ON PROPERTIES OF SOLUTIONS OF SEMILINEAR
SECOND-ORDER PARABOLIC EQUATIONS

V. V. Chistyakov UDC 517.9

We consider semilinear second-order parabolic equations whose principal parts may have either divergence
or nondivergence form and whose nonlinear terms satisfy conditions of Bernstein-Dini type. We study
the qualitative properties of the classical solutions of nondivergence equations and generalized soluiions of
equations with divergent principal parts: the behavior of solutions in various unbounded domains and near
the boundaries of domains, removability of singularities of solutions, vanishing of solutions in unbounded
domains, in particular solutions of compact support and uniqueness and continuous dependence on the
boundary conditions for solutions of the exterior initial/boundary problem. Bibliography: 21 titles.
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INTRODUCTION

In this paper we study the qualitative properties of solutions of semilinear second-order parabolic equations
of the nondivergence and divergence forms

LuEal](t’x)Uzlz] "ut:f(t’m’u)y (1)

Lu = (ai;(t, 2)ug, )e; — ue = aolu|?u, ag = const >0, (2)

where (t,2) = (t,21,...,2,) € R"! and the coefficients a;; : R™™! — R are bounded measurable functions
satisfying the following conditions for all (t,z) € R™1: a;;(t,z) = a;i(t,z) for 1,5 = 1,...,n, and there
exists a number A > 1 such that the inequalities

ATHER < a6 < MEPP VEERT (3)

(summation from 1 to n over repeated subscripts in any monomial is understood). As corollaries of the
“parabolic considerations” we establish certain results for solutions of the semilinear uniformly elliptic
equation

Lou = aij(2)uz,z; = f(z,u). (4)

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 15, pp. 70-107, 1991. Original article submitted June
18, 1987.
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Throughout the first part of this paper it is assumed that the function f: R x R - Rin (1) is a
measurable locally bounded function and that for all (¢,z) € R"*?

f(t,l,ul)gf(t,fE,UQ) for Ui SuQa u17u2€R7 (5)
f(t,IE,O):O, (6)
[f(t, 2, u)l 2 ¢(lul) Vu €R, (7)
where
¢ : [0,4+00) — [0,400) is a nondecreasing continuous function, (8)
©(0) =0, ¢(p) >0 for p>0

(analogous conditions are assumed to be satisfied for the functions f(z,u) of (4), the only difference being
that the dependence on t is eliminated). In Eq. (2), to which the second part of this paper is devoted, we
assume that —1 < ¢ = const # 0. Eq. (2) is called superlinear if ¢ > 0 and sublinear if —1 < g < 0.

The elliptic equation (4) has been studied by many authors. The behavior of solutions of this equation
in unbounded domains and the question of removability of singularities of its solutions has been studied by
H. Brézis and L. Véron [1] for the case when the function ¢ of (7) has the form

(p) = agp™1, g = const >0, (9)

with 0 # ¢ = const > —1, by L. Véron [2] for the Laplacian Ly = A, and by V. A. Kondrat’ev and E. M.

2

Landis {3; 4] for a general linear operator Ly of nondivergence structure Lo = a;;(x) and divergence

d

0

structure Ly = 3 (a”(:c)a—-) The questions of the existence and asymptotic behavior of solutions of
Ty Xy

Eq. (4) in the case of the operator Ly = A have been studied in the papers of N. Kawano and M. Naito [5]

for f(z,u) = ®(z)|u|?u, where ® is a positive function and ¢ > —1, by R. Osserman [6] under assumptions

on the nonlinearity f(z,u) = f(u) close to those of § 6 below, and also for nonlinearities of a different
type by S. I. Pokhozhaev [7], O. A. Oleinik [§], and in the case of the operator Ly = —éa—(aij(x)ai) by L
z; T

g
Kametaka and O. A. Oleinik [9].
As was shown in [1; 3-5] the properties of solutions of Eq. (4) in which the right-hand side satisfies

conditions (5), (6), (7), and (9) for ¢ > 0 differ from those possessed by the solutions of this equation for
—1 < ¢ < 0. This qualitative difference in the properties of solutions manifests itself both in the asymptotic
behavior of solutions in unbounded domains and in the study of the question of removability of singularities
of solutions (in the latter case a singular point is removable if ¢ > 2/(n — 2), n > 3, and is not removable
if -1 <g¢<2/(n-2)).

The paper of H. Brézis and A. Friedman [10] is devoted to the parabolic equation (2) with the operator

81‘1'6:133'

L=A~- g In this paper the initial/boundary-value problem and the Cauchy problem for this equation

were studied with singular initial data, and in particular it was established that for ¢ > 2/n Eq. (2) has the
property of “removability” of a singular point. This property, however, fails in the case when —1 < ¢ < 2/n.
The asymptotic behavior of solutions of Eq. (2) under the same assumption with respect to the operator L
were studied in the papers of S. Kamin, L. A. Peletier [11], and R. Kajikiya [12].

In the present paper we assume the existence of classical solutions of a nondivergence equation (1)
and generalized solutions of the divergence equation (2), and we study the behavior of solutions in various
unbounded domains and near the boundaries of domains, the removability of singular points of solutions, the
vanishing of solutions in unbounded domains (including solutions of compact support), and the uniqueness
and continuous dependence on boundary conditions of a solution of the exterior initial/boundary-value
problem. For Eq. (1) we use a study of barrier functions to establish a difference in the properties of
solutions similar to the difference that holds for solutions of elliptic equations with ¢ > 0 and ~1 < ¢ < 0.
This difference is characterized in terms of convergence and divergence of certain integrals of ¢ at 0 and
+00 (the so-called conditions of Dini-Bernshtein type, which are satisfied, in particular, by the function (9)
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for g >0 or —1 < ¢ < 0). In the case of Eq. (2) we apply the classical technique of J. Moser to establish
integral estimates of the solutions and we show that, as in the case of an elliptic equation, solutions of
superlinear and sublinear parabolic equations behave differently.

This paper contains complete proofs of the results announced in part in [13].

The author is deeply grateful to E. M. Landis for posing the problem and for numerous useful discussions
and support and to M. V. Safonov for showing interest in the work and providing valuable critical comments.

PART I: THE NONDIVERGENCE PARABOLIC EQUATION
§ 1. ASSUMPTIONS AND NOTATION

In the first part of this paper we study properties of solutions of Eq. (1) with respect to which we assume
throughout that conditions (3), (5), (6), (7), and (8) hold. We assume that the function ¢ satisfies one of
the five conditions of Bernstein-Dini type: (4,a), (4,b), (4, B), (B,¢), (B,d), where

+o0 +oo
(@ [ (o) dp < o0 (and thesctore [ (p(p) ™ dp < +o0);
(a

) / (pp(p)) 12 dp = +oco, / (0(0))" dp = +0o;

+0

+0
() / (o))" /% dp = +oo, /(so<p)>~1dp<+oo;
£o £0

(B) [ (ptip) ™/ dp < oo (and theretore [ (4(p))™ dp < +o0)

fo +0
~+ oo +o00
© [ (plp(p) M dp = +oo, / (#(p)~" dp = +00;
+oo +oo

I e R

A solution of Eq. (1) in a domain D C R™* is understood in the classical sense, i.e., a function
u = u(t,z) € CH*(D) such that (1) becomes an identity for all points (¢,z) € D when u(t,z) is substituted
into it; C1? denotes the space of continuous functions u(t,z) that have continuous partial derivatives uy,
Ug;, and ugq;, 1,7 = 1,...,n. Solutions of the differential inequalities that occur below are understood to
be classical solutions that are defined in analogy with solutions of Eq. (1).

We remark that if the function u is a solution of Eq. (1), then, as follows from (5), (6), and (7), it is a
solution of the inequality

Lu -sgnu > o(lul), (1.1)
where
-1, ifu<@
sgnu:{() if u = 0;
1,  ifu>0.

We always assume, without specifying it each time, that the nonlinearity f(¢,z,u) is such that for any
function u(t, z) € C*? the function f(#, z,u(t,z)) is measurable. We adhere to the following notation: D is
the closure of the domain D ¢ R**! or D C R™, 8D = D\ D is the boundary of the domain D, Br(z°) =
{z € R™: |z — 2°| < R} is the ball of radius R > 0 with center at the point z° € R", where |z| = \/Z; - 7;
is the length of z = (z1,...,2,) € R", Pr(z®) = {z e R" : |z; —2?| < R, 7 = 1,...,n} is the cube with
edge of length 2R > 0 and center of symmetry at the point 2° € R", Q¥ (T,2°) = (T — H,T] x Bgr(2")

* We note that the conditions imposed on the function ¢ exclude linear parabolic equations from consideration.
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is a cylinder in R™*! of height H > 0 with spherical base, G¥(T,2°) = (T — H,T] x Pg(z°) is the bar
(parallelepiped) in R™*! of height H > 0 with cubic base. The top of the domain D C R™+! (cf. [14, pp.
166-167]) is defined as the set 4(D) = {(t,z) € D : 3~ > 0, Q}¢,2) C D and Q¥t + h,2)N D = 2}.
I'(D) = 0D \ v(D) is the parabolic (singular) boundary of the domain D ¢ R™*!.

We shall need a maximum principle for solutions of semilinear inequalities in an arbitrary bounded
domain D C R™"!, which we state as follows.

Theorem 1.0 (maximum principle). Let D C R™! be a bounded domain and f(t,z,u) @ measurable
and locally bounded function in D x R satisfying (5). Let uy and ug be continuous solutions in D of the
inequalities Luy < f(t,z,u1) and Lug > f(t,z,ug) for all (t,z) € D\T(D), where L is the operator of (1),

and suppose uy > ug on I'(D). Then uy > us everywhere in D.

This theorem is a consequence of the classical maximum principle for solutions of linear inequalities—super
and/or subparabolic functions (cf., for example, [14, Ch. 3, § 2]).
We shall also use the following elementary proposition.

Proposition 1.1. Suppose condition (8) holds. Then a) for f = +o0 and any a € [0,4+00) and also
8 P ~-1/2 8
for @ =0 and any B € (0,+400] the integrals / (/ @(C)d@) dp and / (p((p))~ % dp either both
converge or both diverge; b) for f = +oo and (:my aae (0,4+00) and also foraa =0 and any 8 € (0, +o0)
3

B
the convergence of the integral / (p(@(p))"M? dp implies the convergence of the integml/ (o(p)) "t dp.

The converse of b) is false. :

§ 2. THE CASE OF CONDITION (A). THE FUNDAMENTAL THEOREM
In this section and the one following we assume that condition (A) holds.

