ·m) = Ad∗g−1µ(m);
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(2) 〈dµi(v), ξ〉 = ωi(ξ
∗, v), for every v ∈ TM , ξ ∈ g and i = 1, 2, 3, where µi denotes one of

the three components of µ, ωi is one the Kähler forms associated with the hyperkähler
structure, and ξ∗ is the vector field generated by ξ.

Definition 5.2. Let ξi ∈ g∗ (i = 1, 2, 3) be such that Ad∗gξi = ξi, so that G acts on µ−1(ξ1, ξ2, ξ3);
suppose that this action is free. The quotient manifold M///G := µ−1(ξ1, ξ2, ξ3)/G is called the
hyperkähler quotient of M .

Theorem 5.3. Let M be a hyperkähler manifold, and G a compact Lie group acting on M by
hyperkähler automorphisms, and admitting a hyperkähler moment map. Then the hyperkähler
quotient M///G is equipped with a natural hyperkähler structure.

Proof. See [HKLR87] and [Nak99, Theorem 3.35]. 2

5.2 Trisymplectic reduction on the space of twistor sections
Let M be a hyperkähler manifold, L ∈ CP 1 an induced complex structure and evL :
Sec(M)−→ (M,L) the corresponding evaluation map, mapping a section s : CP 1 −→ Tw(M)
to s(L) ∈ (M,L) ⊂ Tw(M). Consider the holomorphic form ΩL ∈ Ω2,0(M,L) constructed from
a hyperkähler structure as in (2.2). Denote by Ω the space of holomorphic forms on Sec(M)
generated by ev∗L(ΩL) for all L ∈ CP 1.

Claim 5.4. We claim that Ω is a trisymplectic structure on the space Sec0(M) of regular twistor
sections. It generates the standard holomorphic SL(2)-web, constructed in Proposition 2.11.

Proof. Consider the bundle O(2) on CP 1, and let π∗O(2) be its lift to the twistor space

Tw(M)
π−→ CP 1. Denote by Ω2

π Tw(M) the sheaf of fiberwise 2-forms on Tw(M). The bundle
Ω2
π Tw(M) can be obtained as a quotient

Ω2
π Tw(M) :=

Ω2 Tw(M)

π∗Ω1CP 1 ∧ Ω1 Tw(M)
.

It is well known (see, e.g., [HKLR87]), that the fiberwise symplectic structure depends on
t ∈ CP 1 holomorphically, and, moreover, Tw(M) is equipped with a holomorphic 2-form
Ωtw ∈ π∗O(2) ⊗ Ω2

π Tw(M) inducing the usual holomorphic symplectic forms on the fibers,
see [HKLR87, Theorem 3.3(iii)].

Given S ∈ Sec(M), the tangent space TsSec(M) is identified with the space of global sections
of a bundle Tπ Tw(M)|

S
. Therefore, any vertical 2-form Ω1 ∈ Ω2

π Tw(M) ⊗ π∗O(i) defines a

holomorphic 2-form on Sec0(M) with values in the space of global sections Γ(CP 1,O(i)).
Denote by A the space Γ(CP 1,O(2)). A fiberwise holomorphic O(2)-valued 2-form gives a

2-form on NS, for each S ∈ Sec(M), with values in A. Therefore, for each α ∈ A∗, one obtains
a 2-form Ωtw(α) on Sec(M) as explained above. Let Ω be a three-dimensional space generated
by Ωtw(α) for all α ∈ A∗.

Consider a map εL : A−→O(2)|
L

∼= C evaluating γ ∈ Γ(O(2)) at a point L ∈ CP 1. By
definition, the 2-form Ωtw(εL) is proportional to ev∗L ΩL. Therefore, Ω contains ev∗L ΩL for all
L ∈ CP 1.

Counting parameters, we obtain that any element x ∈ A∗ is a sum of two evaluation maps: x=
aεL1+bεL2 . When a, b 6= 0 and L1, L2 are distinct, the corresponding 2-form a ev∗L1

ΩL1+b ev∗L2
ΩL2

is clearly non-degenerate on Sec0(M). Indeed, the map

Sec0(M)
evL1

× evL2−−−−−−−→ (M,L1)× (M,L2)
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is étale, and any linear combination aΩL1 +bΩL2 with non-zero a, b is non-degenerate on (M,L1)
× (M,L2). When either a or b vanish, the corresponding form (if non-zero) is proportional to
ev∗Li

ΩLi , hence its rank is dimM = 1
2 dim Sec(M).

Finally, note that the degenerate forms on Ω are those pulled back via the evaluation maps;
it follows that they form a non-degenerate quadric.

We have thus shown that Ω is a trisymplectic structure. Clearly, the annihilators of ev∗L(ΩL)
form the standard 3-web on Sec(M). Therefore, the trisymplectic structure Ω generates the
standard SL(2)-web, described in § 2.3 above. 2

Now let G be a compact Lie group acting on M by hyperkähler isometries; assume that
a hyperkähler moment map for the action of G on M exists. Let Sec0(M) be the space of
regular twistor sections, considered with the induced SL(2)-web and trisymplectic structure.
The previous Claim immediately implies the following proposition.

Proposition 5.5. Consider a hyperkähler manifold M equipped with an action of a group G
and a hyperkähler moment map (tacitly assumed to be equivariant). Let Ω be the trisymplectic
structure on the space Sec0(M) of regular twistor sections constructed in Claim 5.4. Given any
L ∈ CP 1, let µL : (M,L)−→ g∗ ⊗R C denote the corresponding holomorphic moment map,
obtained from the hyperkähler moment map, and consider the composition

µL := µL ◦ evL : Sec(M)−→ g∗ ⊗R C.

