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We consider semilinear second-order parabolic equations whose principal parts may have either divergence 
or nondivergence form and whose nonlinear terms satisfy conditions of Bernstein-Dini type. We study 
the qualitative properties of the classical solutions of nondivergence equations and generalized solutions of 
equations with divergent principal parts: the behavior of solutions in various unbounded domains and near 
the boundaries of domains, removability of singularities of solutions, vanishing of solutions in unbounded 
domains, in particular solutions of compact support and uniqueness and continuous dependence on the 
boundary conditions for solutions of the exterior initial/boundary problem. Bibliography: 21 titles. 
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I N T R O D U C T I O N  

In this paper we s tudy the qualitative properties of solutions of semilinear second-order parabolic equations 
of the nondivergence and divergence forms 

Lu -= ai j( t ,x)uz,~j  - ut = f ( t , x , u ) ,  

L u - ( a i j ( t , x ) u ~ j ) ~ - u t  =aolu[qu, a0 = c o n s t  > 0 ,  

(1) 
(2) 

where (t, x) = (t, Z l , . . .  , Xn) E R n+l and the coefficients aij : R n+l + R are bounded measurable functions 
satisfying the following conditions for all (t, x) E Rn+l :  aij(t, x) = aji(t, x) for i , j  = 1 , . . . ,  n, and there 
exists a number  ~ _> 1 such that  the inequalities 

(summation from 1 to n over repeated subscripts in any monomial  is understood) .  As corollaries of the 
"parabolic considerations" we establish certain results for solutions of the semilinear uniformly elliptic 
equation 

Lou = aij(x)u~,~j =- f ( x ,  u). (4) 

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 15, pp. 70-107, 1991. Original article submitted June 
18, 1987. 
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Throughout the first part of this paper it is assumed that the function f : R n+l • R --~ R in (1)  is a 
measurable locally bounded function and that for all (t, x) E R ~+l 

f(t,x,u ) < f(t,x,u2) for I < %t2, 2 R ,  

f ( t , x , O )  = O, 

i / ( t ,m ,u ) i  _>  (lul) Vtt R ,  

(5) 
(6) 

(7) 

where 
~ :  [0, +oc) --+ [0,~(0)+oc)= is0, a ~(P)n~ 0 for p continuous> 0 function, ,/ (8) 

(analogous conditions are assumed to be satisfied for the functions f(x, u) of (4), the only difference being 
that the dependence on t is eliminated). In Eq. (2), to which the second part of this paper is devoted, we 
assume that - 1  < q = const ~r 0. Eq. (2) is called s~tperlineer if q > 0 and s~tblineer if - 1  < q < 0. 

The elliptic equation (4) has been studied by many authors. The behavior of solutions of this equation 
in unbounded domains and the question of removability of singularities of its solutions has been studied by 
H. Br4zis and L. V~ron [1] for the case when the function ~ of (7) has the form 

= a0p = const > 0, (9) 

with 0 :fi q = const > -1 ,  by L. V6ron [2] for the Laplacian L0 = A, and by V. A. Kondrat 'ev and E. M. 
02 

Landis [3; 4] for a general linear operator L0 of nondivergence structure L0 = a~j(z)cgxiOxj and divergence 

structureLo=~---~i(aij(x)o-~j ) . The questions of the existence and asymptotic behavior of solutions of 

Eq. (4) in the case of the operator L0 = A have been studied in the papers of N. Kawano and M. Naito [5] 
for f(x, u ) =  ~(x)lul%t, where �9 is a positive function and q > -1 ,  by R. Osserman [6] under assumptions 
on the nonlinearity f(x, u) = .f(tt) close to those of w 6 below, and also for nonlinearities of a different 

typebyS. I. Pokhozhaev[7],O.A. Oleinik [8] , and in the case of the operator L0 -- 0--~(aij(x)~zj) byl. 

Kametaka and O. A. Oleinik [9]. 
As was shown in [1; 3-5] the properties of solutions of Eq. (4) in which the right-hand side satisfies 

conditions (5), (6), (7), and (9) for q > 0 differ from those possessed by the solutions of this equation for 
- 1  < q < 0. This qualitative difference in the properties of solutions manifests itself both in the asymptotic 
behavior of solutions in unbounded domains and in the study of the question of removability of singularities 
of solutions (in the latter case a singular point is removable if q _> 2/(n - 2), rt _> 3, and is not removable 
i f - 1  < q < 2 / ( n -  2)). 

The paper of H. Br4zis and A. Friedman [10] is devoted to the parabolic equation (2) with the operator 
0 

L = A - ~--~. In this paper the initial/boundary-value problem and the Cauchy problem for this equation 

were studied with singular initial data, and in particular it was established that for q _> 2/n Eq. (2) has the 
property of "removability" of a singular point. This property, however, fails in the case when - 1  < q < 2/n. 
The asymptotic behavior of solutions of Eq. (2) under the same assumption with respect to the operator IL 
were studied in the papers of S. Kamin, L. A. Peletier [11], and R. Kajikiya [12]. 

In the present paper we assume the existence of classical solutions of a nondivergence equation (1) 
and generalized solutions of the divergence equation (2), and we study the behavior of solutions in various 
unbounded domains and near the boundaries of domains, the removability of singular points of solutions, the 
vanishing of solutions in unbounded domains (including solutions of compact support), and the uniqueness 
and continuous dependence on boundary conditions of a solution of the exterior initial/boundary-value 
problem. For Eq. (1) we use a study of barrier functions to establish a difference in the properties of 
solutions similar to the difference that holds for solutions of elliptic equations with q > 0 and - 1  < q < 0. 
This difference is characterized in terms of convergence and divergence of certain integrals of ~ at 0 and 
+oo (the so-called conditions of Dini-Bernshtein type, which are satisfied, in particular, by the function (9) 
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for q > 0 or - 1  < q < 0). In the case of Eq. (2) we apply the classical technique of J. Moser to establish 
integral est imates of the solutions and we show that ,  as in the case of an elliptic equation, solutions of 
superlinear and sublinear parabolic equations behave differently. 

This paper contains complete proofs of the results announced in part  in [13]. 
The author  is deeply grateful to E. M. Landis for posing the problem and for numerous useful discussions 

and support and to M. V. Safonov for showing interest in the work and providing valuable critical comments. 

P A R T  I: T H E  N O N D I V E R G E N C E  P A R A B O L I C  E Q U A T I O N  

w 1. A S S U M P T I O N S  A N D  N O T A T I O N  

In the first part  of this paper we s tudy properties of solutions of Eq. (1) with respect to which we assume 
throughout that  conditions (3), (5), (6), (7), and (8) hold. We assume that  the function ~ satisfies one of 
the five conditions of Bernstein-Dini type: (A,a), (A,b), (A,B),  (B,c), (S,d),  where 

+oo +oo 
(A) / (p(~(p))-,/2 dp < + e c  (and therefore f ( p ( p ) ) - t  dp < +oc);  

(a) / (p (~ (p ) ) - l /2  d/)~- +0(3, /(~(fl))- '  dp = Jr-(N3; 

+o +o 

(b) /(p(~(f)))-l/2dfl -- -~-o~, /(~(p))-i  dp < Jc-oo; 

+0 +0 

(.B) f f  (p(~(p))--l/2 dp < +co (and therefore /(~(p))-I dp < -~-oo); 
+0 +0 

-I-oo +oo 

+ec +oc 

(d) / -1/2 o = / dp < 

A solution of Eq. (1) in a domain D C R ~+1 is unders tood in the classical sense, i.e., a function 
tt = u ( t ,  x) E CI'2(D) such that (1) becomes an identity for all points (t, x) C D when u(t, x) is subst i tuted 
into it; C 1,2 denotes the space of continuous functions u(t, x) that  have continuous partial  derivatives ut, 
u~ ,  and u ~ j ,  i , j  = 1, . . . ,  n. Solutions of the differential inequalities that  occur below are unders tood to 
be classical solutions that  are defined in analogy with solutions of Eq. (1). 

We remark that  if the function u is a solution of Eq. (1), then, as follows from (5), (6), and (7), it is a 
solution of the inequality 

Lu . s g n u  >__ ~(lu[), (1.1) 

where 

sgn u ---- 

-1 ,  if u < 0 ;  
0 if u = 0; 
1, i f u  > 0 .  

We always assume, without  specifying it each time, that  the nonlinearity f( t ,  x, u) is such that  for any 
function u(t, x) E C 1'2 the function f(t ,  x, u(t, x)) is measurable. We adhere to the following notation: / )  is 
the closure of the domain D C R ~+] or D C R n, cOD = D \ D is the boundary  of the domain D, BR(x ~ = 
{x E R n : Ix - x~ < R} is the ball of radius R > 0 with center at the point x ~ E R ~, where Ix[ = v ~  " xi 
is the length of x = ( X l , . . . , x n )  E R n, PR(z ~ = {x C R n : [xi - x~ < R, i = 1 , . . . , n }  is the cube with 
edge of length 2R > 0 and center of symmet ry  at the point x ~ E R n, Q ~ ( T , z  ~ = (T - H,T] x BR(x ~ 

* We note that the conditions imposed on the function ~ exclude linear parabolic equations from consideration. 
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is a cylinder in R '~+~ of height H > 0 with spherical base, G ~ ( T , x  ~ = (T  - H,T]  x PR(z  ~ is the bar 
(parallelepiped) in R n+l  of height H > 0 with cubic base. The top of the domain D C R ~+~ (el. [14, pp. 
166-167]) is defined as the set 7(D) = {(t,x) E OD : 3h > O, Qh( t ,x )  C D and Qh(t + h ,x)  M D = ;3}. 
F(D) = 0D \ 7(D) is the parabolic (singular) boundary of the domain D C R '~+~. 