Lemma 2.1. (The barrier function). Under the assumption of condition (A, a) there exist strictly decreasing
continuous bijections r : (0,+00) — (0,+00) and h : (0,4+00) — (0,400) depending on n, A, and ¢ and
on n and @ respectively (in particular HT rla) = BliIJ:? h(B) =0 and lirgl_o rla) = 51ir§1-0 h(8) = +oc)

such that for any point (T,2°%) € R™™ and any numbers a >0 and B > 0 there exists a function V(i,z) =

Vo s(T,2°% t,z) € 01’2(G’rl((£§(T, z%Y)), V > 0, with the following properties:

LV < (V) in GL9(T, %), (2.1)
V(t,z) = +oo as (t,z) = T(G (T, 2")), (2.2)
V(t,2%) = Vo s(T,2°,T,2°) = na + 3. (2.3)

Proof. We shall seek a function V(¢,2) of the form
V(t,2) = w(t)+ Y v(zi ~al), (24)
1=1

assuming that w(t) > 4, v(y) > «, and v"(y) > 0; the domains of the one-dimensional variables ¢ and y
will be found below.
Taking account of (1), (3), (8), and (2.4) and the assumptions just made, we have

n

LV —o(V) = a;;(t, 2)Vein; = Vi— (V) = Z aii{t, 2" (z; — 2?) — w'(t) — c,o(w(t) + Z v(z; — a))

1=1

<3 (e = o) = (n+ 1)o@ - o)) = (@) + (0 + D7), (25
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Keeping (8) in mind, we now choose the function v(y) so as to be a solution of the Cauchy problem
for the ordinary differential equation

A+ 1v"(y) = p(v(y)), (2.6)
v(0) = a, (2.7)
v'(0) =0, (2.8)

and the function w(t) so as to be a solution of the Cauchy problem

(n+ Dw'(t) + e(w(?)) =0, (2.9)
w(T) = B. (2.10)

Then the functions v(y) and w(t) respectively are determined as implicit functions from the following
formulas:

AMn+1)N\E [0 P = Mn+1)\5 [P ore -3
( (n2 _)) /a (/a ﬂP(C)aK) dp = (————(nZ )) /0 (/0 ¢(C+a) d() dp =y, (2.11)
w(t) w(t)—5
1 L 1 / ———di— =T —1. .
(nt )/ﬂ v b ), ¢(p+8) t (212
By Eq. (2.8) the function v(y) in (2.11) is an even function defined for y in the interval (—r(a),r(a)),

where
r(a) = (ALY / Y / “o(0)dc) " dp, (2.13)

and it follows from condition (A) and Proposition 1.1, a) that r(a) < 400. We further find, by (2.11), that
v(y) > a for all y € (—r(a,r(a)), and we conclude from (2.13) that v(y) — +oo as y — £r(a). Moreover
it follows from Eq. (2.6) that v"'(y) > 0 (so that the assumptions made regarding v(y) at the beginning of

the proof are justified).
The function w(T) in (2.12) is defined on the half-open interval (T' — A(f), T|, where

(2.14)

bl

+oo
h(ﬁ)=(n+1)/ﬂ ;‘E%

and h(f) < +oo by condition (A) and Proposition 1.1, b). It therefore follows from (2.12) that w(t) > 3
for all t € (T — h(83),T] (and this justifies completely the assumptions at the beginning of the proof), and
by (2.14) we have w(t) — +oo as t — T — h(f).

Summarizing what has been said above, we conclude that the function V(t,z) of (2.4) is defined on
the bar G’:((f g(T, z%) and, as follows from (2.6) and (2.9), has a continuous first derivative with respect to
t and is twice continuously differentiable with respect to z, while V(¢,2) > na + 8. Moreover inequality
(2.1) follows from (2.5), (2.6), and (2.9); assertion (2.2) follows from the corresponding properties of the
functions w(t) and v(y) for y = z; — 2?; Eq. (2.3) follows from (2.4) (2.7), and (2.10).

Finally, by (8), the first equality in hypothesis (a), Proposition 1.1, a), and formula (2.13) we have
alinﬁo r(a) = 400, and by (2.14) and the second equality in hypothesis (a) we have ﬁli:rflw h(B) = +oo0. The

remaining properties of the functions r(-) and k() mentioned in the statement of the lemma follow from
the explicit representations (2.13) and (2.14). The lemma is now proved.

Remark 1. a) If we assume condition (4, b) holds, the preceding lemma undergoes the following changes:
the function r(+) of (2.13) maps (0, +0c0) onto (0, +o0) and the function A(-) of (2.14) maps [0, 4+00) onto
(0, ~(0)] (so that lirf r(a) = [n"li{lr-l h(B) =0, linio r(a) = +oo, and ﬁlirfli-o h(B3) = h(0), and in this case

h(0) < +oo by hypotheses (A) and (b)). Throughout Lemma 2.1 one can set 8 = 0.
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b) Under the assumption (A, B) the functions r(-) and A(-) map [0, +0c) onto (0,7(0)] and (0, ~(0)]
respectively (and consequently aliﬁloo rla) = ﬂlir_{r_l h(B3) = 0, lirpH) r(a) = r(0), and ﬂlirpm h(B3) = h(0),
where 7(0) < 400 and h{0) < 400 by (A4) and (B) and Proposition 1.1, a})). Throughout Lemma 2.1 one

can set a = 8 = 0. When this is done, V(t,z) = V;0(T,2°%¢,2) > 0 in Gh((g))( z9).

Lemma 2.2. Suppose the function u is a solution of the inequality (1.1) in the cylinder Q¥ (T, 2°) such
that a) |u(T,2%)| > na + B with « > 0 and 8 > 0 under the assumption (4,a); b) |u(T,z%)| > na > 0
under assumption (A,b); ¢) [u(T,z%)] > 0 under assumption (A, B). Then at least one of the following
two inequalities holds in the respective cases: a) R < y/nr(a), H < h(§); b) R < /nr(a), H < h(0); ¢)
R < \/nr(0), H < h{0), where the functions r(-) and h(-) are defined respectively by Eqgs. (2.13) and (2.14).
Proof. a) Suppose neither of the equalities given in the lemma holds: R > v/nr(a) and H > h(f), and for
definiteness suppose

w(T, z°) > na + 3. (2.15)

Then QE(T,2%) > G:_l((g))(T, 2°) and the function z(¢,z) = u(t,z) — V(¢,2), where V(¢,z) = Vo 5(T, 2% ¢, 2)

is the function of Lemma 2.1, is defined on the bar G’rl((f))(T,mo). As follows from (2.15) and (2.3),
2(T,z%) > 0, (2.16)

and by (2.2) and the boundedness of the continuous function u on the bar G’f((g)(T, z%) we have
2(t,z) = —o0 as (t,z) — D(GHA(T,2)). (2.17)
’ i () 0

Now consider the connected component D of the set {(¢,2) € Gf((f))(T, z%): 2(t,z) > 0} containing the

point (T, 2°%). Tt follows from (2.16) that D is a nonempty bounded open set and v > 0 in D. It is clear that
(D) C {(t,z) € Gf((f))(T,:z:D) . z(t,z) = 0}, and it follows from (2.17) that I'(D) is a nonempty compact
set. Thus by (2.1) and (1.1) we have the following inequalities in D \ T(D): LV < ¢(V) and Lu > o(u).
Moreover V = u on I'(D). By the maximum principle (Theorem 1.0) we obtain the inequality V > u in D
and, in particular, the inequality z(T,z°) < 0, contradicting (2.16).

For the case when —u(T,z%) > na + 3 the proof of the lemma is similar, since we then set z = —u—V
and apply the inequality L(—u) > ¢(—u) in the corresponding connected component.

b) and ¢). The proof in these cases coincides with the one just given if we take account of Remark 1
and assume that 8 = 0 and & = # = 0 respectively when conditions (A4, b) and (4, B) hold.

The main result of this section is the following theorem, which establishes a connection between the
dimensions of the cylinder in which a solution exists and the value of that solution at the center of the top
of the cylinder.

Theorem 2.3. Suppose the function u is a solution of inequality (1.1) in the cylinder Q¥ (T,2°%). Then we
have the following inequalities: a) under assumption (A, a)

|w(T,2%)| < nr Y (R/v/n) + R (H) < 2max(nr™ ' (R/y/n), A (H));
b) under assumption (A,b)
W(T,a%)] < nr= (R/V/R) + K (H) for H < h(0),
(T, 2%)| < nr~Y(R/v/n) for H > h(0);
c) under assumption (A, B)

[u(T,z%)| < nr~Y(R/\/n)+ A~ (H) for R < /nr(0) and H < h(0),
|u(T,z%)| < h™Y(H) for B> +/nr(0) and H < h(0),
|u(T,z°)| < nr~Y(R//n) for R < +/nr(0) and H > h(0),
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and the following equality holds:
w(T,z°) =0 for R> /nr(0) and H > h(0),

where r1(+) and h™1(-) denote the functions inverse to r(-) and h(-) respectively, which are defined in (2.13)
and (2.14).

Proof. a) It follows from the properties of the functions r(-) and h(:) shown in Lemma 2.1 that there exist
ap > 0 and By > 0 such that for any € > 0 we have

vnr(ag +¢) < R=+v/nr(ag), h(Bo+¢) < H = h(B). (2.18)

From this we deduce that
' |u(T,z°)| < nlag +¢)+ (B + €). (2.19)
Indeed, if inequality (2.19) does not hold, Lemma 2.2, a) implies that at least one of the following inequalities
holds:

R< Var(ag+e), H < h(Bo+e),

and this contradicts (2.18). It thus follows from (2.19) and (2.18) that
[u(T, %) < n(r7(R/vn) +¢) + (R (H) +¢),

from which, taking account of the arbitrariness of €, we obtain the desired inequality.
b) By Remark 1, a) there exist ag > 0 and 8y > 0 such that for ¢ >0

vnr(ag +¢) < R= v/nr(ag), (2.20)
h(Bo +¢) < H = h{By) provided H < h(0). (2.21)

Hence for H > h(0)
[W(T,2%)| < n(ag +¢) = n(r H(R/vVn) +¢),

and for H < h(0)
[u(T,2%)| < n(ag +€) + (fo +€) = n(r ™ (R/V/n) + &) + (A7 (H) +¢),

since if these inequalities do not hold, then by Lemma 2.2 (part b) or a) respectively) we arrive in (2.20)
and (2.21) at a contradiction with the inequalities R < /nr(ag + ¢), H < h(0), or R < /nr(ap + ¢),
H < h(f +¢).

c¢) In this case the first and third inequalities and the last equality are proved following the same outline
as in parts a) and b). Only the second inequality requires justification. Thus, let R > y/nr(0) and H < h(0).
We find 8, > 0 such that k(s +¢) < H = h(f) and in Lemma 2.1 we set @ = 0 and 8 = Sy +¢& > 0, where

€ > 0 (this is possible by assumption (B)). In this way we construct a bar Gﬁ((g))(T,xo) and a function

V(t,z) = Vo,3(T, 2% t,z) defined in it with the properties (2.1), (2.2), and V(T, z°) = 3. We then obtain
an assertion analogous to Lemma 2.2: if the function u is a solution of inequality (1.1) in the cylinder
QH(T,2°%) such that |u(T,2°)| > 8 > 0, then at least one of the inequalities R < /nr(0) and H < h(8)
holds. From this assertion and the choice of 8y we conclude that

|u(T,2%) < A" H) +e.

The theorem is now proved.