Then
µC := µI ⊕ µJ ⊕ µK : Sec0(M)−→ g∗ ⊗R C3

is a trisymplectic moment map on Sec0(M), for an appropriate identification C3 ∼= Ω.

Proof. Clearly, µL is a moment map for the action of G on Sec0(M) associated with a degenerate
holomorphic 2-form ev∗L(ΩL). Indeed, for any g ∈ g = Lie(G), one has dµL(G) = ΩL y g, because
µL is a moment map form G acting on (M,L). Then dµL(g) = (ev∗L ΩL) y g.

However, by Claim 5.4, Ω = ev∗I ΩI ⊕ ev∗J ΩJ ⊕ ev∗K ΩK , hence the moment map µ associated
with Ω is expressed as an appropriate linear combination of µI ,µJ ,µK . 2

5.3 Trihyperkähler reduction on the space of twistor sections
Let Tw(M) = M × CP 1 be the twistor space of the hyperkähler manifold M , considered as a
Riemannian manifold with its product metric. We normalize the Fubini–Study metric on the
second component of Tw(M) = M × CP 1 in such a way that

∫
CP 1 VolCP 1 of the Riemannian

volume form is 1.

Claim 5.6. Let φ be the area function Sec(M)
φ−→ R>0 mapping a curve S ∈ Sec(M) to its

Riemannian volume
∫
S VolS . Then φ is a Kähler potential, that is, ddcφ is a Kähler form on

Sec(M), where dc is the usual twisted differential, dc := −IdI.

Proof. See [KV98, Proposition 8.15]. 2

Claim 5.6 leads to the following proposition.

Proposition 5.7. Assume that G is a compact Lie group acting on M by hyperkähler
automorphisms, and admitting a hyperkähler moment map. Consider the corresponding action
of G on Sec0(M), and let ωSec = ddcφ be the Kähler form on Sec0(M) constructed in Claim 5.6.
Then the corresponding moment map can be written as

µR(x) := AvL∈CP 1 µRL(x),

1856



Trihyperkähler reduction and instanton bundles on CP3

where AvL∈CP 1 denotes the operation of taking average over CP 1, and µRL : (M,L)−→ g∗ is the
Kähler moment map associated with the action of G on (M,L).

Proof. Let (X, I, ω) be a Kähler manifold, φ a Kähler potential on X, and G a real Lie group
preserving φ and acting on X holomorphically. Then an equivariant moment map can be written
as

µ(g) = −LieI(g) φ, (5.1)

where g ∈ Lie(G) is an element of the Lie algebra. Indeed, ω = ddcφ, hence

LieI(g) φ = dφ y (I(g)) = (dcφ) y g,

where y denotes a contraction of a differential form with a vector field, and

dLieI(g) φ = d((dcφ) y g) = Lieg(d
cφ)− (ddcφ) y g = −ω y g

by Cartan’s formula. Applying this argument to X = Sec(M) and φ = Area(S), we obtain that
µR(S)(g) is a Lie derivative of φ along I(g).

To prove that µR(g) is equal to an average of the moment maps µRL(g), we notice that (as
follows from [KV98, (8.12) and Lemma 4.4]), for any fiberwise tangent vectors x, y ∈ Tπ Tw(M),
one has

ddcφ(x, Iy) =

∫
S

(x, y)H VolCP 1,

where VolCP 1 is the appropriately normalized volume form, and (·, ·)H the standard Riemannian
metric on Tw(M) = M × S2. Taking g = y, we obtain

d(µRg)(x) =

∫
S

(x, g)H VolCP 1 =

∫
S
d(µRLg)(x) VolCP 1 .

The last formula is a derivative of an average of dµRL(g) over L ∈ CP 1. 2

From Proposition 5.7 it is apparent that a trisymplectic quotient of the space Sec0(M) can
be obtained using the symplectic reduction associated with the real moment map µR. This
procedure is called the trihyperkähler reduction of Sec0(M).

Definition 5.8. The map µ := µR ⊕ µC : Sec0(M)−→ g∗ ⊗ R7, where µC is the trisymplectic
moment map constructed in Proposition 5.5 and µR is the Kähler moment map constructed in
Proposition 5.7, is called the trihyperkähler moment map on Sec0(M).

Definition 5.9. Let c ∈ g∗ ⊗ R7 be a G-invariant vector. Consider the space Sec0(M) of the
regular twistor sections. Then the quotient Sec0(M)////G := µ−1(c)/G is called the trihyperkähler
reduction of Sec0(M). The space µ−1(c)/G is naturally identified with the Kähler quotient
µ−1
C (c)//G, hence the space Sec0(M)////G is a complex manifold.

Remark 5.10. Note that the trihyperkähler reduction µ−1(c)/G of Sec0(M) coincides with the
trisymplectic quotient µ−1

C (c)/GC, provided this last quotient is well-defined, i.e. all GC-orbits
are closed, and the orbit space is Hausdorff and equipped with a complex structure compatible
with one on µ−1

C (c). Here the action of GC on µ−1
C (c) is obtained by complexifying the action

of G on the complex manifold µ−1
C (c). Indeed, (µC ⊕ µR)−1(c)/G is precisely the space of stable

GC-orbits in µ−1
C (c).
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It follows from Theorem 4.9 that Sec0(M)////G is equipped with an SL(2)-web generated by a
natural trisymplectic structure Ω, provided that the image of g = Lie(G) in TM is non-degenerate
at any point, in the sense of Definition 3.8.

We are finally ready to state the main result of this paper.

Theorem 5.11. Let M be flat hyperkähler manifold, and G a compact Lie group acting on
M by hyperkähler automorphisms. Suppose that a hyperkähler moment map exists, and the

hyperkähler quotient M///G is smooth. Then there exists an open embedding Sec0(M)////G
Ψ−→

Sec0(M///G), which is compatible with the trisymplectic structures on Sec0(M)////G and
Sec0(M///G).