We shall need a maximum principle for solutions of semilinear inequalities in an arbitrary bounded 
domain D C R n+l, which we state as follows. 

T h e o r e m  1.0 (maximum principle). Let D C R n+~ be a bounded domain and f ( t , x , u )  a measurable 
and locally bounded function in D x R satisfying (5). Let ul and u2 be continuous solutions in f) of the 
inequalities Lul  <_ f ( t , x , u l )  and Lu2 >_ f ( t , x , u 2 )  for all ( t ,x )  C / )  \ P(D), where L is the operator of (1), 
and suppose U 1 __~ ~t 2 on r(D).  T h e n  u 1 ~ u 2 everywhere in D. 

This theorem is a consequence of the classical maximum principle for solutions of linear inequalities--super 
and/or  subparabolic functions (cf., for example, [14, Ch. 3, w 2]). 

We shall also use the following elementary proposition. 

P rop o Mf io n  1.1. Suppose condition (8) holds. Then a) for fl = +oo and any c~ E [O,+oo) and also 

jfofl ( ~ P ) - - 1 / 2  /c~ for a = 0 and any/3 G (0, +oo] the integrals ~(~) d~ dp and (p(~(p))-U2 dp either both 
c~ 

converge or both diverge; b) b r  /3 = +oc and any c~ C (0, +oc) and also for o~ = 0 and any/3 E (0, +oc) 

f // the convergence of the integral (p()o(p)) -1/2 dp implies the convergence of the integral (F(p))-I  dp. 

The converse of b) is false. 

w 2. T H E  C A S E  OF C O N D I T I O N  (A) .  T H E  F U N D A M E N T A L  T H E O R E M  

In this section and the one following we assume that condition (A) holds. 

L e m m a  2.1. (The barrier function). Under the assumption of condition (A, a) there exist strictly decreasing 
continuous bijeetions r : (0, +oo) --* (0, +oc) and h : (0, +oo) --+ (0, +co) depending on n, 2~, and p and 
on n and ~ respectively (in particular lim r(a) = lim h(/3) = 0 and tim r(a) = lim h(/3) = +oc) 

~ -- + oo fl ---, + oo a --* + O fl --* + O 
such that for any point (T, x ~ E R ~+~ and any numbers a > 0 and fl > 0 there exists a function V(t ,  x) - 

1 2,~h(fl)[ T x 0 V~,fl(T, x ~ t, x) E C ' ((ir(c~)~ , )), V > O, with the following properties: 

Gh(Z)~T xO~ L V  < ~ (V)  in r(a)~ ' J' 

F(Gh(~)~T , v ( t , x )  --, as 

v ( t ,  x ~ - x ~ T ,  x ~ = + / 3 .  

(2.t) 

(2.2) 

(2.3) 

Proof .  We shall seek a function V(t ,  x) of the form 

V ( t , x )  = w(t) + ~ v(xi _ xi~ (2.4) 
i= l  

assuming that w(t) >_ /3, v(y) >_ a, and v"(y) >_ 0; the domains of the one-dimensional variables t and y 
will be found below. 

Taking account of (1), (3), (8), and (2.4) and the assumptions just made, we have 

n n 
n Y  - ~(V)  : ai j( t ,x)Yx;xi  - Yt - ~ ( V )  : E a i i ( t ' x ) y t ' ( x i -  xO) - wt(t) - ~ ( w ( t )  ~r- Z v(xi - x~) 

i:1 i----1 
Tt 

Z (/~v't(xi -- X?) - - (n  + 1 ) - l ~ ( v ( x i -  XO))) -- (W'(t) + (n + 1)- l~(w(t ) ) ) .  (2.5) 
i=1 
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Keeping (8) in mind, we now choose the function v(y) so as to be a solution of the Cauchy problem 
for the ordinary differential equation 

%(n + 1)v"(y)= 7)(v(y)), (2.6) 

v(O) = ~ ,  (2.7) 
~'(0) =0 ,  (2.8) 

and the function w(t) so as to be a solution of the Cauchy problem 

(n + 1)w'(t) + q~(w(t ) )  = O, 

~(T) = #. 

(2.9) 

(2.10) 

Then the functions v(y) and w(t) respectively are determined as implicit functions from the following 
formulas: 

( A ( n + I ) ) - } f ~ ( Y ) ( f f P  )- �89 ( A ( n ; 1 ) ) � 8 9  p ) 1 - ~ ( r  d< dp = - q~(( + ~)  dr -~ dp = y,  (2.11) 
Jc~ JO 

f.~(t) dp f~(t)-# dp (n + I) j#  - -  _= (n + I) - (2.12) ~(p) .0 ~(p + #)  - T t. 

By Eq. (2.8) the function v(y) in (2.11) is an even function defined for y in the interval (-r(o~), r(o~)), 
where 

F(O~) = (/~(~t-t- 1))1/2 ( P --1/2 

and it follows from condition (A) and Proposition 1.1, a) that r(c~) < +oc. We further find, by (2.11), that 
v(y) _> o~ for all y C (-r(o~, r(o~)), and we conclude from (2.13) that v(y) ~ +oo as y ~ • Moreover 
it follows from Eq. (2.6) that v"(y) >_ 0 (so that the assumptions made regarding v(y) at the beginning of 
the proof are justified). 

The function w(T) in (2.12) is defined on the half-open interval (T - h(fl), T], where 

~ +~ dp (2.14) h(/3) = (n + 1) ~2(P)' 

and h(/3) < +oc by condition (A) and Proposition 1.1, b). It therefore follows from (2.12) that w(t) >_ 
for all t E (T - h(fl), T] (and this justifies completely the assumptions at the beginning of the proof), and 
by (2.14) we have w(t) -~ +oc as t ~ T - h(/3). 

Summarizing what has been said above, we conclude that the function V(t, x) of (2.4) is defined on 
the bar Gh(#)IT x ~ T(~), , ) and, as follows from (2.6) and (2.9), has a continuous first derivative with respect to 
t and is twice continuously differentiable with respect to x, while V(t, x) >_ na +/3. Moreover inequality 
(2.1) follows from (2.5), (2.6), and (2.9); assertion (2.2) follows from the corresponding properties of the 
functions w(t) and v(y) for y = x i -  x~ Eq. (2.3) follows from (2.4) (2.7), and (2.10). 

Finally, by (8), the first equality in hypothesis (a), Proposition 1.1, a), and formula (2.13) we have 
lim r((~) = +oo, and by (2.14) and the second equality in hypothesis (a) we have lim h(/3) = +co. The 

~--*+0 #--*+0 

remaining properties of the functions r(.) and h(.) mentioned in the statement of the lemma follow from 
the explicit representations (2.13) and (2.14). The lemma is now proved. 

R e m a r k  1. a) If we assume condition (A, b) holds, the preceding lemma undergoes the following changes: 
the function r(.) of (2.13) maps (0, +co) onto (0, +co) and the function h(.) of (2.14) maps [0, +oo) onto 
(0, h(0)] (so that lim r(o~) = lim h(fl) = 0, lin~0r(o~ ) = +oo, and lim h(fl) = h(0), and in this case 

c~+oo #--++oo #-*+o 

h(0) < +oo by hypotheses (A) and (b)). Throughout Lemma 2.1 one can set /~ = 0. 
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b) Under the assumption (A ,B)  the functions r(.) and h(.) map [0, +oc) onto (0, r(0)] and (0, h(0)] 
respectively (and consequently lira r(a)  = lim h(/3) = 0, li_.n~0r(a ) = r(0), and lim h(/3) = h(O), 

c ~ + o o  #--*+co #-++0 
where r(0) < +ec and h(0) < +oo by (A) and (B) and Proposition 1.1, a)). Throughout Lemma 2.1 one 

can set a =/3 : 0. When this is done, 

L e m m a  2.2. Suppose the function u 
that a) b ( T , x ~  > na  +/3 with a > 
under assumption (d,b); c) I~(T,~~ 

_ ~h(0 ) {q .  
V(t ,  x) - Vo,o(T, x ~ t, x) > 0 in ~r(o) ,~ ,  xO). 

is a solution of the inequality (1.1) in the cylinder H C)R (T, x ~ such 
0 and/9 > 0 under the assumption (A, a); b) b(T,  x~ > no~ > 0 
> 0 under assumption (A,B) .  Then at least one of the following 

two inequalities holds in the respective cases: a) R < v/-~r(a), H < h(/3); b) R < x,/-~r(a), H < h(0); c) 
R < g~r(O), H <_ h(O), where the functions r(.) and h(.) are defined respectively by Eqs. (2.13) and (2.14). 

Proof .  a) Suppose neither of the equalities given in the lemma holds: R > v/-~r(a) and H > h(/3), and for 
definiteness suppose 

u(T, 0 )  > na +/3. (2.15) 

Gh(~)fT Then QH(T, x ~ D ~(~), , x ~ and the function z(t, x) = u(t, x) - V(t,  x), where V(t, x) = V~,z(T, x ~ t, x) 

is the function of Lemma 2.1, is defined on the bar Gh(Z)lT <(~), ,x~ As follows from (2.15) and (2.3), 

z ( T , x ~  (2.16) 

and by (2.2) and the boundedness of the continuous function u on the bar Gh(5)lT ~(~ v ,x ~  

F{Gh(Z){T xO~ z ( < x ) - ~ - o o  as ( t , ~ ) - ~  ~ ~(~), , . (2.17) 

Gh(Z)(T 0} containing the Now consider the connected component D of the set {(t, x) E r(~)~ , x~ " z(t, x) > 
point (T, x~ It follows from (2.16) that D is a nonempty bounded open set and u > 0 in D. It is clear that 

~h(Z)[T z(t, x) 0}, and it follows from (2.17) that r(D) is a nonempty compact r ( D )  c {(t ,x) ~ ,~ (~)~ , x ~  

set. Thus by (2.1) and (1.1) we have the following inequalities i n / )  \ F(D): L V  <_ ~(V)  and Lu > ~(u). 
Moreover V = u on r(D). By the maximum principle (Theorem 1.0) we obtain the inequality V _> u i n / )  
and, in particular, the inequality z(T, x ~ <_ O, contradicting (2.16). 