From this theorem we can obtain various kinds of information about the properties of solutions of
inequality (1.1) (and consequently about properties of solutions of Eq. (1) as well). Corollaries of this
theorem are given in §§ 3 and 4.
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It is not difficult to verify that condition (A4, a) holds for ¢ of the form (9) for ¢ > 0. In this case for
the functions (2.13) and (2.14) we obtain the following expressions:

+oo
rla) = (EEEEDYE [ e arargp, a0, ag) =220, 550

2&0 apq

We now estimate the quantity 7(a) from above and below. Thus for p > «

14 1 1 _ 14g
/ 41+Qd<=(p—a>/ (Wp—a)+a)*1dy 2 (p—a) | (ulp—a)+a) oy > L2 (ET2) T
@ 0 1/2
and we have for 6 = p;a
An +1)\1/2 [ .
<sofrA” ' 7/ +qy\—1/2
@) <2(25 ) /0 (608 + a)+9)"1/2 dg <
M+ DNY2 0 [ +o0 rtro1/2 ~ Mt N2
2<-2—ao—-) (/0 (6ol +9) d9+/a (6*+1)71/2d6) = 2v/2(1 + ¢ )(T) a9,

It follows from the inequalities p?T?¢ — a?¥7 < p?%7 that

1/2
(o) 2 2 (AREUEHONTE (e
q 2ag

Thus
a1R™27 <r"Y(R)< a;R™Y%, R>0,

where a; and a, are positive constants depending only on n, A, ag, and g.
Therefore in the case of a function ¢ of the form (9) with ¢ > 0 Theorem 2.3, a) has the following

appearance:

Theorem 2.4. There exists a positive constant ¢ depending only on n, A, ag, and g such that if the function
w is o solution of inequality (1.1) in the cylinder QE(T,2%), then the inequality

u(T, %) < o(R™2/1 + H4/7)
holds at the center of the top of the cylinder.

§ 3. COROLLARIES OF THE FUNDAMENTAL THEOREM
Let 771(-) and h™1(-) be, as before, the inverses of the functions r(-) and h(-) defined in (2.13) and (2.14).

1. The behavior of solutions in unbounded domains. Suppose the function u is a solution of
inequality (1.1) in one of the following domains: 1) (0,4c0) x R"; 2) {z; > 0} = {(t,z) € R"™' : z; >
0,1 <i < nfixd}; 3) {t >0,2; >0} = {(t,2z) e R"™ : t > 0,z; > 0,1 < i < n fixed}; 4)
(0, +00) x (R™\ ), where @ C R" is a bounded domain; 5) an unbounded domain D C R™*! containing a
curve [ that goes to infinity and has the property that for any point (t,, z,) € ! (here ¢ is the parameter on
the curve ! and (i, 2, ) is the point corresponding to it on the curve) there exists a cylinder Qg;’ (toy20) C D,
and R, — 400 and H, — 400 as ¢ — +00.

Then we have the following conclusions.

Under assumption (4,a) we have: 1) |u(t,z)] < h7¢), (t,z) € (0,+00) X R™ and consequently
u(t,z) — 0 as t — +oo uniformly with respect to z € R™; 2) |u(t,z)| < nr~!(z;/\/n), (t,z) € {z; > 0} and
consequently u(t,z) — 0 as #; — +oo uniformly with respect to t € R, #; = (z1,...,Zi—1,Tit1,...,%n) €
R™ 1 3) Ju(t,z)| < nri(zi//n) + RLH), (t,2) € {t > 0, z; > 0}, and therefore u(t,z) — 0 as t — 400
and z; — +oo uniformly with respect to #; € R*7; 4) |u(t,z)| < nr=Y{d(z)/v/n) + R7Y(¢), (t,2) €
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(0,400) x (R™*\ ), d(z) = dist (z,0) being the distance from the point z to the boundary 0f2, and
therefore u(t,z) — 0 as t — +oo and |z| — 400; 5) |u(ts, 7o) < nr  (Re/v/n) + h7H(Hy), (te,20) €1,
and consequently u(t,,z,) — 0 for (t5,2,) € |, 0 — +00.

Under assumption (4,b): 1) |u(t,z)] < h71(¢) for 0 < t < R(0), z € R™, and u(t,z) = 0 for ¢t > ~(0),
z € R™; 2) |u(t, )| < nr—(zi/v/n), (t,2) € {zi > 0}, and consequently u(t,z) — 0 as z; — +oo uniformly
with respect to (£,%;) € R™; 3) [u(t,z)] < nr~(zi/+/n) for t > h(0), z; > 0, 2; € R"! and therefore
u(t,z) — 0 as z; — +oo uniformly with respect to t > 2(0) and Z; € R"™%; 4) |u(t,2)| < nr~{d(z)//n),
t > h(0), z € R*\ , and therefore u(t,z) — 0 as |z| — +oo uniformly with respect to ¢ > h(0); 5)
u(ty, o) — 0 for (ts,20) €l as 0 — +o0. '

Under assumption (4, B): 1) |u(t,z)] < h7}(¢t) for 0 < t < h(0), z € R™, and u(t,z) = 0 for t > h(0),
z € R™ 2) Ju(t,z)| < nr—Y(z;//n) for 0 < z; < /nr(0), (t,%;) € R™ and u(t,z) = 0 for z; > /nr(0),
(t,2;) € R™ 3) u(t,z) = 0 for t > h(0), z; > /nr(0), &; € R*™%; 4) u(t,z) = 0 for ¢t > h(0) and those
z € R"\ Q for which d(z) > /nr(0); 5) there exists og such that the equality u(ts,z,) = 0 holds for
(to,20) € l and o > oy.
Remark 2. In particular part 5) can be applied to domains that expand in various ways, for example to
domains of the form

{(t,z) eR™ £ > \P(vaD} or {(t,z) € R"™ + 2 > U(jt[ +[2:])},

where ¥(p) is an increasing function for p > 0, ¥(0) = 0, and ¥(p) — +o0 as p — +0o0.

To prove these assertions in all the cases enumerated one must apply Theorem 2.3 to the cylinders
noted above and then take account of the properties of the functions r~!(-) and 2~!(-). We have, in the

respective cases:
1) Q%(t,z), (t,z) € (0,+00) x R™ is a fixed point, and R — +o0;
2) QL7 (t,z), (t,z) € {z; > 0} is a fixed point, and t; — —o0;
3) Qii(t,x), (t,z) € {t >0, z; > 0};
4) Qg(z)(t,w), t>0,z¢Q;
5) Q¢ (ts,%0), (toras) € L

2. The behavior of solutions near the boundaries of the domains. Theorem 2.3 also implies certain
corollaries on the behavior of solutions of the inequality (1.1) near the boundaries of various domains. We
shall give details for the simplest of these-—the behavior of solutions near the boundary of a cylinder.

Let the function u be a solution of inequality (1.1) in the cylinder (0,7] X £ or in the domain (0, T] x
(R™\ ), where @ C R" is a bounded domain. Let d(z) = dist (z, Q) be the distance from the point z to
9Q. Then we have the following inequalities.

a) under assumption (A4, a)

Ju(t, 2)| < et (d(z)/v/n) + R (2);

b) under assumption (A4, b)
lu(t,z)| < nr=(d(z)/v/n) + B7(t) for t < R(0), |u(t,z)] < nr~(d(z)/+/n) for t > h(0);
¢) under assumption (A, B)

lu(t,z)| < nr(d(z)/vn) + h7(t) for ¢ < A(0) and d(z) < /nr(0),
lu(t,z)] < h71(t) for t < h(0) and d(z) > /nr(0),
lu(t,z)| < nr=1(d(z)/v/n) for t > h(0) and d(z) < /nr(0).

For the proof it suffices to consider a solution u in the cylinder QZ(I)(t, z) and then apply Theorem 2.3.
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3. Uniqueness and continuous dependence on the boundary conditions of solutions of the
exterior initial boundary problem. In this section we assume that f is a continuously differentiable
function. In (0,4+00) x (R™\ ), where 2 C R" is a bounded domain, we consider the following boundary-
value problem for Eq. (1):
u(0,z) =0 in R"\ §, (3.1)
u(t,z) = x(t,z) on [0,+00) x 9%, (3.2)
where x(t,z) is a bounded function on [0, +00) x 9§ satisfying the consistency condition x(0,z) = 0 on
Q.
Theorem 3.1. The soluticn of the exterior initial boundary problem (3.1), (3.2} for Eq. {1) is unigue.
Theorem 3.2. Let the functions u; and uy be solutions of the problem (1), (3.1), (3.2) with boundary

unctions y1 and ya respectively. Then for all (£,z) € [0, +o0) x (R™\ Q) we have
X X D Y Jed / )

lui(t,z) —ua(t,2)l < sup  ix1 — X2l
[0,+00) %802

We shall prove this theorem assuming condition (A, a) holds. In the case of conditions {4, b) and (A, B)
the proof is analogous. It is clear that Theorem 3.1 follows from this theorem.

Proof of Theorem 3.2. The function z = uy; — us is a solution of the problem

Lz =C(t,z)z in (0,+00) x (R*\ Q), 2(0,2) =0 in R"\ O,
Z(tl‘) = X1<ia$) - XQ(tv"’E} on {07 'T‘OO) X 693

where

ul(f,I)""ug(al) ’
0, if uy{t, z) = uolt, z),

{ fzun (tz)) = f(Lzua(tz)) o ur(t, z) # us(t, ),
and C(t,z) > 0, as follows from {5).

Let R > 0 be so large that @ € Bp(0). We continue the functions u; and ug by setting them equal to
zero for t < 0, z € R" \ Q (keeping the same symbols for the extended functions). Then the functions u;
and ug are solutions of Eq. (1) in R! x (R™\ Q). Applying Theorem 2.3, a) to the solution ug, k= 1,2, in
the cylinder in(_z)o(t, z), where t > 0, z € 8Bg(0), d(z) = dist (x,0Q), and tg < t is arbitrary, we arrive at
the inequality

lur(t, )] < e Hd(2) V) + BTt — 1), k=1,2,

from which, as tg — —o0, we obtain the inequality
lur(t,z)| < nrHd(z)/\/n), B=1,2.
Thus for a fixed number T > 0 we conclude that

sup [z <2 max nr~H(d(2)/v/n) — 0 as R — +oo. (3.4)
(0,T)x3Br(0) zl=R

Furthermore the functions s*(#,2) = £2(t,2)+ N = +z(t,z)+{ sup |x1—x2l+ sup |z]} assume
[0,T) x 892 (0,T)x3Bg(0)

nonnegative values on the set {{0, T) x (0QUABR(0))}U{(R"\Q)NBg(0)}, which is the parabolic boundary
of the domain '
D =(0,T) x (R*\ Q)N Bgr(0)).
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—C(t,z)N =—-C(t,z)N <0

We remark that in the domain D we have Ls* —C(t,z)s* = £Lz—C(t, z)(£2)
> 0in DUT(D), or, what is the

and consequently by the maximum principle we obtain the inequalities s*
same, the inequality
lus(t,z) —ua(t,z)] SN = sup [x3—xol+  sup  z|.
[0,TYx 69 (0,T)x3BRr(0)
It now remains only to let first R and then T tend to infinity, taking account of (3.4) in the case of R. The
theorem is now proved.