In particular, it follows that if M is a flat hyperkähler manifold, then the trihyperkähler
reduction of Sec0(M) is a smooth trisymplectic manifold whose dimension is twice that of the
hyperkähler quotient of M .

The flatness condition is mostly a technical one, but it will suffice for our main goal, which
is a description of the moduli space of instanton bundles on CP 3 (see § 8 below).

We do believe that the conclusions of Theorem 5.11 should hold without such a condition.
The crucial point is Proposition 6.1 below, for which we could not find a proof without
assuming flatness; other parts of our proof, which will be completed at the end of § 7.2, do work
without it.

6. Moment map on twistor sections

In this section, we let M be a flat hyperkähler manifold. More precisely, let M be an open subset
of a quaternionic vector space V , equipped with a flat metric; completeness of the metric is not
relevant. Thus, Tw(M) is isomorphic to the corresponding open subset of Tw(V ) = V ⊗OCP1(1),
and Sec0(M) = Sec(M) is the open subset of Sec(V ) = V ⊗C Γ(OCP1(1)) ' V ⊗R C2 consisting
of those sections of V ⊗OCP1(1) that take values in M ⊂ V .

More precisely, let [z : w] be a choice of homogeneous coordinates on CP 1, so that
Γ(OCP1(1)) ' Cz ⊕ Cw. A section σ ∈ Sec0(M) will of the form σ(z, w) = zX1 + wX2 such
that σ(z, w) ∈M for every [z : w] ∈ CP 1.

Let G be a compact Lie group acting on M by hyperkähler automorphisms, with µ : M →

g∗ ⊗ 〈I, J,K〉 being the corresponding hyperkähler moment map; let µRI , µRJ , µRK denote its
components. By definition, these components are the real moment maps associated with the
symplectic forms ωI , ωJ , ωK , respectively. Given a complex structure L = aI + bJ + cK, a2 +
b2 + c2 = 1, we denote by µRL the corresponding real moment map,

µRL = aµRI + bµRJ + cµRK . (6.1)

The components µI , µJ , µK of the hyperkähler moment map can be regarded as real-valued,
quadratic polynomials on V . The corresponding complex linear polynomial functions µI ,µJ ,µK
generate the trisymplectic moment map for Sec0(M). Consider the decomposition V ⊗R C2 =
V 1,0
I ⊕ V 0,1

I , where I ∈ EndV acts on V 1,0
I ⊂ V ⊗R C as

√
−1 and on V 0,1

I as −
√
−1. We may

regard the trisymplectic moment map µC : Sec0(M)−→ g∗ ⊗ C3 as a quadratic form Q on
Sec0(M) ' V 1,0

I ⊕ V 0,1
I , and express it as a sum of three components,

Q2,0 : V 1,0
I ⊗ V 1,0

I −→ g∗ ⊗ C, Q1,1 : V 1,0
I ⊗ V 0,1

I −→ g∗ ⊗ C,
Q0,2 : V 0,1

I ⊗ V 0,1
I −→ g∗ ⊗ C.
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For each L ∈ CP 1, let µRL be the real moment map, depending on L ∈ CP 1 as in (6.1), and

consider the evaluation map Sec0(M)
evL−→ (M,L) (see Claim 5.4 for the definition). Let also

µR
L := ev∗L µ

R
L be the pullback of µRL to Sec0(M).

From Proposition 5.5, the following description of the moment maps on Sec(M) can be
obtained. This result will be used later on in the proof of Theorem 5.11.

Proposition 6.1. Let G be a real Lie group acting on a flat hyperkähler manifold M by

hyperkähler isometries, Sec(M)
µC−→ g∗ ⊗ C3 the corresponding trisymplectic moment map.

We consider the real moment map µRL as a g∗-valued function on Tw(M) = M × CP 1. Let
S ∈ Sec(M) be a point which satisfies µC(S) = 0. Then µRL|S is constant.

Proof. We must show that for each S ∈ Sec(M) satisfying µC(S) = 0, one has (d/dL)µR
L(S) = 0.

We express S ∈ V ⊗R C as S = s1,0
L + s0,1

L , with s1,0
L ∈ V

1,0
L and s0,1

L ∈ V
0,1
L . Then

µR
L(S) = Q1,1

L (s1,0
L , s1,0

L ) (6.2)

where Q1,1
L denotes the (1, 1)-component of µC taken with respect to L. This clear, because Q1,1

is obtained by complexifying µRL (this is an L-invariant part of the hyperkähler moment map).
For an ease of differentiation, we rewrite (6.2) as

µR
L(S) = Q(s1,0

L , s1,0
L ) = Re(Q(s1,0

L , s1,0
L )).

This is possible, because s1,0
L ∈ V

1,0
L and s1,0

L ∈ V
0,1
L , hence Q1,1

L is the only component of Q which

is non-trivial on (s1,0
L , s1,0

L ). Then

d

dL
µR
L(S)|

L=I
= Re

[
Q

(
s1,0
I ,

ds1,0
L

dL

∣∣∣∣
L=I

)]
. (6.3)

However, ds1,0
L /dL|

L=I
is clearly proportional to s0,1

I (the coefficient of proportionality depends

on the choice of parametrization on CP 1 3 L), hence (6.3) gives

d

dL
µR
L(S)|

L=I
= λRe[Q(s1,0

I , s0,1
I )]

and this quantity vanishes, because

Q(s1,0
L , s0,1

L ) = Q1,1(S) = µCL(S). 2

7. Trisymplectic reduction and hyperkähler reduction

7.1 The tautological map τ : Sec0(M)////G−→ Sec(M///G)
Let M be a hyperkähler manifold, and G a compact Lie group acting on M by hyperkähler
isometries, and admitting a hyperkähler moment map. A point in Sec0(M)////G is represented
by a section S ∈ Sec0(M) which satisfies µC(S) = 0 and µR(S) = 0. The first condition, by
Proposition 5.5, implies that for each L ∈ CP 1, the corresponding point S(L) ∈ (M,L) belongs
to the zero set of the holomorphic symplectic map µCL : (M,L)−→ g∗⊗RC. Using the evaluation
map defined in Claim 5.4, this is written as

µCL(evL(S)) = 0.
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By Proposition 6.1, the real moment map µRL is constant on S:

µCL(evL(S)) = const.