For the case when - u ( T ,  x ~ > nc~ +/3 the proof of the lemma is similar, since we then set z = - u  - V 
and apply the inequality L ( - u )  >_ ~ ( - u )  in the corresponding connected component. 

b) and c). The proof in these cases coincides with the one just given if we take account of Remark 1 
and assume that/3 = 0 and a =/3 = 0 respectively when conditions (A, b) and (A, B) hold. 

The main result of this section is the following theorem, which establishes a connection between the 
dimensions of the cylinder in which a solution exists and the vaiue of that solution at the center of the top 
of the cylinder. 

T h e o r e m  2.3. Suppose the function u is a solution of inequality (1.1) in the cylinder QH(T, x~ Then we 
have the following inequalities: a) under assumption (A, a) 

I~(T,x~ _< ~r- l (R/v~)+ h-l(H) < 2max(nr-l(R/v/n), h-l(H)); 

b) under assumption (A,b) 

lu(T,x~ < nr-l(R/v/-~) + h-~(H) for H < h(0 ) ,  

[u(T,x~ < ?%r-I(R/V ~) for H > h(0); 

c) under assumption (A, B) 

In(T, x~ <_ nr- l (R/x /~)  + h-~(H) for R < v/-~r(O) and H < h(0), 
lu(T,x~ <_ h-l(H) for R > v/~r(O) and H <_ h(O), 

b(m,x~ _< nr-l(R/v/~) for R <_ v/-~r(O) and H > h(0), 
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and the following equality holds: 

u(T,x ~ = 0 for R > v/-~r(O) and g > h(O), 

where r - l ( - )  and h-l(-)  denote the functions inverse to r(.) and h(.) respectively, which are defined in (2.13) 
and (2.14). 

Proof.  a) It follows from the properties of the functions r(.) and h(.) shown in Lernma 2.1 that there exist 
c~0 > 0 and S0 > 0 such that for any ~ > 0 we have 

v%(~0  + ~) < R = v~r(~0),  h(fl0 + ~) < H = h(90). (2.18) 

From this we deduce that 
lu(T,x~ _< n(% + e) + (So + ~). (2.19) 

Indeed, if inequality (2.19) does not hold, Lemma 2.2, a) implies that at least one of the following inequalities 
holds: 

R ! v ~ r ( ~ o + ~ ) ,  H _ < h ( ~ o + ~ ) ,  

and this contradicts (2.18). It thus follows from (2.19) and (2.18) that 

[u(T,x~ <_ n( r - I  (/:~/v ~ )  + s -t- ( h - l ( H )  -~- c), 

from which, taking account of the arbitrariness of e, we obtain the desired inequality. 

b) By Remark 1, a) there exist c~0 > 0 and/3o > 0 such that for e > 0 

v~r(~o  + ~) < R = v~r(~0) ,  (2.20) 
h(flo + c) < H = h(~0) provided H < h(0). (2.21) 

Hence for H > h(0) 

and for H < h(0) 

i~(T, ~~ _< ~(~o + ~) = ,~( r - l (R/v~)  + ~), 

]u(T,x~ < n(c~0 + e) + (/30 + e) --- r~(r-I(R/V ~)  2r- g) -~- (h - l (H)  -~- ~), 

since if these inequalities do not hold, then by Lemma 2.2 (part b) or a) respectively) we arrive in (2.20) 
and (2.21) at a contradiction with the inequalities R _< v~r(c~0 + e), H < h(0), or R _< v~r(o~0 + e), 
H < h(90 + e). 

c) In this case the first and third inequalities and the last equality are proved following the same outline 
as in parts a) and b). Only the second inequality requires justification. Thus, let R > v/~r(0) and H < h(0). 
We find/~0 _> 0 such that h(flo +c)  < H = h(S0) and in Lemma 2.1 we set a = 0 and fl =/30 +~ > 0, where 

> 0 (this is possible by assumption (B)). In this way we construct a bar G)l~ ~ and a function 

V(t, x) = Vo,z(T, x ~ t, x) defined in it with the properties (2.1), (2.2), and V(T, x ~ = r We then obtain 
an assertion analogous to Lamina 2.2: if the function u is a solution of inequality (1.1) in the cylinder 
Q~(T, x ~ such that lu(T, x~ > S > 0, then at least one of the inequalities R < v~r(0)  and H < h(S) 
holds. From this assertion and the choice of/30 we conclude that 

I~(T,x~ < h - l ( H )  + ~. 

The theorem is now proved. 

From this theorem we can obtain various kinds of inibrmation about the properties of solutions of 
inequality (1.1) (and consequently about properties of solutions of Eq. (1) as well). Corollaries of this 
theorem are given in w167 3 and 4. 
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It is not  difficult to verify tha t  condit ion (A, a) holds for ~ of the form (9) for q > 0. In this case for 
the functions (2.13) and  (2.14) we obta in  the  following expressions: 

r(c~) : ( s  1)(2 + q))  
2ao 

1/2 
_ dr ,  > 0, h(fl) = - - - -  f l - L  > 0. 

d~ aoq 

We now es t imate  the  quant i ty  r(ct) f rom above and below. Thus  for p _> a 

j /  ~01 o!)lq_ q __ f l  1 oz)lq_ q /9--OL p-}-Ol \ lq-q P~l+qd~:(p-o~)  (y( f l -c t )+ dy>(p--ol)  (y(p-o~)+ dy; > .(-----~) , 
/2 - 2 

and we have for 0 - p - o~ 
2 

F(OL) ~ 2(/~(n "~ 1) 1/2 O~0 nu~ 2a0 ) tote -]- o~)l+q) -1/2 dO 

+ 
\ -2~OO (~0 (OoLlq-q)--l/2 dO@ ~ -t-~176 : 2v (1+q-l), ; o  

It follows f rom the inequalit ies fl2+q _ o~2q-q ~_~ fl2+q tha t  

2 ('~(~@ 1)(2 ~- q)) 1/2 . O!--q/2. 
r (~)  >_ q 2ao 

Thus 
air -2/q <_ r-1(R) ! a2R -2/q, R > O, 

where al and a2 are positive constants depending only on n, A, ao, and q. 
Therefore in the case of a function ~ of the form (9) with q > 0 Theorem 2.3, a) has the following 

appearance:  

T h e o r e m  2.4.  There eziats a positive constant c dependin 9 only on n, A, So, and q such that if the function 
u is a solution of inequality (1.1) in the cylinder OH(T,  x~ then the inequality 

r (T, x~ c(R-2/q + H - l /v)  

holds at the center of the top of the cylinder. 

w 3. COROLLARIES OF THE FUNDAMENTAL THEOREM 

Let r-l(-) and h-l(-) be, as before, the inverses of the functions r(.) and h(.) defined in (2.13) and (2.14). 

i. The behavior of solutions in unbounded domains. Suppose the function u is a solution of 
inequality (1.1) in one of the following domains:  1) (0, +c~)  x Rn;  2) {x/ > 0} ::  {(t, x) C R n-F1 : x i  > 

0, t _ < i _ < n fixed}; 3) {4 > 0, xi > 0} =- {( t ,x)  E R n+l : t > 0, xi > 0, 1 _< i _ < n fixed}; 4) 
(0, +oo)  x ( R  '~ \ ft), where f~ C R '~ is a bounded  domain;  5) an u n b o u n d e d  domain  D C R ~+1 containing a 
curve I tha t  goes to  infinity and has the proper ty  tha t  for any point  (tr xr E I (here cr is the paramete r  on 
the curve I and (re, x , )  is the  point  corresponding to it on the curve) there exists a cylinder QH; (G,  xr C D, 
and R~ --~ d-oc and H~, --+ +oo as a ---+ +oo. 

Then  we have the  following conclusions. 
Under  a s sumpt ion  (A ,a )  we have: 1) luft, x)t <_ h - l f t ) ,  ( t , x )  C (0,+cxD) x R ~ and consequently 

u( t ,x )  --+ 0 as t ~ +oc uniformly wi th  respect  to x E Rn;  2) [u(t, xD] < nr--l(xi/~v/~), (t,X) E {Xi > 0} and 
consequently u( t , x )  --+ 0 as xi ~ +co uniformly with respect to t C R 1, xi =- ( x l , . . .  , X i - - l , X i + l , . . .  ,Xn) 
Rn-1; 3) lu(t,x)l < /2F--I(xi/v ~) "71- h-l( t) ,  (t,x) C {4 > O, xi > 0}, and therefore u(t,x) --+ 0 as t --+ +co 
and xi -+ +oo uniformly with respect to a?i E Rn-1 ;  4) lu(t,x)l <_ nr-l(d(x)/v/n) q- h- l ( t ) ,  ( t ,x )  C 
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(0, +oo) x (R"  \ ft), d(x) = dist (x, Oft) being the distance from the point x to the boundary  Oft, and 
therefore u( t ,x)  --~ 0 as t --* §  and Ixl ~ + ~ ;  5) I~(t~,x~)l __< ~ r - l ( ~ / v ~ )  + h - l ( H z ) ,  (t~,xa) E l, 
and consequently u(t~, x~) --~ 0 for (ta, x~) E l, a --* -t-oo. 