§ 4. THE REMOVABLE SINGULARITIES THEOREM
In this section it is essential that the function ¢ in estimate (7) have the form (9).

Theorem 4.1. Let the coefficients of the operator L in Eq. (1) satisfy

a;j € CYIRM™Y), 4,5 =1,...,n, lgl’z;%{n laije; || oo (mrt1y < 00,

and let the function f be continuously differentiable in R™! x R. As always, we assume that conditions
(3), (5), and (6) hold. Suppose that estimate (7) holds for the function f with »(p) = app'*e, p >0, ap > 0,
and ¢ > 2/n. If Q C R™ 15 a domain containing the point (0,0) and the function u is a solution of Eq.
(1) in Q' = Q\ {(0,0)}, then this function can be defined at the point (0,0) so as to be a solution of Eq.
(1) in Q.

Proof. We set Z; = (—75,0] x Bg,(0) and Z = (0,T] x Bg,(0), where 79 > 0, Ty > 0, and Ry > 0 are
chosen sufficiently small that the cylinder Zy = Z; U Z = (—79, Ty] X Bgr,(0) is contained in the interior of
the domain . We denote by v = v(t, z) the solution of the following initial boundary problem for Eq. (1)
in Zg:

Lv = f(t,z,v) in Zg, v=u on ['(Zy),

where u is the solution of Eq. (1) in @' in the hypothesis of the theorem (by the assumptions on the
smoothness of the functions a;; and f it follows from the results of [15, Ch. 6] that this problem has a

unique solution).
In the domain Z| = Z, \ {(0,0)}* the function z = u — v satisfies the equation

Lz=C(t,z)z (4.1)

and the initial boundary conditions
z=0 on I'(Z), (4.2)
where the coefficient C(t,z), which is nonnegative by (5), is defined in (3.3) if we assume that u; = u and

Ug = V.
We shall prove that z = 0 in Z;. It follows from the maximum principle for the solution of the problem
(4.1) and (4.2) in Z{ that z =0 in (Z;)'. It therefore suffices to prove that

2=0in Z, (4.3)

while taking account of the fact that
z=0 on (I'(2))". (4.4)

We carry out the proof of (4.3) by contradiction. Assume that there exists a point (t°,2°) € Z such
that 2(#°,2°%) # 0. Without loss of generality we assume that

2(t%,2°) > 0. (4.5)

* Throughout the remainder of the proof the prime on a symbol for a set means that the point (0,0) has been

removed from the set.
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It is known ([16, Ch. 1, Ch. 9], [17, § 7]) that under the hypotheses of the theorem there exists a
classical fundamental solution E of the operator L in the fiber II = [—7g, Ty] x R"—a function E(t,z;7,¢§)
defined for (t,z;7,€) € I x II, (¢,z) # (7,£), that is nonnegative, continuous in I x II for ¢ > 7, equal to
zero in Il X II for ¢+ < 7, and has in particular the following property: for fixed (7,¢) € [~79,T;) X R™ the
function E is continuously differentiable with respect to ¢, twice continuously differentiable with respect to
z, and satisfies as a function of (t,z) the equation

LE(,-;7,6)=0in (r,To] x R™ (4.6)
Moreover, taking account of the fact that
Lu = (a(t, T )us; )o; — Gijz; (2 )ug; — uy

and using the result of [17, §§ 7-8] (cf. also [18, Ch. 3]), we find positive constants K, K, ki, and k;

depending only on n, A, 79 + Ty, and [|ajz, || Lo (rr+1y, 6,5 = 1,...,n, such that
KiEi(t—7,2— &) < E(t,z;7,§) K Ko Eqo(t — 7,2 — £) (4.7)
for all (¢,2), (7,¢) € Il with ¢ > 7, where
E(t,z) = {(47rk3t)""‘/2 exp(—|z|?/4k,t), %ft >0, z € R™
0, if (t,2) € (—o0,0] x R™\ {(0,0)}

is a fundamental solution of the equation k,Au = uy, s = 1, 2.

(Remark: Only the leftmost inequality of (4.7) is used in what follows.)
The main step in the proof of (4.3) which leads to a contradiction with (4.5) is to obtain the following

assertion:
Ve > 030 < v, <7 such that 2(:°,2%) <eE(t°,2% ~v.,0), and v, — 0 as ¢ — +0. (4.8)

Indeed, if we assume that (4.8) is proved, then, letting ¢ — +0 in (4.8), we obtain the inequality
z(1%,2%) < 0, contradicting (4.5). Consequently u = v in Zj and it remains only to set u(0,0) = v(0,0).
Let us now prove (4.8). For M > 0 and ¢ > 0 we consider the following bounded domain in R™*1:

Eplo) ={(t,z) € (—o,+00) x R" : Ey(t+0,2) > M}.
Its boundary Sy(o) = 0Zp(0) 1s a (smooth) level surface of the function Ey(t + o, z):

Sulo) =c{(t,z) € (—o,+0) xR": Ey(t+o0,2) =M} =
c{(t,z) € (—o,4+00) x R" : |2|> = —4ky(t + o) In[(4nk: (¢ + o))V ? M},

where cl{...} denotes the closure of the set {...}.
Setting
op = (8meky)TIM T, (4.9)

we consider the level surface Sy(op). We find the following: the surface Sps(oar) is inscribed in the
cylinder [~ops, ar] X By, (0), where pps = (26 — 1)oas and vy = /n/2meM /" and intersects the plane
t = 0 in the sphere 0Bs,, (0) of radius 63y = /(1 4 In2)/2yps with center at the point z = 0; furthermore
(0,0) € Zp(op) and as M — +oo the surface Sp(opr) contracts to the point (0,0) (the surface Spr(aar)
is depicted in the figure).

Now let M > 0 be an arbitrary sufficiently large number satisfying the following inequalities:

dyp <20, 2pp <%, 2044 <7 (4.10)
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(these inequalities guarantee with some margin of safety, whose role will be clear in what follows, that the
surface Sy(oar) is contained entirely inside the cylinder Z;). Setting

Dy(oym) =R\ (Su(onm) U Zpm(om)),
Th ={(t,z) € Sm(om): o <t <pm}, T ={(t,z) € Smlon): 0<t <oml,
I, ={(t,z) €ET(Z): t=0,6p <|z| < Ro}, T*={(t,2)€T(Z): 0<t<Ty, |z|=Ro}
(see figure), we remark that
M, uld Ul ul =(ZN Dylou)) ' (4.11)

and that (t°,2%) € Z N Dp(opr) by (4.10).

Keeping in mind the application of the maximum principle, we compare the functions z(t,z) and
¢E(t,z;—0o,0), € > 0, on the parabolic boundary (4.11). For (t,z) € T'}; we conclude by (4.10) that the
functions u and v are solutions of Eq. (1) in the cylinder @, (t,z), where up >t > o, and consequently,
applying Theorem 2.4, we obtain

=2(t,2)] < fult,2)| + Jo(t,2)] < 2el(va) ™0 + (oa0) T < CLMPIM, (4.12)

where the positive constant € depends on n, A, ag, ¢, and k.
We now require that in addition to inequalities (4.10) the quantity M satisfy the inequality

CiM?*™M < cK\M (4.13)
2 1 2
(here we are taking account of the fact that 1 — — = - (q — —) > 0). We remark here that the quantity
ng ¢\ n
M so chosen will depend on ¢ and that on the portion I'}, C Sps(oar) we have the equality
M =E(t+oy,2), (t,z)€Tl)y. (4.14)

Carrying out analogous reasoning in QltjlaM (t,z) for (t,z) € I'}, (by virtue of which opr >t > 0 and
ym > |z] > 8ar), we can assume that the quantity M is chosen so that

l2(t,2)| < CuMP™ < eK\M = eK Ei(t +op,z), (t,z) €Ty, (4.15)
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where the constant Co > 0 depends on the same quantities as Cf.
Finally, by (4.4), we have for (¢,z) € I'}, UT*

lz(t,z)] = 0 < e K1 Eq(t + opp, ). (4.16)

Thus by (4.10)-(4.16) and (4.7) we find that for ¢ > 0 there exists M, > 0 (and M. — 400 as ¢ — 0)
such that for (¢t,2) € I'(Z N Dy, (ou, ) we shall have

lz(t,z)] <eK1Ey(t+oum,,z) <eE(t,z;—oun,,0). (4.17)
Consider the connected component D of the set
{(t,2) € ZN Dypr, (op,) @ 2(t,z) > 0},

containing the point (%, z%). By (4.5) D is a nonempty bounded open set. We remark that u(t,z)—v(t,z) =
z(t,z) > 0 for (t,z) € D, and consequently the nonnegative coefficient C(¢, ) in (4.1) is well-defined in D.

It follows from (4.6) that
LE(.,-;—0op,,0)=0 in D,

and so from (4.1) and (4.17) and the definition of the set D we find that
L(z —eE(-, 50n,,0)) >0 in D, z(t,z) <ecE(t,z;—0op.,0) for (t,z) € I(D).
Applying the maximum principle, we obtain the inequality
2(t,z) < eE(t,z;—opnm,,0) V(t,z) € DUT(D),

from which, in particular, assertion (4.18) follows with v. = ops, (ve — 0 as ¢ — +0 by virtue of (4.9)).
The theorem is now proved.

Remark 3. In the case when —1 < ¢ < 2/n Theorem 4.1 does not hold. The existence of solutions with
nonremovable singularities for this case is proved in Sec. 3 of [10].

§ 5. THE CASE OF CONDITION (B). VANISHING OF SOLUTIONS

Throughout this section we assume that condition (B) holds. We define two functions

§(a) = (&;ﬁ)l/z /; (/OP ©(() dC) i dp, a€[0,+00), (5.1)
g(6) =(n+ 1)/; —S;%, be0,+o0). (5.2)

By the convergence of the integrals at zero in condition (B) and Proposition 1.1 these functions are well

defined.

Lemma 5.1 (the barrier function). a) Under the assumption (B,c) for any point (T,2°) € R™! there
exists a function

U(t,z) = U(T, 2% t,z) € CY*((=o0, T} x R™), U >0,
for which the following relations hold:

LU < ¢(U) in (-0, T] x R", (5.3)
U > min{s ' (R),¢ " (H)} on T(GR(T,2°)) VR >0, H >0, (5.4)
Ut,z°) = U(T,°, T, %) = 0, (5.5)
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where s : [0, +00) — [0, +00) and g~ : [0,+00) — [0,400) are strictly increasing continuous bijections
that are the inverses of the functions defined in (5.1) and (5.2) respectively.

b) Under assumption (B,d) the lemma undergoes the following modifications: the nonnegative function
Ult,z) = U(T, 2% t,2) € CL3((T—g(+00), T|xR") is a solution of inequality (5.3) in (T —g(4o0), T} xR",
where g(+00) < +oo, and the following relations hold instead of (5.4) :

U>s"YR) on (T — g(+0),T] x dPr(z°) VR >O0. (5.6)
UT-H,z)>¢g "(H) YzeR", if 0<H < g(400),
U(t,z) = 400 Vz € R" as t = T — g(4o00), (5.7)

where s71 1 [0, +00) — [0, +00) and g7 : [0,g(+00)) — [0,+00) are the functions inverse to the functions

s(+) and g(-) of (5.1) and (5.2).