By Proposition 5.7, the real part of the trihyperkähler moment map µR(S) is an average of
µCL(evL(S)) taken over all L ∈ CP 1. Therefore, µC(S) = 0 implies

µR(S) = 0⇔ µCL(evL(S)) = 0 ∀L ∈ CP 1.

We obtain that for each S ∈ Sec0(M) which satisfies µR(S) = 0,µC(S) = 0, and each L ∈ CP 1,
one has

µCL(x) = 0, µRL(x) = 0, (7.1)

where x = evL(S). A point x ∈ (M,L) satisfying (7.1) belongs to the zero set of the
hyperkähler moment map µ : M −→ g∗ ⊗R3. Taking a quotient over G, we obtain a map S/G :
CP 1 −→ Tw(M///G), because M///G is a quotient of µ−1(0) by G. This gives a map
τ : Sec0(M)////G−→ Sec(M///G) which is called a tautological map. Note that Sec0(M)////G
has a trisymplectic structure by Theorem 4.9, outside of the set of its degenerate points (in the
sense of Definition 3.8), and Sec0(M///G) is a trisymplectic manifold by Proposition 5.5.

Proposition 7.1. LetM be a flat hyperkähler manifold, andG a compact Lie group acting onM
by hyperkähler isometries, and admitting a hyperkähler moment map. Consider the tautological
map

τ : Sec0(M)////G−→ Sec(M///G) (7.2)

defined above. Then τ(Sec0(M)////G) belongs to the set Sec0(M///G) of regular twistor sections
in Tw(M///G). Moreover, the image of g is non-degenerate, in the sense of Definition 3.8, and τ
is a local diffeomorphism, compatible with the trisymplectic structure.

Proof. Step 0. We prove that for all points S ∈ µ−1
C (0), the image of g is non-degenerate, in the

sense of Definition 3.8. This is the only step of the proof where the flatness assumption is used.
We have to show that the image gS of g in TSSec(M) is non-degenerate for all S ∈ µ−1

C (0). This
is equivalent to

TSµ
−1
C (0) ∩Mat(2)gS = gS . (7.3)

Indeed, gS is non-degenerate if and only if the quotient TSSec(M)/Mat(2)gS is trisymplectic
(Claim 3.7). By (4.4), TSµ

−1
C (0) is an orthogonal complement of IgS + JgS + KgS with

respect to the holomorphic Riemannian form B associated with the trisymplectic structure,
where I, J,K is some quaternionic basis in Mat(2). If gS is non-degenerate, the orthogonal
complement of Mat(2)gS is isomorphic to TSµ

−1
C (0)/gS , which gives (7.3). Conversely, if (7.3)

holds, the orthogonal complement of IgS+JgS+KgS does not intersect IgS+JgS+KgS , hence
the restriction of B to IgS + JgS + KgS is non-degenerate. Therefore, non-degeneracy of gS is
implied by Remark 3.9.

Now, let S ∈ Sec0(M) be a twistor section which satisfies µR(S) = µC(S) = 0. By Proposition
6.1, for each L ∈ CP 1, the corresponding point (L, SL) of S satisfies µhk(SL) = 0, where
µhk M −→ R3 ⊗ g∗ denotes the hyperkähler moment map. Let g ∈ Mat(2)gS ∩ TSµ−1

C (0) be
a vector obtained as a linear combination

∑
Higi, with gi ∈ gS and Hi ∈ Mat(2,C). At each

point (L, SL) ∈ S, g is evaluated to a linear combination
∑
HL
i g

L
i with quaternionic coefficients,

tangent to µ−1
hk (0). However, a quaternionic linear combination of this form can be tangent to

µ−1
hk (0) only if all HL

i are real, because for each hyperkähler manifold Z one has a decomposition
Tx(µ−1

hk (0))⊕ Ig⊕ Jg⊕Kg = TxZ. We have proved that any g ∈Mat(2)gS ∩ TSµ−1
C (0) belongs

to the image of g at each point (L, SL) ∈ S. This proves (7.3), hence, non-degeneracy of gS .
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Step 1. We prove that the image τ(Sec0(M)////G) belongs to Sec0(M///G) ⊂ Sec(M///G). Given
S ∈ Sec0(M)////G, consider its image τ(S) as a curve in Tw(M///G), and let N(τ(S)) be its
normal bundle. Denote by S̃ ∈ Sec0(M) the twistor section which satisfies µR(S̃) = 0,µC(S̃) = 0
and gives S after taking a quotient. Then

N(τ(S))|
L

=
TevL(S̃)(M,L)

〈g + Ig + Jg +Kg〉
, (7.4)

where evL : Sec(M)−→ (M,L) is the standard evaluation map.
A bundle B ∼=

⊕
2nO(1) can be constructed from a quaternionic vector space W as follows.

For any L ∈ CP 1, considered as a quaternion satisfying L2 = −1, one takes the complex vector
space (W,L) as a fiber of B at L. Denote this bundle as B(W ). Now, (7.4) gives

N(τ(S)) =
N(S̃)

B(〈g + Ig + Jg +Kg〉)
,

giving a quotient of
⊕

2iO(1) by
⊕

2j O(1), which is also a direct sum of O(1). Therefore, τ(S)
is regular.