Under assumption (A, b): 1) I~(t,x)l _< h - l ( t )  for 0 < t < h(0), x E R n, mad u(t ,x)  = 0 for t _ h(0), 
x ~ R~; 2) lu( t ,~ ) l  _< TtF--I(xi/v~), (t ,x) e {Xi > 0), and consequently u(t ,x)  -* 0 as xi --+ +oo uniformly 
with respect to (t,&i) E R~; 3) [u(t,x)l _< nr-l(xi/v/-~) for t >__ h(O), xi > O, 2i E R n-1 and therefore 
u(t,x) --~ 0 as xi -~ +ec uniformly with respect to t _> h(0) and 2i E Rn-1 ;  4) I~(t,x)l <_ ~r-l(d(x)/v~),  
t >_ h(0), x E R ~ \ ~,  and therefore u(t ,x)  ~ 0 as Ixl - ,  + ~  uniformly with respect to t >_ h(0); 5) 
~ ( t ~ , ~ )  -~ 0 for ( t ~ , ~ )  �9 I ~s ~ ~ + ~ .  

Under assumption (A,B) :  1) I~(t, x)l _< h - l ( t )  for 0 < t < h(0), x �9 R n, and u(t ,x)  = 0 for t >__ h(0), 
x �9 Rn; 2) lu(t,x)l <_ n r - l ( x i / v  ~ )  for 0 < xi < v~r (0 ) ,  (t,2i) �9 R ~ and u(t ,x)  = 0 for zi >_ x/-nr(O), 
(t,2i) �9 Rn; 3) u(t ,x)  = 0 for t >__ h(0), xi >_ v/fir(0), 2i �9 R " - I ;  4) u(t ,x)  = 0 for t _> h(0) and those 
x �9 R ~ \ ~ for which d(x) > v/-~r(0); 5) there exists a0 such that  the equality u(t~,x~) = 0 holds for 
(t~, x~) �9 l and a _> ~r0. 

R e m a r k  2. In particular part  5) can be applied to domains that  expand in various ways, for example to 
domains of the form 

{(t ,x) �9 R n+l : t > ~(Izl)} or {(t ,x) E R '~+1 : xi > ~([t[ + 12il)}, 

where ~(p) is an increasing function for p _> 0, q2(0) = 0, and kO(p) ~ -t-(x) as p ~ §  

To prove these assertions in all the cases enumerated one must apply Theorem 2.3 to the cylinders 
noted above and then take account of the properties of the functions r-l( ')  and h-~(.) .  We have, in the 
respective cases: 

1) Q~(t, x), (t, x) E (0, +ec)  x R n is a fixed point, and R ~-~ +oc; 

2) Ot-t~ (t,x) E {xi > 0} is a fixed point, and to + -oc ;  

3) Q~,(t,x), (t ,x) E {t > O, xi > 0}; 

4) Qtd(~)(t, x), t > O, x ~ ~; 

5) Q~;(t~,x~),  ( t~,x~) E 1. 

2. T h e  b e h a v i o r  o f  s o l u t i o n s  n e a r  t h e  b o u n d a r i e s  of  t h e  d o m a i n s .  Theorem 2.3 also implies certain 
corollaries on the behavior of solutions of the inequality (1.1) near the boundaries of various domains. We 
shall give details for the simplest of these- - the  behavior of solutions near the boundary  of a cylinder. 

Let the function u be a solution of inequality (1.1) in the cylinder (0, T] x ft or in the domain (0, T] x 
(R n \ •), where ft C R n is a bounded domain. Let d(x) = dist (x, Oft) be the distance from the point x to 
Oft. Then we have the following inequalities. 

a) under assumption (A, a) 
Itt(t,x)l __~ TtF-I(d(x)/v ~)  -~- h-l(t);  

b) under assumption (A, b) 

lu(t,x)l _< rtr-l(d(x)/V/-~) ~- h-l( t )  for t _~ h(O), Itt(~;,x)l _~ rtr-l(d(x)/v/~) for t ) h(O); 

c) under assumption (A, B) 

lu(t,X)[ ~___ f t r - l (d(x) /v/~)  + h - l ( t )  for t ~ h(0) and d(2;) ~ v/~r(0), 

lu(t,x)l ~ h- l ( t )  for t _< h(0) and d(x) > v~r(O), 

lu(t,x)l _< ~r-~(dCx)/v~) for t > h(0) and d(x) <_ v~r(O). 

For the proof it suffices to consider a solution u in the cylinder Qtd(x)(t, z) and then apply Theorem 2.3. 
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3. Uniqueness  and continuous dependence  on the boundary condit ions of  solutions of the 
e x t e r i o r  initial b o u n d a r y  p r o b l e m .  In this section we assume that  f is a continuously differentiable 
function. In (0, +oc)  x (R"  \ ~) ,  where ft C R ~ is a bounded domain, we consider the following boundary- 
value problem for Eq. (1): 

u(O,x) = 0 in R'* \ ft, 

u(t, 27) = X(t,27) on [0, +o~)  • Ca,  

(3.1) 
(3.2) 

where x(t, x) is a bounded function on [0, +oo) x cgf~ satisfying the consistency condition X(0, 27 = 0 on 
Oft. 

T h e o r e m  3.1. The solution of the exterior initial boundary problem (3.1), (3~ for Eq. (1) is umque. 

T h e o r e m  3.2.  Let the functions u~ and u2 be solutions of the problem (!) ,  (3.1), (3.2) with boundary 
functions X1 and X2 respectively. Then for a'tl (t, z) ~ [0, +oc)  x (R  ~ \ ~2) we have 

I ~ ( ~ , ~ ) - ~ ( t , 2 7 ) !  _< s~p i~- ~ i .  
[0,+oo) x ar~ 

We shall prove this theorem assmuing condition (A, a) holds~ In ,~he case of conditions (A, b) and (A, B) 
the proof is analogous. It is clear that Theorem 3.1 follows from this theorem. 

P r o o f  o f  T h e o r e m  3.2.  The function z = u 1 - u 2 iS ~ solution of the problem 

Lz:C(t,z)z in (0,+oc) x ( R " \ ~ ) ) ,  z(0, x ) : 0  in R ' \ f t ,  
dr ,  x) = ~ ( t ,  27) - X~(t, 27) on [0, +oo)  • a ~ ,  

where 
(f(t,x,ul(t,x))--f(t,x,u,(Lx)) 

C(t, z) = ~ ~U,~)-',~U,~) ' 
i 0, 

if ~ l ( t ,  27) # U2(t , 27), 
if ~Z(t,27) = ~( t ,  27), 

(3.3) 

and C(L x) > 0, as fo!lows from (5). 
Let R > 0 be so large that  ~ ~ BR(0). We continue the functions ul and u2 by setting them equal to 

zero for t, < 0, z E R ~ \ ~) (keeping the same symbols for the extended functions). Then the functions ul 
and u2 are soludons of Eq. (1) in R)  x ( R  ~ \ ~)). Applying Theorem 2.3, a) to the solution uk, /c = 1, 2, in 

t--t o the cylinder Qd(<, (t, z), where t > O, 27 6 ~BR(O), d(x) = dist (27, c9~), and to < t ~s arbitrary, we arrive at 
the inequality 

[ ,~(t ,x)!  _ < n r - ~ ( d ( x ) / , / ~ ) + h - ~ ( t - t 0 ) ,  , ~ : 1 , 2 ,  

from which, as to --* - o c ,  we obtain the inequality 

i ~ ( t ,  27)1 <- ' ~ r - ~ ( d ( 2 7 ) / ~ ) ,  ~= = 1, 2 

Thus for a fixed number  T > 0 we conclude that  

s~p izl <_ 2 m a x  ~ r - ~ ( d ( ~ ) / ~ / ~ )  -~ 0 as R - ~  + ~ .  
(0,T) xOsR(0) Ixl=R 

(3.4) 

Furthermore the functions s+(t ,z)  =_ 4-z ( t , x )+A ,r =_ •  sup IX1-X21-t- sup ]z]} assume 
[o ,T) x aa  (O,T) x aB,~ (o) 

nonnegative values on the set { [0, T) x (Oft U OBR(O)) } U { (R n \ ~)  N BR(0)}, which is the parabolic boundary 
of the domain 

D - (0, T) x ( (R  n \ f~) n B R ( 0 ) )  
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We remark tha t  in the  domain  D we have L s •  + : •  = - C ( t , x ) N  < 0 
and consequently by the m a x i m u m  principle we obtain the inequalities s :t: > 0 in D U F(D) ,  or, what  is the 
same, the inequali ty 

[Ul( t ,  X ) --  ~ t2( t ,x ) [  __.~ ]V ---- s u p  [X1 - )(21 "~- s u p  [z[. 
[0,T) x 0Ft (0,r)  x 0BR(0) 

It now remains only to let first R and then  T tend to infinity, taking account of (3.4) in the  case of R. The  
theorem is now proved. 

w 4. T H E  R E M O V A B L E  S I N G U L A R I T I E S  T H E O R E M  

In this section it is essential tha t  the funct ion ~ in es t imate  (7) have the form (9). 

T h e o r e m  4.1.  Let the coefficients of the operator L in Eq. (1) satisfy 

aij C c l '2(an+l) ,  i , j  = 1 , . . . , n ,  max ]]aijzillL~(R,~+l) < cx~, 
l<i,j<n 

and let the function f be continuously differentiable in R n+l x R .  As always, we assume that conditions 
(3), (5), and (6) hold. Suppose that estimate (7) holds for the function f with ~(p) = aop l+q, p >_ O, ao > O, 
and q > 2/n. I f  Q C R n+l is a domain containing the point (0, O) and the function u is a solution of Eq. 
(1) in Q' - Q \ {(0, 0)}, then this function can dr at the point (0, O) so as to solution of Eq. 
(1) in Q. 