Proof. a) Since liIEOS(a) = bliI—I;-lo g(b) = 0 and by assumption (¢) and Proposition 1.1 we have a)
lim s(a) = b1i+rn g(b) = +oo, it follows that the functions s : [0,+00) — [0,+0c0) and ¢ : [0,4+00) —

a—+00
[0, +00) are strictly increasing continuous bijections. The functions v(y) and w(t) of one variable y € R!

defined implicitly by the formulas
s(u(y)) =y, g(w(t))=T—1, (5.8)

t € (=00, T}, (compare with (2.11) and (2.12)) are respectively solutions of the problems (2.6), (2.7), (2.8)
with o = 0 and (2.9), (2.10) with 8 = 0, and w(¢) > 0, v(y) > 0, v(y) being an even function. Setting

Ult,e) = w(t) + ) v(w: —27),

just as in (2.5), we establish inequality (5.3). From (5.8) we find that v(y) = s7'(Jy|), y € R} w(t) =
g YT —1), t € (—o0,T]. Therefore with t € (—o0, T, |z; — :c(])[ =R,7=1,2,...,n, we have

Ut,z) > v(z; — x?) = s"Y(R),

and forzr e R*, t=T - H
U(t,z) =U(T — H,z) > w(T — H) = ¢ (H),

which leads to (5.4). Finally, the equality (5.5) follows from (2.7) and (2.10).

b) Here it should be mentioned that the function w(t) must be regarded as defined on ¢t € (T —
g(+00), T}, where g(+00) < +0co by the second inequality of (d), and also that U(T—H,z) > g~ '(H) — +00
as H — g(+00). The lemma is now proved.

Remark 4. The case when condition (A4, B) holds could have been studied within the framework of
Lemma 5.1. Lemma 5.1 and Remark 1, b) would then have led to the same result, since s(+o00) = r(0) and

g(+00) = R(0).
Lemma 5.2. Let the function u be a solution of inequality (1.1) in the bar GH(T,z%) such that

a) under assumption (B, c)
|u| < min{s ™' (R),g7'(H)} on T(GH(T,2°));
b) under assumption (B,d)

lu| < min{s™}(R),¢ " (H)} on D(GR(T,z")), if H < g(+0o0),
lu| < s7HR) on [T — H,T| x OPg(z®), if H > g(+o0),
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where s71(-) and g71(-) are the functions defined in Lemma 5.1. Then the equality u(T,z%) = 0 holds at
the center of the top of the bar GH(T,z").

Proof. a) We use proof by contradiction. Without loss of generality we shall assume that
u(T,z%) > 0. (5.9)

Consider the connected component D of the set {(¢,z) € GE(T,2°) : u(t,z)— U(t,z) > 0} containing the
point (T, z°), where U(t,z) = U(T,z°,t,2) is the function of Lemma 5.1. Then by (5.9) and (5.5) D # @
is a bounded open set and u > 0 in D. Since LU < ¢(U) in D by (5.3) and Lu > ¢(u) by (1.1), while it
follows from (5.4), the hypothesis of the lemma, and the definition of the set D that U > u on I'(D), we
derive from the maximum principle (Theorem 1.0) the inequality U > v in D UT'(D), and in particular the
inequality u(T,z°%) < U(T,z°) = 0, which contradicts (5.9).

b) For H < g(400) the proof of the lemma resembles the proof of part a). When H > g(4+00), by the
boundedness of the function u in GE(T,2%), (5.6), and (5.7) there exists 0 < Hy < g(+00) such that, when
we take account of the Inequality in the hypothesis of the lemma, we shall have

lu] <U on F(GgO(T, z%)).

Now carrying out the same reasoning in the bar GgO(T,xO) as in the proof of part a), we find that
w(T,z°%) = 0. The lemma is now proved.

Theorem 5.3 (vanishing of solutions). Let @ C R™ be a bounded domain, and let the function u be a
solution of inequality (1.1) in (0,4+00) x (R™\ §) such that

a) under assumption (B, c)
lu(t, 2)] < min{s 7 (o(2])), g7 (o(t))}, t— +oo, |z| = +oo;
b) under assumption (B, d) for any fized t > g(+00)
u(t, )| < 57 (o(lz])), |z — Foo,

where s71(+) and g~ (") are the functions of Lemma 5.1. Then there ezist Ry > 0 and Hy > 0 so large that
u =0 on [Hy, +0) x (R"\ Bgr,(0)). In particular, this theorem holds for bounded solutions u.

Remark 5. An analogous assertion was obtained in studying the asymptotic behavior of the solutions in
(§ 3) under the assumption of condition (A4, B) in Sec. 4 without any assumptions about the behavior of
the solution at infinity.

Proof of Theorem 5.3. a) Let R; > 0 be so large that  C Bg,(0). For 0 < ¢ < 1/(1 4 2y/n) there exist
po = po(e) > Ry and 79 = 79(€) > 0 such that

[u(t,z)] < min{s™'(e|z|), g7 (ct)}, (5.10)

provided |z| > po and t > 7. Let the point (¢°,2°) € (0, +o0) x (R™\ ) be such that |2°| = (1+ /)R >
Ro = (14 /n)po and t° = 2H > Hy = 279. Then u(t°,2°%) = 0. Indeed, on the set

Y ={(t,z)€(0,400) x (R"\Q): R< |z| < (1+2Vn)R, H <t <t%)
by (5.10) we have the inequality
u(t, 2)| < min{s~'(R),¢"{(H)}, (t,2)€Y,

which holds in particular in GE(¢%,2°) C Q%R(to,xo) C Y. It then follows from Lemma 5.2, a) that
u(t?,z°%) = 0.
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b) Setting 7o = g(+00) in the preceding proof, we find that in G¥(#°,2°) C Y we have the inequality
lu(t,z)| < sTH(R), (tz) € GR(t°,2°),

from which it follows by Lemma 5.2, b) that u(t°,2°) = 0. The theorem is now proved.

The following theorem holds for each of the assumptions (B, ¢), (B, d), and (A4, B). Let f be a contin-
uously differentiable function.

Theorem 5.4 (solutions of compact support for the Cauchy problem). If u is a globally bounded solution
(i.e., bounded in [0,+00) x R™) of the Cauchy problem for Eq. (1) with initial function u(0,z) = uo(z) of
compact support, then u 13 of compact support.

Proof (assuming (B,c)). Let |u| < M, in [0,+00) x R™. For My we find Ry > 0 and Hy > 0 such
that My < s7!(Ry) and M,y < g7 1(Hy), so that because the functions s~1(-) and ¢~!(-) are increasing for
R > Ry and H > Hy, we shall have

lu(t, @)l < Mo < min{s™'(R), g7 (H)}

for all (¢,z) € [0,+00) x R™. It follows from this that when t° > Hy, for any point z° € R™ in the bar
G (%, 2°), where R > Ry, the inequality

Jul < min{s T (R), g7 (")}

holds. Consequently, applying Lemma 5.2, a), we find that u(¢°,2°) = 0.

We denote by 2y = supp ug the support of the function uo(z) and we set ng" ={z e R": dist(z,Q) <
R}, where the quantity Ry was chosen above. We now extend the function u(t,z) by setting it equal to
zero for t < 0 and z € R™ \ Q (keeping the same symbol to denote the extended function). Then the
function u so extended will be a solution of Eq. (1) in R x (R"\ Q). For 0 < #! < Hj and z' € R™\ QF

we construct the bar

~H

Gdist (Ilan?O)(tIVTI)? (511)
in which the solution u is defined. It is clear that dist (z!,092°) > Ry and that H can be chosen so that
H > H; (by the way in which the function u was extended for ¢ < 0). Consequently in the bar (5.11) we

have
Ju| < min{s™(dist (2", 094°)), 9" (H)}.

Now applying Lemma 5.2, a), we find that u(¢!,z') = 0.

In the case of assumptions (B, d) and (A, B) the proof is analogous.

In concluding this section we note that condition (B,c) holds for a function ¢ of the form (9) with
—1 < ¢ < 0. The functions s~!(-) and g~!(-) of Lemma 5.1, a) are expressed as follows in this case:

-1 _ a0|q‘2 1/|q| 2/|q‘
s (R)_(Q)\(n+1)(2+q)) R, Re0,+o0),

_ a 1/lal
g 1(H):(EOTIQ|T> HY H €0, +00).

§ 6. THE SEMILINEAR ELLIPTIC EQUATION

In this section we give the basic results on the properties of solutions of the semilinear elliptic equation
Lu= aij(‘r)utizj = f(IE,U), (61)
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where £ € R", a;; = a;; and the restrictions (3) and (5)-(8) {with the dependence of the functions on *
excluded) are imposed on the functions that occur in Eq. (6.1). In regard to the function ¢ of {7) it is
assumed that it satisfies one of the following three conditions of Bernshtein-Dini type:

+ o0
(4) /(p@(p))‘l/2 dp < +o0, /(p(c,o(,o))‘l/2 dp = +o0;
+0oo *
(B) [ ooto) 2 do =400, [Gotitp)) ™ dp < oo
+co "
(©) /(p(w(/)))‘”2 dp < +oo.
fo

Solutions of Eq. (6.1) in the domain D C R™ are understood in the classical sense, i.e., functions
u = u(z) € C*(D) that give an identity when substituted into Eq. (6.10); here C? is the space of continuous
functions u(z) possessing continuous partial derivatives uz,, uz,z;, 1,7 = 1,...,n.

We note that if the function u is a solution of Eq. (6.1), then it is also a classical solution of inequality
(1.1), in which the operator L is taken from (6.1).

In studying the properties of solutions of Eq. (6.1) we shall make use of the following proposition.

Theorem 6.0 (the maximum principle). Let D C R" be a bounded domain and f(z,u) a measurable locally
bounded function on D x R for which (5) holds. Let u; and uqy be continuous solutions of the inequalities
Luy < f(z,uy) and Luy > f(z,uy) respectively for all z € D, and let uy > uy on dD. Then uy > uy in D.

The proof can be found in [3].

1. The case of condition (A). Suppose condition (A) holds, and let r : (0,4+00) — (0,+00) be the
strictly decreasing continuous bijection defined in (2.13) (cf. Proposition 1.1).

Lemma 6.1. For any point 2° € R™ and any number o > 0 there ezists a function V(z) = V(2% z) €
C*(Pyay(2?)), V > 0, satisfying the relations: LV —p(V) < 0in Py (), V(2) — +o0 as 2 — P n(a?).
and V{(z%) = Vo(2°,2°) = na.

Theorem 6.2 (the connection between the radius of the ball in which the solution is defined and the value
of the solution at the center of the ball). If u 1s a solution of inequality (1.1) in the ball Br(z®) then

fu(=™)] < nr (R)VR),

where r1(-) is the function inverse to r(-).
From this fundamental theorem we obtain Theorems 6.3-6.5.