Step 2. The tautological map τ : Sec0(M)////G−→ Sec(M///G) is a local diffeomorphism. This
follows from the implicit function theorem. Indeed, let S ∈ Sec0(M)////G be a point associated
with S̃ ∈ Sec0(M), satisfying µR(S̃) = 0,µC(S̃) = 0 as in Step 1. Then the differential of τ is a
map

dτ :
Γ(NS̃)

Mat(2,C) · g
−→ Γ(Nτ(S)), (7.5)

where g = Lie(G) ⊂ T Tw(M). Let NgS̃ be a sub-bundle of NS̃ spanned by the image of
〈g + Ig + Jg + Kg〉. By Step 1, NgS ∼= O(1)k, and, indeed, a subspace of Γ(NS̃) generated
by Mat(2,C) · g coincides with Γ(NgS̃). Similarly, Γ(Nτ(S)) ∼= Γ(NS̃/NgS̃). We have shown
that the map (7.5) is equivalent to

Γ(NS̃)

Γ(NgS̃)
−→ Γ(NS̃/NgS̃).

By Step 1, the bundles NS̃ and NgS̃ are sums of several copies of O(1), hence this map is an
isomorphism.

Step 3. We prove that τ is compatible with the trisymplectic structure. The trisymplectic
structure on Sec(M///G) is induced by a triple of holomorphic symplectic forms 〈ev∗I(ΩI), ev

∗
J(ΩJ),

ev∗K(ΩK)〉 (Claim 5.4). From the construction in Theorem 4.9 it is apparent that the same
triple generates the trisymplectic structure on Sec0(M)////G. Therefore, τ is compatible with the
trisymplectic structure. We proved Proposition 7.1. 2

7.2 Trihyperkähler reduction and homogeneous bundles on CP 1

Let M be a hyperkähler manifold, and G a compact Lie group acting on M by hyperkähler
isometries, and equipped with a hyperkähler moment map. Consider the set Z ⊂ Tw(M)
consisting of all points (m,L) ∈ Tw(M) such that the corresponding holomorphic moment map
vanishes on m: µCL(m) = 0. By construction, Z is a complex subvariety of Tw(M). Let GC be a
complexification of G, acting on Tw(M) in a natural way, and GC · (m,L) its orbit. This orbit
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is called stable, if GC ·m ⊂ (M,L) intersects the zero set of the real moment map,

GC ·m ∩ (µRL)−1(0) 6= ∅.

As follows from the standard results about Kähler reduction, the union Z0 ⊂ Z of stable orbits
is open in Z, and the quotient Z0/GC is isomorphic, as a complex manifold, to Tw(M///G).
Consider the corresponding quotient map,

P : Z0 −→ Z0/GC = Tw(M///G). (7.6)

For any twistor section S ∈ Sec(M///G), consider its preimage P−1(S). Clearly, P−1(S) is a
holomorphic homogeneous vector bundle over S ∼= CP 1. We denote this bundle by PS .

Proposition 7.2. LetM be a flat hyperkähler manifold, andG a compact Lie group acting onM
by hyperkähler isometries, and admitting a hyperkähler moment map. Consider the tautological
map τ : Sec0(M)////G−→ Sec0(M///G) constructed in Proposition 7.1. Given a twistor section
S ∈ Sec0(M///G), let PS be a holomorphic homogeneous bundle constructed above. Then:

(i) the point S lies in Im τ if and only if the bundle PS admits a holomorphic section (this is
equivalent to PS being trivial);

(ii) the map τ : Sec0(M)////G−→ Sec0(M///G) is an open embedding.

Proof. A holomorphic section S1 of PS can be understood as a point in Sec(M). Since S1 lies in
the union of all stable orbits, denoted earlier as Z0 ⊂ Z ⊂ Tw(M), the real moment map µRL is
constant on S1 (Proposition 6.1). By definition of Z0, for each (z, L) ∈ Z0, there exists g ∈ GC
such that µRL(gz) = 0.

Therefore, µR(gS1) = 0 for appropriate g ∈ GC. This gives τ(S2) = S, where S2 ∈
Sec0(M)////G is a point corresponding to gS1. Conversely, consider a point S2 ∈ Sec0(M)////G,
such that τ(S2) = S, and let S1 ∈ S0(M) be the corresponding twistor section. Then S1 gives a
section of PS . We proved Proposition 7.2(i).

To prove Proposition 7.2(ii), it would suffice to show the following. Take S ∈ Sec0(M///G),
and let S1, S2 ∈ Sec(M) be twistor sections which lie in Z0 and satisfy µR(Si) = 0. Then there
exists g ∈ G such that g(S1) = S2. Indeed, τ−1(S) is the set of all such Si considered up to an
action of G.

Let PS
P−→ S be the homogeneous bundle constructed above, and P its fiber, which is a

complex manifold with transitive action of GC. Using S1, we trivialize PS = P ×S in such a way

that S1 = {p} × S for some p ∈ P. Then S2 is a graph of a holomorphic map CP 1 φ−→ P; to
prove Proposition 7.2(ii) it remains to show that φ is constant.

Since all points of (µRL)−1(0) lie on the same orbit of G, the image φ(CP 1) belongs to
Gp := G · {p} ⊂ P. However, Gp is a totally real subvariety in P = GC/St(p). Indeed, Gp is
fixed by a complex involution which exchanges the complex structure on GC with its opposite.
Therefore, all complex subvarieties of Gp are zero-dimensional, and φ : CP 1 −→Gp ⊂ P is
constant. We have finished the proof of Proposition 7.2. 2

The proof of Theorem 5.11 follows. Indeed, by Proposition 7.1, the tautological map
τ : Sec0(M)////G−→ Sec0(M///G) is a local diffeomorphism compatible with the trisymplectic
structures, and by Proposition 7.2 it is injective.