P r o o f .  We set Z 1 := ( - -7"0,0  ] X BRo(O) and Z = (0, T0] x BR0(0), where To > 0, To > 0, and R0 > 0 are 
chosen sufficiently small tha t  the cylinder Z0 = Zl U Z = (--To, To] x BR0(0) is contained in the interior of 
the domain Q. We denote  by v = v(t, z) the solution of the following initial bounda ry  problem for Eq. (1) 
in Z0: 

L v = f ( t , x , v )  in Zo, v = u  on F(Z0), 

where u is the solution of Eq. (1) in Q' in the hypothesis  of the theorem (by the assumpt ions  on the 
smoothness of the functions aij and f it follows from the results of [15, Ch. 6] tha t  this problem has a 
unique solution). 

In the domain  Z~ = Z0 \ {(0, 0)}* the function z = u - v satisfies the equat ion 

Lz=C(t,x)z (4.1) 

and the initial bounda ry  condit ions 
z = 0  on r ( z 0 ) ,  (4.2) 

where the coefficient C(t, x), which is nonnegat ive by (5), is defined in (3.3) if we assume tha t  ul = u and 
it 2 = U .  

We shall prove tha t  z = 0 in Z~. It follows from the m a x i m u m  principle for the solution of the problem 
(4.1) and (4 .2 ) in  Z~ tha t  z = 0 in (21)' .  It therefore suffices to prove tha t  

z = 0 in Z, (4.3) 

while taking account  of the fact tha t  
z = 0  on (F(Z)) ' .  (4.4) 

We carry out the  proof  of (4.3) by contradict ion.  Assume tha t  there exists a point  (t ~ x ~ C Z such 
that  z(t ~ x ~ ~ O. Withou t  loss of generality we assume tha t  

z(t ~ z ~ > 0. (4.5) 

* T h r o u g h o u t  the  r e m a i n d e r  of  t he  p r o o f  the  p r ime  on a s y m b o l  for a set m e a n s  t h a t  t he  po in t  (0, 0) has  been  

removed  f rom the  set. 
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It is known ([16, Ch. 1, Ch. 9], [17, w 7]) that  under the hypotheses of the theorem there exists a 
classical fundamenta l  solution E of the operator  L in the fiber II = [-To, To] x R ~ - - a  function E( t ,  x; r, ~) 
defined for (t, x; r, ~) E I I  x H, (t, x) r (~-, ~), that  is nonnegative, continuous in II x II for t > r ,  equal to 
zero in II x II for t < % and has in part icular  the following property: for fixed (r ,~)  E [--T0,T0) x R ~ the 
function E is continuously differentiable with respect to t, twice continuously differentiable with respect to 
x, and satisfies as a function of (t, x) the equation 

L E ( . ,  .; r, ~) : 0 in (r, To] • R ' .  

Moreover, taking account of the fact that  

(4.6) 

](1El  (t - r , x  - ~) <_ E ( t , x ;  T, ~) <_ K2E2( t  - % x - ~) 

for all (t, x), (~-, ~) E YI wi th  t > 7-, w h e r e  

{ (4~rkfl) -n/2 exp(-lxl2 /4k~t), 
Z~( t ,~ )  = 0, 

i f t > 0 ,  x E R n ;  
if ( t , z )  E ( - e c ,  0] x R ~ \ {(0,0)} 

is a fundamental  solution of the equation k~Au = ut, s = 1, 2. 

(Remark: Only the leftmost inequality of (4.7) is used in what follows.) 
The main step in the proof of (4.3) which leads to a contradiction with (4.5) is to obtain the following 

assertion: 

Vc > 0 3 0  < v, < To such that  z ( t ~  ~ < c E ( t ~ 1 7 6  and v~ --~ 0 as c ~ +0. (4.8) 

Indeed, if we assume that  (4.8) is proved, then, letting c ~ +0 in (4.8), we obtain the inequality 
z(t~ ~ < O, contradic t ing (4.5). Consequent ly u = v in Z; and it remains only to set u(0 ,0)  = v(0,0).  

Let us now prove (4.8). For M > 0 and ~" > 0 we consider the following bounded domain in R~+~: 

ZM(O-) = {(t,X) e (--or, +OO) • R n :  E l ( t  -t- or, x) > M}. 

Its boundary SM(O') = CgEM(Cr) is a (smooth) level surface of the function E l ( t  -I- cL x): 

SM(~r) = cl {(t ,x)  E (--or, +oo) X R ~ :  E l ( t  + or, x) = M }  = 

cl {(t ,x) E ( - c r ,+oc )  x R ~ :  Ixl 2 = - 4 k l ( t  § a)ln[(47ckl(t + ~))~/2M]}, 

where cl {. . .} denotes the closure of the set {. . .}.  
Setting 

~M = (8~rekl )-~ M -2/~,  (4.9) 

we consider the level surface SM((TM). We find the following: the surface SM(O'M) is inscribed in the 
cylinder [--aM, PM] X /)~M (0), where PM = (2e -- 1)C~M and 7M = V/~/27ceM -1/n ,  and intersects the plane 
t = 0 in the sphere OB5M (0) of radius 5M = V/(1 + in 2)/27M with center at the point x = 0; furthermore 
(0, O) G E M ( a M )  and as M ~ +oo the surface SM(CrM) contracts to the point (0, 0) (the surface S M ( a M )  
is depicted in the figure). 

Now let M > 0 be an arbi trary sufficiently large number  satisfying the following inequalities: 

4VM _< Ix~ 2#M _< t ~ 2aM _< ~-0 (4.10) 
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(4.7) 

Lu  = (a i j ( t , x )u~j )~ ,  - a i j ~ ( t , x ) u x j  - ut 

and using the result of [17, w167 7-8] (cf. also [18, Ch. 3]), we find positive constants I(1, ](2, kl, and k2 
depending only on n, ~, To + To, and Ilaij~,llLoo(R~+~), i , j  = 1 , . . .  ,n ,  such that 



: A  

/'j ~ 
, t~ x l , '  

__c., X ' V',,; 

/ 

a, 
-r o 

X 

Figure 

(these inequalities guarantee  with some margin  of safety, whose role will be clear in what  follows, that  the 
surface SM(O'M) is contained entirely inside the cylinder Z0). Set t ing 

DM(CtM) = R n+l \ ( SM(O-M) U ~M(O'M )), 

I~ /  =- {(t,X) E SM(O-M) : r <_ t <_ [-tM} , F2M ---- {(~,X) E SM(O-M) : 0 __< ~ < O'M} , 

r ~  = { ( t ,x )  E r ( z ) :  t = 0, ~M < Ixl < R0}, C a = { ( t ,x )  E r ( Z ) :  0 < t < To, lxl = R0} 

(see figure), we remark  tha t  
P ~  U F 5 U F ~  U F 4 = F (Z  M DM(O-M)) (4.11) 

and that  ( t~ ~ E Z A DM(O-M) by (4.10). 
Keeping in mind  the applicat ion of the m a x i m u m  principle, we compare  the funct ions z(t, x) and 

eE(t, x;--o-M, 0), e > 0, on the parabolic boundary  (4.11). For (t, x) E F ~  we conclude by (4.10) that  the 
functions u and v are solutions of Eq. (1) in the cylinder Q~M(t,x), where / t  M 2> t > O-M, and consequently, 
applying Theorem 2.4, we obta in  

[Z( t, X )[ ~_ ltZ( ~;, Z )I + [Y( t, X )l ~ 2C[("fM ) -2/q -~" ( ff M ) -l/q] ! Clx~2/nq , (4.12) 

where the positive constant  C1 depends  on n, A, a0, q, and kl. 
We now require tha t  in addi t ion to inequalities (4.10) the quant i ty  M satisfy the  inequali ty 

C1M 2/nq ~_ e K I M  (4.13) 

2 1 ( ~ )  (here we are taking account of the fact tha t  1 nq q q > 0). We remark  here tha t  the quanti ty 

M so chosen will depend  on e and that  on the por t ion F ~  C SM(~M) we have the equali ty 

:'~I= El( t  +c~M,X), ( t ,x)  E F t .  (4.14) 

C)t+~M(t X) for ( t ,x)  E F~4 (by vir tue of which O-M > t > 0 and Carrying out analogous reasoning in ~l~l ~ ' 
7M > Ix] > 5M), we can assume tha t  the quant i ty  M is chosen so tha t  

lz(~, z)l _< C2_/~2/nq <_ s -~ s -}- O'M, x), (t, x) E r~p/, (4.15) 
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where the constant C2 > 0 depends on the same quantities as C1. 
Finally, by (4.4), we have for (t,x) E P ~  U F 4 

[z(t,x)] = 0 < ~Is + crM,x ). (4.16) 

Thus by (4.10)-(4.16) and (4.7) we find that for c > 0 there exists M~ > 0 (and M~ ~ +ec  as e ~ 0) 
such that for ( t , z )  ~ F(Z n DM~(O-M~)) we shall have 

Iz(t, x)l < eKIEI(t + o-Mr, x) <_ eE(t, x; --o-M~, 0). (4.17) 

Consider the connected component D of the set 

{(t,x) E Z N D M , ( a M ~ ) :  z ( t , x ) > 0 } ,  

containing the point (t ~ x~ By (4.5) D is a nonempty bounded open set. We remark that u(t, x ) -v ( t ,  x) = 
z(t, x) > 0 for (t, x) E D, and consequently the nonnegative coefficient C(t, x) in (4.1) is well-defined in D. 