Theorem 6.3 (behavior of solutions in an unbounded domain). If the function u is a solution of inequality
(1.1) in the exterior of the compact set §2, then

lu(z)] < nr((dist (z,09))/v/n), z€R"\Q.

It is clear from this inequality that u(z) — 0 as |z| — +oo.

Theorem 6.4 (the behavior of solutions in a neighborhood of an isolated singular point). Suppose the
domain § contains 0 and u 1s a solution of inequality (1.1) in Q\ {0}. Then for z € Q\ {0} we have

lu(z)| < nr~(Jz]/v/n).
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Remark 6. The removable singularities theorem for a solution of the elliptic equation (6.1) in the case
of a function ¢ of the form (9) with ¢ > 2/(n — 2), n > 3, was proved in [1] (for L = A) and in [3; 4]
for ¢ > 2/(n —2), n > 3 (for a general linear operator L of divergence and nondivergence structure). The
solutions of (6.1) for L = A and 0 < ¢ < 2/(n — 2) with isolated singularities were studied in [19].

Theorem 6.5 (uniqueness of the solution of the exterior problem). Let @ C R" be @ bounded domain and
uy and uy solutions of Eq. (6.1) in R™\ §, and let uqs = uy on Q. Then u; = ugz in R™\ Q.
This last theorem follows from Theorems 6.3 and 6.0.

2. The case of conditions (B) and (C). Solutions of compact support. Suppose condition (B) or
(C) holds, and let s : [0,400) — [0, s(+c0)) be the strictly increasing continuous bijection defined in (5.1),
where s(+00) = 400 under assumption (B) and s(4+00) < 400 under assumption (C) (cf. Proposition 1.1).
The following result holds.

Lemma 6.6. For any point 2° € R™ there ezists o function U(z) = U(2®,z) € C*(Pyyo0)(z®)), U > 0
satisfying the relations
LU — ¢(U) €0 in Pyton(2®),

and U > s™Y(R) on OPg(2°) for all R > 0 if condition (B) holds, while
U(z) = +oo
05 = — OPy(400)(2°) if condition (C) holds, and
U(z®) =U(2°2%) =0,

where s~1(+) is the function inverse to s(-).
Suppose condition (B) holds. Then Lemma 6.6 and Theorem 6.0 imply the following result.

Theorem 6.7. Let @ C R" be a bounded domain and u a solution of inequality (1.1) in R™ \ Q such that
lu(z)| < s7(o(|z])) as |z] — +o00. Then u =0 outside a ball Bp,(0) of sufficiently large radius Ry.

Now suppose that condition (C) holds. Then Lemma 6.6. implies the following results.

Theorem 6.8. If u is a solution of inequality (1.1) in R™\ Q, where Q is o bounded domain in R™, then
u = 0 outside the ball with center at zero and sufficiently large radius.

Theorem 6.9. If u 1s a solution of Eq. (6.1) in R", then u =0 in R".

PART 11
THE DIVERGENCE PARABOLIC EQUATION

§ 7. FUNDAMENTAL LEMMAS. ESTIMATES FOR SOLUTIONS

In the second part of this paper we study the properties of solutions of Eq. (2), in which a;j(t,z) = a;;(t, z)
(1,7 = 1,...,n) are bounded measurable functions satisfying (3) and the exponent ¢ = const is either
positive or satisfies —1 < ¢ < 0. In addition to the notation introduced in Part I, we shall use the following:
C(D) is the space of continuous functions in the domain D; L?(D) (resp. L¥ (D)) is the space of measurable
functions in the domain D for which the pth power of the absolute value is Lebesgue integrable (resp. locally
Lebesgue integrable), p > 1; W, (D) (resp. Wzl,itc(D)) is the space consisting of elements u(t,z) € L*(D)

(resp. u(t,z) € LE (D)) having generalized Sobolev derivatives us, uy, € L*(D) (resp. u¢, us; € L (D)),
0

i=1,...,n; W} (D) (D c R™) is the Banach space of elements u(z) € L*(D) having generalized Sobolev
derivatives u,, € L?(D), 1 = 1,...,n; a dense subset of this space is formed by the set of infinitely

1/2
differentiable functions with support in D, and the norm is defined as ||ul| o = (/uz;ur; dm) ;
w3 (D)
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Uz = (Ugy,---,2g, ) is the gradient of the function u on z € R™; mes denotes (n + 1)-dimensional Lebesgue
measure; N is the set of natural numbers; and a.e. means almost everywhere, almost every, etc.
A solution of Eq. (2) in 2 bounded domain D C R"*! is a function

w = u(t,z) € W' (D)n C(D),

satisfying the integral identity
- //(aijurj Y, +up)dz dt = ag // lulTuy dz dt (7.1)
D D

0 0

for any test function ¥ = t(t,z) € W, ''(D) which belongs to the space Wi (D;) : 9(t,-) €Wy (Dy) as a
function of ¢ for almost every ¢ such that D; = {(t,z) € D: t = const} # 2.

If D Cc R"! is an unbounded domain, a solution of Eq. (2) in the domain D is defined as a function

u = u(t,z) € W{j,’lf)c(D) NnC(D),

for which the integral identity (7.1) holds for all the test functions i mentioned above in any bounded
subdomain D € D.

We now state a weak maximal principle for a solution of semilinear inequalities in a form suitable for
our use. Let f(¢,z,u) be a measurable locally bounded function in R**! x R! such that for any bounded
domain D ¢ R™! and any function u(t,z) € W, (D) N C(D) the function f(t,z,u(t,z)) belongs to the
space L2(D). We shall say that the function u = u(t,) is a solution of the inequality Lu > f(t,z,u)
(where L is the operator of (2)) in a bounded domain D ¢ R™! if u € W,"'(D) N C(D) and the integral

inequality
~ [ [ (@stas +ws) stz [ [ fit,z,000 do
D D

holds for all the test functions 1> mentioned above with ¥ > 0 almost everywhere in D. A solution of the
inequality Lu < f(t,z,u) is defined similarly.

Theorem (weak maximum principle). Let the function u(t,z) € Wzl’l(D) N C(D) be a solution of the
inequality Lu > 0 in a bounded domain D C R and let u(t,2) <0 for (t,2) € T(D). Then u(t,z) <0
for (t,z) € D.

This theorem implies the following corollary.

Theorem 7.0 (weak maximum principle for semilinear inequalities). Let D C R™*! be ¢ bounded domain,
and let the functions uy, uy € W;’I(D) N C(D) be solutions of the inequalities Luy < f(t,z,uy) and Luy >
f(t,z,u2) in the domain D, while the function f(t,z,u) satisfies (5). If ug > ug on I'(D), then us > uy in

D.
Proof. Suppose the theorem is false, i.e., that there exists a point (¢°,2%) € D \ T'(D) for which

ul(tovm()) < u2(t0,$0>, (72)

Consider the connected component G of the set {(t,z) € D : uy(t,z) < uz(t,z)} containing the point
(%, 2%). Set z = uy —uy. Then z = 0 on I'(@) and z > 0 in G. The function z is a solution of the inequality

Lz=C(t,z)z >0 in G,

where the coefficient (3.3), which is nonnegative by (5), is well-defined in G (since z > 0 in G). Applying
the preceding theorem, we obtain the inequality z < 0 in G, contradicting (7.2).
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The estimates given below for solutions are valid without any restrictions on the exponent ¢ > —1.
The solutions of Eq. (2) are considered in bounded domains and understood in the sense of Definition (7.1).
In what follows we assume that if the center of the top is not explicitly shown in the notation for a cylinder
QH, then it is understood that Q¥ = Q¥ (T, 2"); we adopt an analogous convention for balls Bg = Br(z?).

In the following lemma we use an idea of J. Moser [20].

Lemma 7.1. Suppose the function u is a solution of Eq. (2) in the cylinder QH, and let p > 2. Then for
the numbers h € (0, H) and r € (0, R) we have the inequalities

//[ ulu|P1) |2dmdt<c1( - _2)//|u]”dxdt (7.3)
QrZ;

max u(t,z)|Pder < ¢y ——— P A=l 4~ ul|? dz dt, 7.4
(p—1)?

te[T—(H—h), T]

where the positive constant ¢; depends only on the A of (3).

Proof. For R > 0 and a number r € (0, R) we define the truncating function (g ,(p), p > 0, by the formula

1, f0<p< R—-;
Crr(p) = {%(R—p) fR-r<p<R: (7.5)
0, if p> R,
and we set )
P(t,z) = ipu(t,m)]u(t,m)lp_zqﬂ(t,x),
where
O(t,z) = Can(T — 1) - Crr(le — 2°)).
Then

0
b €W QR)NC(QR), (1) €W; (Br)
for almost every t € (T — H, T, and by (7.1) we have

//(a”uggJ Yy, +up)dz dt = —aop/ ]u]p+q<1>2 drz dt > 0. (7.6)
QH

We set .
w=ufu|??7 w? = |uf (7.7)

Remarking that

1 -1
ugh = 5(wz),(I>2, AijUg, Pg;, = 2—p———‘1>2 D03 We W, + 20D - aj;wg, By,

we find by (7.6) that

// ) P2 alxdff—i—Q——//a,JwLwzJ $% dx dt < 2// aijwe; P, wP dz dt. (7.8)

QH

Applying the Schwarz inequality

laij&inil < v/ai;&G - Jaimng, (7.9)
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and then Cauchy’s inequality
2lab| < ea® + 7%, &> 0, (7.10)

-1
with e = 2= < 1, we have
p

p
— 1aij@xi@xj w2’

2]a,~ijj @xiw<1>| S 2(aijwz£wzj @2)1/2((1,']'@“@”’102)1/2 S P 10,1']‘11/‘“10%. @2 +

so that by (7.8)

2
P ) g2 2 , 2
QE QH o
R R H

Using assumption (3), adding to both sides of the last inequality the expression

// w?®d, dz dt =

and taking account of the inequality A > 1, we find after simple computations that

)\2p2
i //uﬂ([@zﬁ - 188,]) de dt.
QR

Ap // 24,2 / 242
—_— w %), dz dt + we*®* dz dt <
QR QR

Furthermore, using the reasoning in the proof of Theorem 3 of {20], keeping in mind (7.7) and the fact that
®=0fort=T-— H and

)e dz dt,

®=11in Q7" and |®,> + |03, <r 2+ 171,

we arrive at inequalities (7.3) and (7.4).