In particular, we have the following result.

Corollary 7.3. Let M be a flat hyperkähler manifold equipped with the action of a compact
Lie group by hyperkähler isometries and admitting a hyperkähler moment map. Suppose that
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the hyperkähler quotient is smooth and the trisymplectic quotient µ−1
C (c)/GC is well-defined.

Then the trihyperkähler reduction of Sec0(M) is a smooth trisymplectic manifold of dimension
2 dimM . 2

8. Case study: moduli spaces of instantons

In this section, we give an application of the previous geometric constructions to the study
of the moduli space of framed instanton bundles on CP 3. Our goal is to establish the
smoothness of the moduli space of such objects, and show how that proves the smoothness
of the moduli space of mathematical instanton bundles on CP 3. That partially settles the long
standing conjecture in algebraic geometry mentioned at the Introduction: the moduli space of
mathematical instanton bundles on CP 3 of charge c is a smooth manifold of dimension 8c − 3,
cf. [CTT03, Conjecture 1.2].

8.1 Moduli space of framed instantons on R4

We begin by recalling the celebrated ADHM construction of instantons, which gives a description
of the moduli space of framed instantons on R4 in terms of a finite-dimensional hyperkähler
quotient.

Let V and W be complex vector spaces of dimension c and r, respectively.

B = B(r, c) := End(V )⊕ End(V )⊕Hom(W,V )⊕Hom(V,W ).

A point of B is a quadruple X = (A,B, I, J) with A,B ∈ End(V ), I ∈ Hom(W,V ) and J ∈
Hom(V,W ). Together with its natural complex structure, the anti-linear involution X → X∗ :=
(B†,−A†, J†,−I†) provides B with the structure of a quaternionic vector space; in particular,
B becomes a flat hyperkähler manifold.

A quadruple X = (A,B, I, J) it is said to be:

(i) stable if there is no subspace S $ V with A(S), B(S), I(W ) ⊂ S;

(ii) costable if there is no subspace 0 6= S ⊂ V with A(S), B(S) ⊂ S ⊂ ker J ;

(iii) regular if it is both stable and costable.

Let Breg denote the (open) subset of regular data. The group G = U(V ) acts on Breg in the
following way:

g · (A,B, I, J) := (gAg−1, gBg−1, gI, Jg−1). (8.1)

It is not difficult to see that this action is free and preserves the hyperkähler structure provided
above. The hyperkähler moment map µ : Breg

→ u(V )∗⊗R3 can then be written in the following
manner, cf. [Nak99, § 3.2]. Using the decomposition R3 ' C ⊕ R (as real vector spaces), we
decompose µ = (µC, µR) with µC and µR given by

µC(A,B, I, J) = [A,B] + IJ (8.2)

and
µR(A,B, I, J) = [A,A†] + [B,B†] + II† − J†J. (8.3)

The first component µC is the holomorphic moment map B → gl(V )∗⊗RC corresponding to the
natural complex structure on B.

The so-called ADHM construction, named after Atiyah, Drinfeld, Hitchin, and Manin
[ADHM78], provides a bijection between the hyperkähler quotient M(r, c) := Breg(r, c)///U(V )
and the moduli space of framed instantons on the Euclidean four-dimensional space R4; see
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[Don84] or [Nak99, Theorem 3.48], and the references therein for details. Moreover, Maciocia
has shown in [Mac91] that such bijection is a hyperkähler isometry between M(r, c) and the
moduli space of framed instantons on R4 provided with its L2-metric.

Let us now consider the trisymplectic reduction of Sec0(Breg). As noted in the first few
paragraphs of § 6, Sec0(B) = Sec(B) ' B ⊗ Γ(OCP1(1)), and Sec0(Breg) is the (open) subset of
Sec0(B) consisting of those sections σ such that σ(p) is regular for every p ∈ CP 1.

Definition 8.1. A section σ ∈ B⊗Γ(OCP1(1)) is globally regular if σ(p) ∈ B is regular for every
p ∈ CP 1 (cf. [FJ08, pp. 2916–2917], where such sections are called C-regular).

To be more precise, let [z : w] be homogeneous coordinates on CP 1; such choice leads to
identifications

Γ(OCP1(1)) ' Cz ⊕ Cw ' C2 and Γ(OCP1(2)) ' Cz2 ⊕ Cw2 ⊕ Czw ' C3. (8.4)

It follows that Sec0(B) ' B ⊕ B, so a point X̃ ∈ Sec0(B) can regarded as a pair (X1, X2) of
ADHM data; X̃ is globally regular (i.e. X̃ ∈ Sec0(Breg)) if any linear combination zX1 +wX2 is
regular.

The action (8.1) of GL(V ) (hence, also of U(V )) on Breg extends to Sec0(Breg) by acting
trivially on the Γ(OCP1(1)) factor, i.e. g · (X1, X2) = (g ·X1, g ·X2).

Using the identification C3 ' Γ(OCP1(2)) above, it follows that the trisymplectic moment
map

µC : Sec0(Breg) → u(V )∗ ⊗R Γ(OCP1(2))

constructed in Proposition 5.5 satisfies µC(σ)(p) = µC(σ(p)) for σ ∈ Sec0(Breg) and p ∈ CP 1.
More precisely, let X1 = (A1, B1, I1, J1) and X2 = (A2, B2, I2, J2); consider the section

σ(z, w) = zX1 + wX2 ∈ Sec0(Breg). The identity µC(σ)(p) = µC(σ(p)) means that µC(σ) = 0 if
and only if µC(zX1 + wX2) = 0 for every [z : w] ∈ CP 1. Note that

µC(zX1 + wX2) = 0⇔


[A1, B1] + I1J1 = 0,

[A2, B2] + I2J2 = 0,

[A1, B2] + [A2, B1] + I1J2 + I2J1 = 0.