It follows from (4.6) that 
LE(.,.;-O-M~,O) = 0 in D, 

and so fi'om (4.1) and (4.17) and the definition of the set D we find that 

L(z - eE( . , - ;  O-M,, 0)) k 0 in D, z(t, x) ~ eE(t, x; --o-M,, 0) for (t, x) E F(D). 

Applying the maximum principle, we obtain the inequality 

z(t,x) < eE(t,x;--~M,,O) V(t ,x )C  D 0 F(D), 

from which, in particular, assertion (4.18) follows with v~ = ~rM~ (u~ --+ 0 as e ~ +0 by virtue of (4.9)). 
The theorem is now proved. 

R e m a r k  3. In the case when - 1  < q < 2/n Theorem 4.1 does not hold. The existence of solutions with 
nonremovable singularities for this case is proved in Sec. 3 of [10]. 

w 5. T H E  C A S E  OF C O N D I T I O N  (B).  V A N I S H I N G  OF S O L U T I O N S  

Throughout this section we assume that condition (B) holds. We define two functions 

s(a) = (~(~ + 1)1/2 ~0a ( ~oP --1/2 2 ) +, (51) 

fo b dp g0)  = (n + 1) b ~ [0, +o~). (5.2) 

By the convergence of the integrals at zero in condition (B) and Proposition 1.1 these functions are well 
defined. 

L e m m a  5.1 (the barrier function), a) Under the assumption (B,c) for any point (T,z  ~ E R '~+1 there 
exists a function 

U(t,x) = U(T,x~ E CI'2((-e~,T] x R ' ) ,  U_>O, 

for which the following relations hold: 

LU < ~(U) in ( -oc ,  T] x R n, (5.3) 

U >min{s - l (R) ,g - l (H)}  on F(GH(T,x~ V R > 0 ,  H > 0 ,  (5.4) 

y ( t ,  x ~ = U(T,  x ~ T, = O, (5.5)  
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where s -1 : [0,--}-(X:)) ---+ [0,--~(X)) and g - 1  : [0,--~-OO) ---4 [0,-~-(X)) are strictly increasing continuous bqection3 
that are the inverses of the functions defined in (5.1) and (5.2) respectively. 

b) Under assumption (B, d) the lemma undergoes the following modifications: the nonnegative function 
U(t, 5) = U(T, x ~ t, x) E C ~ ' 2 ( ( m - g ( + ~ ) ,  T] • a '~) is a solution of inequality (5.3) in ( T - g ( + o c ) ,  T] • a n, 
where g(+~) < +oc, and the following relations hold instead of (5.4) : 

U>_s- ' (R)  on ( T - g ( + o c ) , T ] •  ~ V R > 0 .  
U ( T - H , x )  >_ g-l(H) Vx 6 a n, if 0 < H <g(-[-c~), 

U(~,5)-~ + ~  V~ e R" as t -~  T - g ( + ~ ) ,  

(5.6) 

(5.7) 

where s - l :  [0,--~-(:x:))----+ [0,-~-oo) and g - l :  [0, g(-~-oo))---+ [0, J-oo) are the functions inverse to the function8 
s(.) and g(.) of (5.1) and (5.2). 

P r o o f .  a) Since lira s(a) = lira g(b) = 0 and by assumption (c) and Proposit ion 1.1 we have a) 
a---++0 b---~+0 

lira s(a) = lira g(b) = +oo, it follows that the functions s : [0,+oc)  --~ [0,+oo) and g : [ 0 , + ~ )  
a---++or b---*+oo 
[0, +oc) are strictly increasing continuous bijections. The functions v(y) and w(t) of one variable y E R 1 
defined implicitly by the formulas 

s (v (y ) )  = y, g ( ~ ( t ) )  = T -  t, (5.s)  

t 6 ( -oo ,  T], (compare with (2.11) and (2.12)) are respectively solutions of the problems (2.6), (2.7), (2.8) 
with a = 0 and (2.9), (2.10) with ~ = 0, and w(t) k 0, v(y) > 0, v(y) being an even function. Setting 

n 

u(t, 5) = w(t) + ~ v ( s i -  57), 
i=1 

just as in (2.5), we establish inequality (5.3). From (5.8) we find that  v(y) = s-l(lYl), y e R1; w(t) = 
g - l ( T - t ) ,  t 6 ( - o c ,  T]. Therefore with t E ( - o c ,  T], Ixj - x~[ = R, j = 1 , 2 , . . . , n ,  we have 

u ( t ,  5) _> v ( s j  - x~) = ~ - I ( R ) ,  

and f o r x 6 R  '~ t = T - H  

U(t,x) = U ( T -  H,x) > wiT - H)  = g - l ( H ) ,  

which leads to (6.4). Finally, the equality (5.6) follows from (2.7) and (2.10). 

b) Here it should be mentioned that  the function w(t) must be regarded as defined on t 6 ( T -  
g(+oo), T], where g(+oo) < +oc  by the second inequality of (d), and also that  U ( T - H , x )  >_ g-~tH) -~ +oc 
as H -~ g(+oc) .  The lemma is now proved. 

R e m a r k  4. The case when condition (A, B) holds could have been studied within the framework of 
Lemma 5.1. Lemma 5.1 and Remark 1, b) would then have led to the same result, since ~(+oc) = r(0) and 
g(+~) = h(0) 

L e m m a  5.2. Let the function u be a solution of inequality (1.1) in the bar GH(T, x ~ such that 

a) under assumption (B, c) 

lul _< min{a-~(R),g-l(H)} on F(GH(T,x~ 

b) under assumption ( B, d) 

[u[ _< min{s - l (R) ,g - l (H)}  on F(GH(T,x~ if H < g (+~) ,  

]ul <_ ~-I (R)  on [ T -  H,T] • OPt(x~ if H > g (+~) ,  
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where 8--1(') and g-l(.) ate the functions defined in Lamina 5.1. Then the equality u(T ,x  ~ = 0 hold~ at 
the cente~ of ~he top of the ~a~ a~(T,x~ 

Proof .  a) We use proof by contradiction. Without loss of generality we shall assume that 

u(T,x  ~ > O. (5.9) 

Consider the connected component D of the set {(t,x) C GH(T,x~  u( t ,x)  - U(t ,x)  > 0} containing the 
point (T,x~ where U(t ,x)  = U ( T , x ~  is the function of Lemma 5.1. Then by (5.9) and (5.5) D r O 
is a bounded open set and u > 0 in D. Since LU <__ p (g )  in D by (5.3) and Lu > p(u) by (1.1), while it 
follows from (5.4), the hypothesis of the lamina, and the definition of the set D that U > u on r(D), we 
derive from the maximum principle (Theorem 1.0) the inequality U _> u in D U F(D), and in particular the 
inequality u(T ,x  ~ <_ U(T, x ~ = 0, which contradicts (5.9). 

b) For H < g ( + ~ )  the proof of the lemma resembles the proof of part a). When H > g(+oo), by the 
boundedness of the function u in GH(T, x~ (5.6), and (5.7) there exists 0 < H0 < g ( + ~ )  such that, when 
we take account of the inequality in the hypothesis of the 1emma, we shall have 

I~[-< u on r ( a ~ ~ 1 7 6  

Now carrying out the same reasoning in the bar GI~~ ~ as in the proof of part a), we find that 
u(T, x ~ = 0. The lemma is new proved. 

T h e o r e m  5.3 (vanishing of solutions). Let ~ C R n be a bounded domain, and let the function u be a 
solution of inequality (1.1) in (0, +co) x (R n \ fi) such that 

a) under assumption (B, c) 

[u(t,x)] <_ min{s- l(o(Ix])) ,g-I(o( t))} ,  t --, -F~, Ixl-~ + ~ ;  

b) under assumption (B, d) for any fi~ed t > g ( + ~ )  

lU(•,X)I ~ 8--1(O(IX])), IX I ---+ -~-00, 

where 8-1(-) and g- l ( . )  are the functions of Lamina 5.1. Then there exist Ro > 0 and Ho > 0 so large that 
u = 0 on [H0, +oo) x (R n \ Bn0(0)). In particular, this theorem holds for bounded solutions u. 

R e m a r k  5. An analogous assertion was obtained in studying the asymptotic behavior of the solutions in 
(w 3) under the assumption of condition (A, B) in See. 4 without any assumptions about the behavior of 
the solution at infinity. 

P r o o f  of  T h e o r e m  5.3. a) Let R1 > 0 be so large that f~ C BRI(0). For 0 < e < 1/(1 + 2v~)  there exist 
P0 = P0@) > R1 and TO = T0(C) > 0 such that 

]u(t,x)[ < min{s-l(c[x]) ,g-l(Gt)},  (5.10) 

provided Ix[ _> P0 and t >__ TO. Let the point ( t~ ~ C (0, +oc) x (R n \ h )  be such that Ix ~ ] _= (1 + v/-~)R _> 
R0 - (1 + v~)P0 and t o = 2H >_ H0 = 2~-0. Then u(t ~ x ~ = 0. Indeed, on the set 

Y - {(t, x) e (0, + ~ )  • ( a  ~ \ f i ) :  R _< Ixl _< (1 + 2v~)R,  H < t < t ~ 

by (5.10) we have the inequality 

[u(t,x)[ < m i n { s - l ( R ) , g - l ( H ) } ,  (t,x) E Y, 

H 0 which holds in particular in GHR(t~176 ) C Q,,/-~n(t ,x  ~ c Y.  It then follows from Lemma 5.2, a) that 

u ( t ~  ~ = O. 
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b) Setting To = g(+oo) in the preceding proof, we find that  in GH(t~176 C Y we have the inequality 

_ GHttO zO'~ lu(t,~)l < 8-1(/~), ( t , x )  e R \  , ), 

from which it follows by Lemma 5.2, b) that  u(t ~ x ~ = 0. The theorem is now proved. 