Lemma 7.2. Let the function u be a solution of Eq. (2) in the cylinder Q¥ , p > 2, and let 0 < 7, < H
and 0 < pm < R be strictly monotonic sequences of numbers, m € N. Set Q,, = Qi (T, z%), m € N. Then
in the case of increasing sequences T, pm we have the inequality

—pag/ |u|PT9 dx dt < e Ky (m / [ulP de dt, m e N, (7.11)

Qm+2

where

Ky(m) = (Tmt2 = Timt1) " + (Pmtz — Pmt1) "2 + (Prmt1 — pm) "2,

and in the case of decreasing sequences T and py, the following inequality holds:
pao // [u|P*? dz dt < ¢y Kq(m) // lul dz dt, m €N, (7.12)
Qm+2 Qm

where
I{2(m) = (Tm - 7'm-H)_—1 + (Pm - pm+1)_2 + (pm+1 - Pm+2)~2;

and the constant ¢y depends only on A.
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Proof. It suffices to prove inequality (7.11) since (7.12) can then be obtained from (7.11) by relabeling.
Set

Xm = X"‘(Ix - IOI) CPm+l;Pm+1 pm(lt - xol)
and

1 _
¢ = §pulu|p 2X7na '

where the function (g ,(p) is defined in (7.5). Since the function % in (7.1) is not assumed to vanish on the
bottom of the cylinder Q¥ (i.e., for t = T — H), we find by (7.1) that

/ / a”uIszx, + up)de dt = —pao / /lulerqx drdt > —pao // lulPTdzdt. (7.13)

T—Tm+1 Br T—7m41 Br

We now find an upper bound for the left-hand side of (7.13). Using the notation of (7.7), and taking

account of the relations

1 —
u = §(w2xm)t, QijUg; Yz, = 2~p—xm SO W Wy + W @50, (Xm ey

we obtain
T T
-1
/ /(aijuzj Ve, +ugp) de dt = —2p— / /Xm C@ijWwe Wy, dz di
p
T_Tm+1 T_Tm+1

T
1 1
/ /w @i jWe; (Xm )z, dz dt — §/w2(T,m)Xm dzx + é/wZ(T — Tm41,Z)Xm dT = A

T- Tm+1

(here the integration with respect to z extends over the support of the function xp,). Now remarking
that x,, < 1 and applying assumption (3) to the integrand in the first integral of the last equality and
inequalities (7.9), (3), and (7.10) (with a = |wg|, b = |[(xm)z| - @], € = 2) to the integrand in the second
integral, and taking account of the fact that the third integral is nonpositive, we find that

A<3A // Iwz|2dmdt+)\/ [(Xm)e]? lw[Qd:cdt—i-— / W (T — Tm41,2) dz. (7.14)

Qmtr Qm1 Bpmi1

Since |(Xm)z| < (Pm+1 — pm) 7', estimating the first and third terms of the right-hand side of (7.14)
using inequalities (7.3) and (7.4) with R = pmy2, 7 = pm+2 — Pmt1, H = Tmi2, b = Tigo — Ty, We
obtain an inequality which together with (7.13) gives inequality (7.11). The lemma is now proved.

The following estimate holds for the maximum modulus of a solution of Eq. (2) in terms of the L?
norm of the solution:

Lemma 7.3 (similar to a theorem of J. Moser [20]). Let the function u be a solution of Eq. (2) in the
cylinder Q¥ and p > 2. Then for h € (0,H) and r € (0, R) we have the inequality

max lul? <cg- J- (A7t + )/ =D (mes Qg)”l/ lu|? dz dt, (7.15)
Qr—- on
where c3 18 a4 positive constant depending only on n and \ and
J = J(Ryr,H, h,n) = {(R}E T)"Hfi (B + H)((l ;ff‘ L a +HH>2)}'“/('“ Y
b — {154-%, z:fn>2;
3 ifn=12.
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We note that the explicit dependence of the constant in inequality (7.15) on the quantity A~1 +r~2 is

used in an essential manner to establish the main results for solutions of Eq. (2) in the case when —1 < ¢ < 0.
The proof of Lemma 7.3 is carried out by applying the iteration technique of J. Moser [20]. For the
sake of completeness we shall present it here.

Setting
DH(w)y=H'R™ // w? dz dt
QR

for a function w = w(t,z) defined in the cylinder Q¥ we use the following known lemma, which is a
corollary of the Sobolev imbedding theorem:

Lemma 7.4. The inequality

(DH(w*NF < ¢ <H“1 R // lwg|* dedt + R™™ - te[rqp_e%’ﬂ / w?(t,z) da:)
Qx Br

holds for any function w for which these integrals ezxist. The constant ¢y depends only on n, and the quantity
k is defined in Lemma 7.3.
For a solution u of Eq. (2) in the cylinder Q¥ and p > 2 we set

Uy ___ulul%pk"-—l; ul%:(‘ulp)k", v=20,123,...,

and we remark that (u,)F = u, ;. We define a sequence of cylinders as follows: Q, = g Th , where

1 1

= ,,:1———————-), =0,1,2,3,...
1+(2V~1)H>’ r ( 1+(2 -nr/” 7 ’

h,,:(l—

sothat R—r<R—r, <R H—h<H-h,<H and Qo =Q¥, Q, » QE " as v — +.
We apply Lemma 7.4 (setting w = u,, R=R—r,4;, H=H — hy,41) and then inequalities (7.3) and
(7.4) with

R=R-r,, H=H ~h,, h=hy41 —h,, r=r,41—1,, p=Dpk";

u+1 1/k _ H—hy 41 1/k < R—r, \®» H~— hy _ —n _ -1
(DRt o) = (DRI P < e ) (B ) (H = )

(B =rn)? [ [ ulul? =), e a

Qu+1
pk” <
+(H — hu+1) err— (H hu+1)T] / lu(t, z)] d:c} <
BR_"v-i-l
R n H (pk-”) _ B a,
clc4(R—r> H—h(R2+H)( kv — 1) {(hy41 — hw) 1+(7’u+1—ru) Z}Dg_:y (uy).

Now extracting the £”th root in this inequality and taking into account the relations

2<4V+1(1+R)4 -2 +H)2

1
(TV+1 - ) R2 LA (hV-H - hu)_l .<_ 4y+1 ( H h_lv
(pk”)* .
— < k>p>2
ok — 1) = 4, since pk" >p > 2,
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and setting

— v R n H 1+R4 1+ H)?
O = (D= ()Y Jl:(R—r) H~h(R2+H){( Rz) + TH ) }

we obtain the following recurrence relation:
Oy <AV Les(n N) - Ty - (A1 + 07 g,

Now carrying out the corresponding iteration process, we find that

OOA 0
3 iz 5

Y= Aes(m,A) T (R TP 0 2 840 2
1 1/k7H w1 1/k¥ T
(gm) " {[[ 0wy ara) ™ = e
QU a
It now remains only to remark that Z Zl— = ——-T The lemma is now proved.

§ 8. THE SUPERLINEAR EQUATION
Throughout this section we assume that the exponent ¢ in Eq. (2) is positive.

Theorem 8.1. Let the function u be a solution of Eq. (2) in the cylinder Q1 = (T — 1,T) x By(2%). Then
at the center of the top of the cylinder we have the inequality

|u(T,z%)| < aq, (8.1)

where the positive constant o depends only on n, A, ag and q.

Proof. Let ¢ > 0 be a number satisfying the condition
(1+e)=1+¢/2 (8.2)

(so that ¢ depends only on ¢). In what follows we shall use the notation of Lemma 7.2. With this notation
we set

=g = mEN

so that the increasing sequences p,, and 7, are bounded: 0 < pp, < 1,0< 7, <l and p,, Tland 7, T1

asm T co.
We remark that
Pmt1 — Pm > dim ™%, Ty — T > dgm ™,
where d; and d, are certain positive constants; therefore

maX{(T'Zm-i-l - 7-2771)_15 (P2m+1 - me)_2> (F’Zm - PZm—l)—z} < dm6, (83)

where d is a positive absolute constant.

We set
M,, ://\u‘zd:vdt, m € N,
Qm

where the cylinder @, 1s defined in Lemma 7.2.
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The theorem is proved by contradiction. Suppose the inequality
(T, %) > g (8.4)

holds, in which the number ay = ag(n, A, a¢,¢) > 0 in (8.1) will be chosen below. Since the function u is
also a solution of Eq. (2) in the cylinder @)1, applying Lemma 7.3 with p = 2, we obtain

M, = // |u|® dz dt > ¢t max [ul®> > & u(T,z°)* > (coa)?, (8.5)
Ql Qrg

where rg = % p1, and the constant ¢y depends only on n and A.
We now choose aq so that the equality

(coap)? = exp{(1 + &)1} (8.6)
holds, where the constant ko = ko(n, A, ag, ¢) > 0 will be found below. We shall prove by induction that
Moy > exp{(1 +&)* "'}, meN; (8.7)

by (8.2) this will lead to a contradiction with the fact that v € L%(Q}). Indeed, when m = 1, inequality
(8.7) holds by (8.4), (8.5), and (8.6). Suppose there is an index my € N such that

Mam,—1 > exp{(1 + e)kot2me—1}, (8.8)

yet
Mymo+1 < exp{(1 4 ¢)fot2motiy (8.9)

We shall show that this is impossible.

Applying inequality (7.11) of Lemma 7.2 with m = 2mg — 1, we arrive at the inequality

ag // §U|2+q drdt <K, (2m0 - 1)]\/12m0+1, (810)

Q?mo—l

in which, by (8.3),
K1(2mg — 1) < 3dm}, (8.11)

and ¢; is the constant from Lemma 7.2, which depends on A.
We now apply Jensen’s inequality [21, p. 84] to the left-hand side of inequality (8.10):

(//Iu(t,x)]dw dt)V < (mes D)™ ! //]u(t,:c)|”d;zc dt, v>1,
D D

and, taking account of the fact that ¢ > 0, we obtain

/ |u;2+dedt=/ ()% dz dt >

Q2m0—1 Q2m0—1
i 2 1+% -1 1+%
(mes Qump-t) H( [ [ ultdmat) T 2 (mes QN H () HE. (812)
Q2m0—1
Thus, combining inequalities (8.10), (8.11), and (8.12), we find that
142 3cod 1\L 6 _ 6
(Mamo—1)""% < —=—(mes Q1) *mo Mamo+1 = cs(n, A, a0, )mo Mamo-+1- (8.13)
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From inequalities (8.13), (8.8), and (8.9), taking account of (8.2), we find that

exp{(1 + 6)ko+2mo—}—2} — (exp{(l + 6)k°+2m0—1})1+% <
(M2m0—1)1+% S Cﬁm8M2m0+1 S CGmg eXp{(l + 6)k0+2m0+1}’

from which we find the following inequality for the index myg
exp{e(1+ ¢)kotmotly < comf. (8.14)
We now choose and keep fixed a number kg = ko(n, A, ag,q) > 0 from (8.6) such that the inequality
e(1 4t > (14+6)"*™ In{m® - max(e, cs)}

holds for all m € N. With such a choice of kg in (8.6) we arrive at a contradiction with (8.14). Therefore
inequality (8.7) must hold. This proves inequality (8.1) with aq from (8.6) depending only on n, A, ay and
q by virtue of the choice of ky. The theorem is now proved.