(8.5)

The three equations on the right-hand side of (8.5) are known as the one-dimensional
ADHM equations; they were first considered by Donaldson in [Don84] (cf. equations (a)–(c) in
[Don84, p. 456]) and further studied in [FJ08] (cf. (7)–(9) in [FJ08, p. 2917]) and generalized
in [Jar08, Equation (3)].

One can show that globally regular solutions of the one-dimensional ADHM equations are
GIT-stable with respect to the GL(V )-action, see [HL11, § 3] and [HJM12, § 2.3]. Therefore,
according to Remark 5.10, the trihyperkähler quotient Sec0(Breg)////U(V ) is well-defined and
coincides with µ−1

C (0)/GL(V ).

8.2 Moduli space of framed instanton bundles on CP 3

Recall that an instanton bundle on CP 3 is a locally free coherent sheaf E on CP 3 satisfying the
following conditions:
• c1(E) = 0;
• H0(E(−1)) = H1(E(−2)) = H2(E(−2)) = H3(E(−3)) = 0.
The integer c := c2(E) is called the charge of E. One can show that if E is an instanton bundle
on CP 3, then c3(E) = 0.

Moreover, a locally free coherent sheaf E on CP 3 is said to be of trivial splitting type if there
is a line ` ⊂ CP 3 such that the restriction E|` is the free sheaf, i.e. E|` ' O⊕rkE

` . A framing on
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E at the line ` is the choice of an isomorphism φ : E|` → O⊕rkE
` . A framed bundle (at `) is a pair

(E, φ) consisting of a locally free coherent sheaf E of trivial splitting type and a framing φ at
`. Two framed bundles (E, φ) and (E′, φ′) are isomorphic if there exists a bundle isomorphism
Ψ : E → E′ such that φ′ = φ◦ (Ψ|`). Let F`(r, c) denote the moduli space of isomorphism classes
of rank r, charge c instanton bundles on CP3 framed at a fixed line `.

Proposition 8.2. The moduli space F`(r, c) is naturally identified, as a complex manifold, with
the trihyperkähler reduction Sec0(Breg(r, c))////U(V ).

Proof. According to [HJM12, Theorem 4.2] (see also [HL11, Theorem 5.3]) the quasi-projective
algebraic variety µ−1

C (0)/GL(V ) is a fine moduli space for the isomorphism classes of rank-r
framed instantons bundles of charge c on P 3. It follows that F`(r, c) is naturally identified with
µ−1
C (0)/GL(V ) as a complex manifold. In the last paragraph of § 8.1, we identified the latter

space with Sec0(Breg(r, c))////U(V ). 2

We are finally in position to use Theorem 5.11 to obtain the second main result of this paper.

Theorem 8.3. The moduli space F`(r, c) of rank r, charge c instanton bundles on CP3 framed
at a fixed line `, is a smooth trisymplectic manifold of complex dimension 4rc.

Proof. The moduli spaceM(r, c) := Breg(r, c)///U(V ) of framed instantons of rank r and charge
c is known to be a smooth, connected, hyperkähler manifold of complex dimension 2rc; it follows
that Sec0(M(r, c)) is a smooth, trisymplectic manifold of complex dimension 4rc (cf. § 2.3). By
the ADHM construction of framed instanton bundles, a point in F`(r, c) can be regarded as a
pair (X1, X2) ∈ B⊕B satisfying (8.5). Therefore, we have a map

F`(r, c)−→ Sec(M(r, c)) (8.6)

given by
(X1, X2) 7→ σ(z, w) = zX1 + wX2,

with σ : P 1
→ M(r, c) being a twistor section. By [JV11, Theorem 3.9], this map is an

isomorphism (without the condition of regularity, which implies smoothness).
It follows from Proposition 8.2 that F`(r, c) is the trihyperkähler reduction of Sec0(Breg(r, c)).

From its construction, it is clear that the map (8.6) coincides with the map

F`(r, c) = Sec0(Breg(r, c))////U(V )−→ Sec(Breg(r, c)///U(V ) = Sec(M(r, c)) (8.7)

constructed in Theorem 5.11 (cf. § 7.1); it then follows that (8.7) is, in fact, an open embedding
to Sec0(M(r, c)). Since (8.6) is an isomorphism,

Sec0(M(r, c)) = Sec(M(r, c)).

This former space is smooth, which proves smoothness of F`(r, c). 2

Remark 8.4. Note that Theorem 5.11 in itself only shows that the space F`(r, c), which is a
trihyperkähler reduction of Sec0(Breg(r, c)), is openly embedded to Sec0(M(r, c)). This already
proves that F`(r, c) is smooth, but to prove that this map is an isomorphism, we use [JV11,
Theorem 3.9].

8.3 Moduli space of rank-two instanton bundles on CP 3

Let us now focus on the case of rank-two instanton bundles, which is rather special. Recall that
a mathematical instanton bundle on CP 3 is a rank-two stable bundle E → CP 3 with c1(E) = 0
and H1(E(−2)) = 0.
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Proposition 8.5. Rank-two instanton bundles on CP 3 are precisely mathematical instanton

bundles.

Proof. If E is a mathematical instanton bundle, then H0(E(−1)) = 0 by stability. Since Λ2E =

OCP3 , there is a (unique up to a scalar) symplectic isomorphism between E and its dual E∗; one

can then use Serre duality to show that H2(E(−2)) = H3(E(−3)) = 0, thus E is a rank-two

instanton bundle.