The following theorem holds for each of the assumptions (B,c) ,  (B ,d) ,  and ( A , B ) .  Let f be a contin- 
uously differentiable function. 

T h e o r e m  5.4 (solutions of compact support for the Cauchy problem). I f  u is a globally bounded solution 
(i.e., bounded in [0, +oo) x R n) of the Cauchy problem for Eq. (1) with initial function u(O,x) = no(x) of 
compact support, then u is of compact support. 

P r o o f  (assuming (B,c)) .  Let lul M0 in [0,+o~) x R" .  For M0 we find R0 > 0 and H0 > 0 such 
that M0 _< s - l ( R 0 )  and M0 _< g- l (H0) ,  so that because the functions s - l ( . )  and g - l ( . )  are increasing for 
R > R0 and H >_ H0, we shall have 

I (t,x)l _< M0 _ min{s-l(R),g-l(H)} 

for all (t, x) E [0, +oc)  x R n. It follows from this that  when t o > H0, for any point x ~ E R n in the bar 
G~ (t ~ x ~ where R _> R0, the inequality 

lul _< min{s-l(R),g-l(t~ 

holds. Consequently, applying Lemma 5.2, a), we find that  u(t ~ x ~ = O. 
We denote by ft0 = supp u0 the support of the function Uo(X) and we set f~0 Ro = {x E R "  : dist (x, ft0) _< 

R0}, where the quanti ty R0 was chosen above. We now extend the function u(t, x) by setting it equal to 
zero for t < 0 and x E R n \ ft0 (keeping the same symbol to denote the extended function). Then the 
function u so extended will be a solution of Eq. (1) in R x (R  n \ f~0). For 0 _< t 1 < H0 and x ~ e R "  \ a R~ 
we construct the bar 

GHst (xl,0~toRo) (tl ,  xl) ,  (5.11) 

in which the solution u is defined. It is clear that  dist (X 1 , 0~0 R~ ~> R 0 and that  H can be chosen so that 
H > H0 (by the way in which the function u was extended for t < 0). Consequently in the bar (5.11) we 
have 

lul < min{s- l (d is t (x l ,0 f toR~ 

Now applying Lemma 5.2, a), we find that  u(t 1, x 1) = O. 
In the case of assumptions (B, d) and (A, B) the proof is analogous. 
In concluding this section we note that  condition (B, c) holds for a function ~ of the form (9) with 

- 1  < q < 0. The functions s - l ( . )  and g - l ( . )  of Lemma 5.1, a) are expressed as follows in this case: 

( a~ ) 1/Iqll~2/Iql /~ E [0,-t-o(), 
= + 1)(2 + f)  

g_I(H) _-- (ao[ql "~l/IqIHX/,qL H ~ [0,+~). 
\ n + l /  

w 6. T H E  S E M I L I N E A R  ELLIPTIC E Q U A T I O N  

In this section we give the basic results on the properties of solutions of the semilinear elliptic equation 

Lu =- aij(x)u~,xj = f ( x ,  u), (6.1) 
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where x ff R ~, aij = aji and the restrictions (3) and (5)---(8) (with the dependence of the functions on t 
excluded) are imposed on the functions that occur in Eq. (6.1). In regard to the function !z of (7) it is 
assumed that  it satisfies one of the following three conditions of Bernshtein-Dini type: 

(A) f (p~(i))) -1/2 d D < -~-oo, /(fl(~(D)) -1/2 dp = ~. oo; 

+o 
-Jroo 

(m / dp = dp < 
+o 

+cx) 
(C) / (p(V(p)) -1/2 dp < 2r-oo. 

+0 

Solutions of Eq. (6.1) in the domain D C R ~ are understood in the classical sense, i.e., functions 
u = u(x)  C C2(D)  that  give an identity when substi tuted into Eq. (6.10); here C 2 is the space of continuous 
functions u( x ) possessing continuous partial derivatives u~ { , u~ ~ ~ ~ , i, j = 1 , . . . ,  n. 

We note that  if the function u is a solution of Eq. (6.1), then it is also a classical solution of inequality 
(1.t), in which the operator  L is taken from (6.1). 

In studying the properties of solutions of Eq. (6.1) we shall make use of the following proposition. 

T h e o r e m  6.0 (the maximum principle). Let D C R '~ be a bounded domain and f ( x ,  u) a measurable locally 
bounded funct ion  on D x R for which (5) holds. Let Ul and u2 be continuous solutions of the inequalities 

Lu  1 < f(x,ul)  and Lu  2 > f ( x , u 2 )  respectively for all x E D, and let u~ >_ u2 on OD. Then U 1 ~ U 2 in D. 

The proof can be found in [3]. 

1. T h e  case  o f  c o n d i t i o n  (A). Suppose condition (A) holds, and let r : (0, +oc)  ~ (0 ,+oc)  be the 
strictly decreasing continuous bijection defined in (2.13) (cf. Proposition 1.1). 

L e m m a  6.1.  For any point x ~ E R n and any number a > 0 there exists a funct ion V ( x )  =_ Vo(x ~  C 
C2(P~( . ) (x~ V > O, satisfying the relations: L V - v ( V  ) < 0 inP~(~)(x~ V ( x )  --+ +co as x --, OP~(~)(x~ 
and V(x o) = V . ( x ~  x o)  = ~ .  

T h e o r e m  6.2 (the connection between the radius of the bali in which the solution is defined and the value 
of the solution at the center of the ball). I f  u is a solution of inequality (1.1) in the ball B R ( x  ~ then 

lu(xn)t _< ~ r - ' ( R / v ~ ) ,  

where r-l( .)  is the function inverse to r(.) 

From this fundamenta l  theorem we obtain Theorems 6.3-6.5. 

T h e o r e m  6.3 (behavior of solutions in an unbounded domain).  I f  the funct ion u is a solution of inequality 
(1.1) in the exterior of the compact set ~,  then 

lu(x)[ < nr - ! ( (d i s t ( x , c~ f~ ) ) / v /n ) ,  x C R n \ ~.  

It is clear from this inequality that  u(x)  --+ 0 as I~1 ~ + ~ .  

T h e o r e m  6.4 ( the behavior of solutions in a neighborhood of an isolated singular point). Suppose the 
domain ft contains 0 and u is a solution of inequality (1.1) in f~ \ {0}. Then for  x E f~ \ {0} we have 

I~(x)l _< ~r-~(Ixl /v '~)- 
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R e m a r k  6. The removable singularities theorem for a solution of the elliptic equation (6.1) in the case 
of a function ~ of the form (9) with q >_ 2/ (n  - 2), n > 3, was proved in [1] (for L = A) and in [3; 4] 
for q > 2/(n  - 2), n _> 3 (for a general linear operator L of divergence and nondivergence structure). The 
solutions of (6.1) for L = A and 0 < q < 2/(n  - 2) with isolated singularities were studied in [19]. 

T h e o r e m  6.5 (uniqueness of the solution of the exterior problem). Let f~ C R ~ be a bounded domain and 
U 1 a n d  U 2 solutions 4 Eq. (6.1) in R ~ \ O, and let u~ = u2 on On. Then u~ = u2 in R '~ \ f~. 

This last theorem follows from Theorems 6.3 and 6.0. 

2. The  case of  cond i t ions  (B) and  (C). Solut ions  of  c o m p a c t  suppor t .  Suppose condition (B) or 
(C) holds, and let s :  [0, +co) ~ [0, s(+ec)) be the strictly increasing continuous bijection defined in (5.1), 
where s(+ec) = +oo under assumption (B) and s(+oc) < +oc under assumption (C) (cf. Proposition 1.1). 
The following result holds. 

L e m m a  6.6. For any point x ~ E R ~ there exists a function U(x) =_ U(x ~ x) E C2(p~(+~)(x~ U > 0 
satisfying the relations 

LU - ~(U) < 0 in P4+~)(x~ 

and U >_ s - l (R)  on OPR(x ~ for all R > 0 if condition (B)  holds, while 

U(x) 

as x ~  if condition (C) holds, and 

where 8-1( . )  is  the function inverse to s(.). 

Suppose condition (B) holds. Then Lemma 6.6 and Theorem 6.0 imply the following result. 

T h e o r e m  6.7. Let f~ C R ~ be a bounded domain and u a solution of inequality (1.1) in R n \ ~ such that 
lu(x)l _<  -a(o(Ixl)) as Ixl-  Then u - o outside a bali B.o(O) of suJSciently laTge radius Ro. 

Now suppose that condition (C) holds. Then Lemma 6.6. implies the following results. 

T h e o r e m  6.8. I f  u is a solution of inequality (1.1) in R ~ \ (~, where ~ is a bounded domain in R ~, then 
u - 0 outside the ball with center at zero and sufficiently large radius. 

T h e o r e m  6.9. I f  u is a solution of Eq. (6.1) in R ~, then u =_ 0 in R ~. 