Theorem 8.2 (the connection between the dimensions of the cylinder in which the solution is defined

and the value of the solution at the center of the top of the cylinder). There ezists a positive constant

¢ depending only on n, A, ag, and q such that if the function u 1s a solution of Eq. (2) in the cylinder
B = QI(T,2¢), the following inequality holds:

lu(T, 2°)] < ¢{min(H, R?)} Y4 < (H Y9 4+ R72/9), (8.15)

Proof. We first assume that H = R?. Eq. (2) is invariant under the following transformations of variables

and functions:
t R*t'—T)+T, 2~ Rz —2°)+2° wuw— R %%/,

Under this transformation the cylinder ng maps onto the cylinder Q! and the function
u'(#,2") = Riu(R*(t ~ T) + T, R(z' — 2°) + 2°)

is a solution of Eq. (2) in the cylinder Qi. Applying Theorem 8.1 to the function u', we find that
R |u(T,z%)| = [u'(T,2%)| < ag = ¢, from which the desired estimate (8.15) now follows.
In the general case, since the function u, as a solution of Eq. (2) in Q¥ is a solution of (2) in the

2
cylinder Qgg, where Ry = y/min(H, R?), we obtain (8.15) from the previous reasoning.
In the situations analogous to those of part I this theorem can be used to obtain information on the
properties of solutions of Eq. (2).

1. The behavior of solutions in unbounded domains. Let the function u be a solution of Eq. (2) in
one of the unbounded domains exhibited in § 3, Sec. 1. Then we have the following respective results: 1)
lu(t,z)] < ct™4 (t,2) € (0,4+00) x R, and consequently u(t,z} — 0 as ¢ — +oco uniformly with respect to
z € R™; 2) Ju(t, 2)] < o(z;)"%9, (t,2) € {z; > 0}, and consequently u(t,z) — 0 as z; — +0oo uniformly with
respect to (¢,2;) € R"™; 3) |u(t,z)| < c{min(t,z?)} /4, (t,z) € {t > 0,z; > 0}, and therefore u(t,z) — 0
as t — +oo and z; — +oo uniformly with respect to #; € R™™1; 4) |u(t, z)| < ¢{min(t, dist (z, 8Q))} /4,
(t,z) € (0,+00) x (R™\ Q), and therefore u(t,z) — 0 as t — +oo and |z| — —+00; 5) |u(ty,zs)| <
¢{min(H,, R2)} /9, (t,,z,) € I, and consequently u(t,,z,) — 0 as (t,,2,) € I, & — +0o0.

2. Behavior of solutions near the boundary of a cylinder. Let @ C R" be a bounded domain, and let
the function u be a solution of Eq. (2) in the cylinder (0, T] x Q or the unbounded domain (0, T] x (R™\ ).
Then the following inequality holds:

lu(t, z)| < c{min(t, dist*(z, 0Q))} /1.
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3. Uniqueness and continuous dependence on boundary conditions for the solution of the
exterior initial boundary problem. In (0,+00) x (R" \ Q), where 2 C R" is a bounded domain, we
consider the exterior initial boundary problem (3.1), (3.2) for Eq. (2), where x(t, ) is a bounded function
on [0,400) x Q. The following theorem is established on the basis of Theorems 8.2 and 7.0 in analogy
with Theorem 3.2.

Theorem 8.3. If the functions v’ and u" € C([0,+00) x (R™\ Q)) are solutions of the problem (2), (3.1),
(3.2) with boundary functions x' and x" respectively, then for (t,z) € [0,400) x (R™\ Q) the following
inequality holds:
[u'(t,z) —u"(t,2)| < sup |x'—x
[0,400) x50

It follows from this theorem that the solution of the exterior initial boundary problem is unique.
4. The removable singularities theorem.

Theorem 8.4. Let the coefficients a;j, 1,5 = 1,...,n, of the operator L be continuously differentiable
functions in R, If Q C R™! 4s a domain containing the point (0,0), ¢ > 2/n, and u is a solution of
Eq. (2) in @\ {(0,0)}, the function u can be defined at the point (0,0) so as to be a solution of Eq. (2) in
Q.

On the basis of Theorems 8.2 and 7.0 this theorem can be proved in analogy with Theorem 4.1. When
this is being done, the solvability of the corresponding initial boundary problem for Eq. (2) follows from
the results of [16, Ch. 7], and the existence of the fundamental solution E(t, z;7,&) of the operator £ and
estimate (4.7) with Ky, K», k1, and k; depending only on n, A, and 7¢ + Tp follows from [17, §§ 7-8] (cf.
also [18]).

§ 8. THE SUBLINEAR EQUATION
In this section we assume that —1 < ¢ <0 in Eq. (2).
Theorem 9.1. There exists a positive constant By depending only on n, A, ao, and ¢ such that if the

function u is a solution of Eq. (2) in the cylinder Q1 = (T — 1,T] x By(z°) and

%%XM < Bo, (9.1)

then the equality u(T,z°%) = 0 holds.

Proof. Fix an arbitrary p > 3. Let ¢ > 0 be a number satisfying the condition
(T+e)™=1+¢/p (9.2)

(so that & depends only on ¢). From now on we shall use the notation of Lemma 7.2. In this notation we
set
1 6 = 1 )
B0 ST R mst men

j=m
so that the decreasing sequences p,, and 7, are bounded:

1 1
z < d < .
2<pm_1, 4<Tm_1, (9.3)

pr=n1=1pm | 1/2, 7, | 1/4 as m T co.
Remarking that
3 2 9 _,

Pm — Pm+1 = ﬁm s Tm ™ Tmt1 = ;;4‘777' 5
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we obtain the following inequalities:

max{(Tsm — T3m+1) ", (P3m — Pam41)*} < dm?, (9.4)
max{(7sm-2 — Tsm—1)""s (P3m—2 — P3m—1)" s (P3m—1 — p3m) °} < dm?, (9.5)

where d is a certain positive absolute constant.
We set Qo = Qi;; and
M, = max lul, m e NU {oo},

where the cylinder @, is defined in Lemma 7.2.
We now define the number S in (9.1) as follows:

Bo = exp{—(1+ 6)k°+1}, (9.6)

where the quantity ko = ko(n, A, ag,q) > 0 will be chosen below. Starting from this, we prove by induction

that
Mam—z < exp{—(1+)*"*™7%} meN. (9.7)

When m = 1, inequality (9.7) holds by (9.1), (9.6), and the equality @; = Q1. Assume that there exists an
index mg € N such that
Mymy—s < exp{—(1 4 ¢)fotdmo=2}, (9.8)

yet
Mamoir > exp{—(1 +e)fotimoti}, (9.9)

Since p + ¢ > 2, applying inequality (7.15) with
R=p3me, T =p3me = P3mot1, H =Tamg, "= Tam, — Tamo+1,
and then inequality (7.12) with m = 3my — 2 and taking account of (9.4), we find that

(M3m0+1)p+q = maXx ]u|p+q < C3‘]m0(mes Q3mo)—1((7-3mo - T3mo+1)—1 +

Q3m0+1
2¢y
(p3mo — P3mot1) 2)F- 5// [ulPt? dz dt < c3Jpm,(mes Qoo)™ (deo)?’ﬂ 15 {5(3mg —2) /f lul? dz dt
Q3m0 QSmo 2

2cyc3mes

S armes O Tmo(2dm@ ) * =D Ky (3mg — 2)(Mapm,—2)?, (9.10)
where the quantity Ji,, is given in terms of the J of (7.15) b
Tmo = J(P3mes P3mo = Pamot15 Tmos Tsmo = Tamot1,1) < (27F9)H 71 = ¢ (n)
by virtue of (9.3), and
Ka2(3mo ~ 2) = (T3me—2 ~ Tame—1) " + (P3mo—2 — P3mo—1)"" — (P3mo—1 ~ Pame) ° < 3dms

by (9.5). The constants ¢z and ¢ in Lemmas 7.2 and 7.3 depend respectively on A and on n and A.
Thus, taking the pth root in (9.10), we obtain the inequality

6dcyczcrmes (O

papmes Qoo

i
(M3m0+1)1+% _<_ { (2d>_’°5—1}ngM3mo_2 = Cg('l’l,,)\,ao)mgj\lgmo_g, (911)

wherev:%(kk 1 +1)
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By (9.11), (9.8), and (9.9), taking account of (9.2), we have

exp{—(1+ 5)k0+3m0-3} = (exp{—(1 + e)ko+3mo+1})1+§ < (M3m0+1)1+%
< cgmy Mam,—2 < camg exp{—(1 + ¢g)Fotdmo=2},

from which we find that
exp{e(1 +g)Fot3mo=3} < cgmy. (9.12)

From this point on we reason as in (8.14) (with obvious modifications). In this way we find and hold
fixed the quantity ko = ko(n, A, ag, q) > 0 of (9.6) such that inequality (9.12) will be violated. This proves
(9.7).

Taking account of (9.2) and passing to the limit as m — oo in (9.7), we find that

rgax|u| =M <0,

[

from which, in particular, it follows that u(T,z°) = 0. The theorem is now proved.

Theorem 9.2. If the function u is a solution of Eq. (2) in the cylinder B =QH(T,2°% and

max u| < Bomin(H /4, R72/7),
Qk

where By is the constant from Theorem 9.1, then u(T,z°) = 0.

Proof. We first assume that H = R?. We carry out a change of variables and functions:

1 1
x’:ﬁ(m—xg)—f—xo, t’:ﬁ(t——T)-}-T, u'

EyiN]

R

Uu.

Under this transformation the cylinder Q}I? maps onto the cylinder @i and the function u'(t',z') =

R*1y(t,z) will be a solution of Eq. (2) in the cylinder Q] such that ng}x [u'| < Bo. Applying Theorem 9.1
1
to the function v/, we find that R*/%u(T,2°) = v'(T,z°) = 0.
In the general case if Ry = y/min(H, R?), then by the hypothesis of the theorem we have

max |u| < max |u} < Bo(Ro) 7?1
R2 H

Qry R
Consequently u(T,z°) = 0. The theorem is now proved.
Theorem 9.3 (vanishing of the solution). Let Q@ C R"™ be a bounded domain, and let the function u be a
solution of Eq. (2) in the unbounded domain (0,+00) x (R™\ ) such that

lu(t,z)| = o(min(t™1/9, 2| 7*/9)), ¢ — foo, |z| — +oo.

Then there exist Ry > 0 and Ho > 0 so large that u = 0 on [Hy, +00) x (R™\ Bg,(0)). In particular thus
theorem holds for bounded solutions.

Proof. Let R; > 0 be such that @ C Bpg,(0). For 0 < ¢ < lﬂ091/q there exist py = po(e) > Ry and
79 = To(€) > 0 such that
lu(t, @) < e min(t 79, [z|7?/9)

for t > 1y and |z| > po. gonsequently if |2° = 2R > Ry = 2p0, t° = 2H > Hy = 27, then on the set
{(t,z) € (0,+00) x (R*"\Q): R < |z| <3R, H <t <9H} we have the inequality

lul < 8,94 min{(9H)~/9,(3R)~2/4} < B, min(H—I/q,' R7%9),
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which holds in particular in the cylinder Q& (#°,z°), which is contained in the set in question. Applying

Th

eorem 9.2, we obtain the equality u(¢°,2%) = 0. The theorem is now proved.
The proof of the following theorem is analogous to the proof of Theorem 5.4.

Theorem 9.4. A bounded solution u € C([0,+00) x R") of the Cauchy problem for Eq. (2) with an initial
function u(0,z) = uo(z) of compact support has compact support in [0, +00) x R™.
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