Conversely, every instanton bundle can be presented as the cohomology of a linear monad

on CP 3 [Jar06, Theorem 3]. It is then a classical fact that if E is a rank-two bundle obtained as

the cohomology of a linear monad on CP 3, then E is stable. It is then clear that every rank-two

instanton bundle is a mathematical instanton bundle. 2

Let I(c) denote the moduli space of mathematical instanton bundles and I`(c) the open

subset of I(c) consisting of instanton bundles restricting trivially to a fixed line ` ⊂ CP 3.

Let also G(c) denote the moduli space of S-equivalence classes of semistable torsion-free

sheaves E of rank-two on P 3 with c1(E) = 0, c2(E) = c, and c3(E) = 0; it is a projective variety.

I(c) can be regarded as the open subset of G(c) consisting of those locally free sheaves satisfying

H1(E(−1)) = 0.

For any fixed line ` ⊂ CP 3, I(c) is contained in I`(c), where the closure is taken within G(c).

Thus I(c) is irreducible if and only if there is a line ` such that I`(c) is irreducible.

Using a theorem due to Grauert and Mühlich we can conclude that every mathematical

instanton bundle must restrict trivially at some line `⊂ CP3 (see [JV11, Lemma 3.12]). Therefore,

I(c) is covered by open subsets of the form I`(c), but it is not contained within any such sets,

since for any non-trivial bundle over CP 3 there must exist a line `′ such that the restricted sheaf

E|`′ is non-trivial. Thus, I(c) and I`(c) must have the same dimension, and one is non-singular

if and only if the other is as well.

We are now ready to prove the smoothness of the moduli space of mathematical instanton

bundles on CP 3.

Theorem 8.6. The moduli space I(c) of mathematical instanton bundles on CP 3 of charge c is

a smooth complex manifold of dimension 8c− 3.

Proof. The forgetful map Fl(2, c) → I`(c) that takes the pair (E, φ) simply to E has as fibers

the set of all possible framings at ` (up to equivalence). Since E|` ' W ⊗ O` (see [FJ08,

Proposition 13]), a choice of framing corresponding to a choice of basis for the two-dimensional

space W , thus all fibers of the forgetful map are isomorphic to SL(W ). Since Fl(2, c) is smooth

of dimension 8c, we conclude that I`(c) is also smooth and its dimension is 8c− 3. The theorem

follows from our previous discussion. 2

The irreducibility of I(c) for arbitrary c remains an open problem; it is only known to hold for

c odd [Tik12] or c = 2, 4 (see [CTT03] and the references therein). Clearly, if Fl(2, c) is connected,

then it must be irreducible, from which one concludes that I`(c), and hence I(c), are irreducible.

Since Fl(2, c) is a quotient of the set of globally regular solutions of the one-dimensional ADHM

equations, it is actually enough to prove that the latter is connected.

It is also worth mentioning a recent preprint of Markushevich and Tikhomirov [MT10], in

which the authors prove that I(c) is rational whenever it is irreducible. Thus, one also concludes

immediately that Fl(2, c) is also rational whenever it is irreducible.
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Society, Zürich, 2008), 97–111.

Don84 S. Donaldson, Instantons and geometric invariant theory, Comm. Math. Phys. 93 (1984),
453–460.

ES81 G. Ellingsrud and S. A. Stromme, Stable rank 2 vector bundles on P 3 with c1 = 0 and c2 = 3,
Math. Ann. 255 (1981), 123–135.

Fei01 B. Feix, Hyperkähler metrics on cotangent bundles, J. Reine Angew. Math. 532 (2001), 33–46.

FJ08 I. B. Frenkel and M. Jardim, Complex ADHM equations, and sheaves on P 3, J. Algebra 319
(2008), 2913–2937.

Gra58 H. Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math.
(2) 68 (1958), 460–473.

Har78 R. Hartshorne, Stable vector bundles of rank 2 on P 3, Math. Ann. 238 (1978), 229–280.

HL11 M. Hauzer and A. Langer, Moduli spaces of framed perverse instantons on P 3, Glasg. Math.
J. 53 (2011), 51–96.

HJM12 A. A. Henni, M. Jardim and R. V. Martins, ADHM construction of perverse instanton sheaves,
Glasg. Math. J., to appear, Preprint (2012), arXiv:1201:5657.

1867

http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657
http://www.arxiv.org/abs/1201:5657


M. Jardim and M. Verbitsky

HKLR87 N. J. Hitchin, A. Karlhede, U. Lindström and M. Roček, Hyperkähler metrics and
supersymmetry, Comm. Math. Phys. 108 (1987), 535–589.

Huy05 D. Huybrechts, Complex geometry: an introduction, Universitext (Springer, Berlin, 2005).

Jar06 M. Jardim, Instanton sheaves on complex projective spaces, Collect. Math. 57 (2006), 69–91.

Jar08 M. Jardim, Atiyah–Drinfeld–Hitchin–Manin construction of framed instanton sheaves, C. R.
Acad. Sci. Paris, Ser. I 346 (2008), 427–430.

JV11 M. Jardim and M. Verbitsky, Moduli spaces of framed instanton bundles on CP 3 and twistor
sections of moduli spaces of instantons on R4, Adv. Math. 227 (2011), 1526–1538.

KKV01 D. Kaledin, D. Kaledin and M. Verbitsky, Hyperkähler structures on total spaces of
holomorphic cotangent bundles, in Hyperkähler manifolds (International Press, Boston, 2001).

KV98 D. Kaledin and M. Verbitsky, Non-Hermitian Yang–Mills connections, Selecta Math. (N.S.)
4 (1998), 279–320.

Mac91 A. Maciocia, Metrics on the moduli spaces of instantons over Euclidean 4-space, Comm. Math.
Phys. 135 (1991), 467–482.

MT10 D. Markushevich and A. S. Tikhomirov, Rationality of instanton moduli, Preprint (2010),
arXiv:1012.4132.
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