P A R T  II  

T H E  D I V E R G E N C E  P A R A B O L I C  E Q U A T I O N  

w 7. FUNDAMENTAL LEMMAS. ESTIMATES FOR SOLUTIONS 

In the second part of this paper we study the properties of solutions of Eq. (2), in which aij(t,  x) = aji(t, x) 
( i , j  = 1 , . . . , n )  are bounded measurable functions satisfying (3) and the exponent q = const is either 
positive or satisfies - 1  < q < 0. In addition to the notation introduced in Part I, we shall use the following: 
C(D) is the space of continuous functions in the domain D; LP(D) (resp. Lfoc(D)) is the space of measurable 
functions in the domain D for which the pth power of the absolute value is Lebesgue integrable (resp. locally 
Lebesgue integrable), p _> 1; W#'I (D)  (resp. W~,~loc(D))is the space consisting of elements u( t , x )  E LS(D) 

(resp. u( t ,x )  E L~oc(D)) having generalized Sobolev derivatives ut, ux, E LS(D) (resp. ut, u~  E L~o~(D)), 
0 

i = 1 , . . . ,  n; W# (D) (D C R n) is the Banach space of elements u(x) E L2(D) having generalized Sobolev 
derivatives ux~ E LS(D),  i = 1 , . . . , n ;  a dense subset of this space is formed by the set of infinitely 

_ _ ( f  ,1/2 differentiable functions with support in D, and the norm is defined as IlUllw~(o) Ux,U~, dx) ; 

D 
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u~ = (ux~ , . . . ,  x ~ )  is the gradient  of the funct ion u on x C R~; mes denotes  (n + 1)-dimensional  Lebesgue 
measure; N is the set of na tura l  numbers;  and a.e.  means  almost  everywhere,  almost  every, etc. 

A solution of Eq. (2) in a bounded  domain  D C R ~+1 is a funct ion 

u = u( t ,x)  E W I ' I ( D ) N  C(D), 

satisfying the integral  ident i ty  

-//(aiju~i~x ~ +utr = ao / /  lulqu~dxdt 
D D 

(7.1) 

o o 

for any test funct ion  ~b = ~b(t,x) E W~'I(D) which belongs to the space W~ (Dr) : ~b(t,.) CW21 (Dr) as a 
funct ion of x for a lmost  every t such tha t  Dt = {(t, z) E D :  t = const} r e .  

I f / )  C R ~+~ is an u n b o u n d e d  domain,  a solution of Eq. (2) in the d o m a i n / )  is defined as a function 

1~1 ~ 
u = u( t ,x)  e W2,1oc(D)n C( / ) ) ,  

for which the  integral  ident i ty  (7.1) holds for all the test functions W/ ment ioned  above in any bounded  
subdomain  D ~ D. 

We now state  a weak maximal  principle for a solution of semilinear inequalities in a form suitable for 
our use. Let f ( t ,  x, u) be a measurable  locally bounded  funct ion in R n+I  x R 1 such tha t  for any bounded  
domain  D C R n+l and any funct ion u(t ,x)  E W ~ ' I ( D ) N  C(D) the funct ion f ( t , x , u ( t , x ) )  belongs to the 
space L2(D).  We shall say tha t  the  funct ion u = u(t ,x)  is a solution of the  inequali ty Lu >_ f ( t ,  x, u) 
(where L is the  opera tor  of (2)) in a bounded  domain  D C R n+l if u C W I ' I ( D )  M C(D) and the integral 
inequality 

D D 

holds for all the  test funct ions ~b ment ioned  above with ~ >_ 0 almost  everywhere in D. A solution of the 
inequality Lu <_ f ( t ,  x, u) is defined similarly. 

T h e o r e m  (weak m a x i m u m  principle).  Let the function u( t , z )  C W'~' I (D)A C(D) be a solution of the 
inequality Lu >_ 0 in a bounded domain D C R n+l, and let u(t, z) <_ 0 for (t, x) C F(D).  Then u(t, x) <_ 0 

(t, x) e D. 

This theorem implies the  following corol lary .  

T h e o r e m  7.0 (weak m a x i m u m  principle for semilinear inequalities). Let D C R n + l  be a bounded domain, 
and let the functions u~ , u2 E W I ' I ( D ) N  C(D)  be solutions of the inequalities s 1 "~ f ( t, X,, Ul) and ]~u 2 ~_ 

f ( t ,  x, u2) in the domain D, while the function f ( t ,  x, u) satisfies (5). I f  ul >_ u2 on r (D) ,  then _> u2 in 
D. 

P r o o f .  Suppose the theorem is false, i.e., tha t  there exists a point  (t ~ x ~ E D \ r (D)  for which 

Ul(t0 ,x  0) ~(U2(t0,X0), (7.2) 

Consider the  connected  componen t  G of the set {( t ,x)  E /)  : ul ( t , x )  < u2(t,x)} containing the point 
(t ~ x~ Set z = u2 - u t .  Then  z = 0 on F(G) and z > 0 in G. The  funct ion z is a solut ion of the inequality 

Lz = C( t ,x ) z  >__ 0 in G, 

where the coefficient (3.3), which is nonnegat ive  by (5), is well-defined in G (since z > 0 in G). Applying 
the preceding theorem,  we obta in  the inequali ty z _< 0 in G, contradict ing (7.2). 
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The  est imates  given below for solutions are valid wi thout  any restrict ions on the exponent  q > -1 .  
The solutions of Eq. (2) are considered in bounded  domains and unders tood  in the sense of Definition (7.1). 
In what  follows we assume that  if the center of the top is not explicitly shown in the no ta t ion  for a cylinder 

r)H[ T zOO. BR(xO). QH,R then  it is unders tood  tha t  QR H = ~R~ , j, we adopt  an analogous convention for balls BR = 
In the following l emma we use an idea of J. Moser [20]. 

L e m m a  7.1.  Suppose the function u is a solution of Eq. (2) in the cylinder QH, and let p > 2. Then for 
the numbers h E (0, H) and r E (0, R) we have the inequalities 

f /  p2 ff  [(u[ul�89 ~ el(p= 1)2(h -1 -[-r -2) lu[Pdxdt, 

H - - h  QR- ~ Q~ 

max ]u(t,x)lPdx<_C~(p-i)2(h-1 +r -~) I~l~dxdt, 
te[r-(H-h),Tl 

B~_ ~ Qg 

(7.3) 

(7.4) 

where the positive constant cl depends only on the A of (3). 

P r o o f .  For R > 0 and a number  r E (0, R) we define the t runca t ing  funct ion (R,,-(P), P >-_ 0, by the formula 

1, i f0  <_ p < R - r ;  
eR,~(p)= ~ ( R - p )  i f R - r < p < R :  

0, if p ~ R, 
(7.5) 

and we set 
1 x)lu(t,x)[p_2~2(t,x) ' r  = {p~(t, 

where 
�9 (t, ~) = ( . , h ( T  - t ) .  (R,~(Ix - ~~ 

Then  
0 

1,~ H C H e W~ ( Q R ) n  (QR),  r  EW~ (BR) 

for almost every t E (T - H, T], and by (7.1) we have 

j f  1 fJ luF+~ - (aiju~j ~P~, + u t r  dx dt = ~aop dx dt >__ O. 
Qld Q g  

(7.6) 

We set 

Remarking tha t  

(7.7) 

ut~ = ~-(w2)t ~2 a i j u z  i ex~ = 2 p -- 1 9 2  + 2 w ~  (Px~ ' p " aijwzlwxj �9 aijwzj , 

we find by (7.6) that  

l-f,/(w2)~22 dx dt + 2 p - 1  f f P J J aijwziwzJ 
Qg 

92 dx dt < - 2  ] ]  aijwx~ ~xiwg2 dx dr. 
d d 

Q'd 
(7.s) 

Applying the Schwarz inequality 

la~j~*~jl ~ ~ ' ~ ,  (7.9) 
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and then Cauchy's inequality 

p - 1 
with c - < 1, we have 

P 

2lab[ _< ca 2 + ~-1b2, c > O, (7.1o) 

2[aijw~ 62~w62 1 <_ 2(aijw~w~j 622,1/2,aij62xi62xjW2,1/2) ~, ) ~ p -  1 - - a i j w x  i Wxj 
P 

622+ - -  P p -~aij62zi62xJ w2, 

so that  by (7.8) 

2(p - 1) (wZ)t 62zdzdt+ aijw~,w=i622dzdt<_ (p _-- 1)2 aij62~,62=j w2dxdt. 

Q'g O'g Q~ 

Using assumption (3), adding to both sides of the last inequality the expression 

/ P / /w2(622) t  dz dr, P w26262~ dz d t -  2@ - 1) 
p - 1  

Q'g Qg 

and taking account of the inequality X > 1, we find after simple computat ions that  

2 ( p -  1) (w2622)tdzdt + [Wx12622 dxdt ~ (p~  ~2 w2([62~12 +16262'l)dxdt" 

Q~ Q~ Q~ 

Furthermore,  using the reasoning in the proof of Theorem 3 of [20], keeping in mind (7.7) and the fact that 
62 = 0 for t = T -  H and 

62 = 1 in  H - h  QR--R a n d  [62x[ 2 Av [6262t1 -~< r - 2  -J- h - 1  

we arrive at inequalities (7.3) and (7.4). 

L e m m a  7.2. Let the function u be a solution of Eq. (2) in the cylinder Q~, p >_ 2; and let 0 < r,~ < H 
= ~m ) , r n C N .  Then and 0 <pm < R be strictly monotonic sequences of numbers, rn E N. Set Qm Q o.,( T, x ~ 

in the case of increasing sequences Tm, pm we have the inequality 

_1 //[uf +q c2IQ(m)// [ufdxdt, m e N ,  -~pao dz dt < 

Qm Q~+2 

(7.11) 

where 

/ C l ( ~ )  w (Tin+ 2 -- Tm_t_l) -1  -~- (Din+2 -- Din_t_1) - 2  - ~ - ( / g r n + l - / g i n )  - 2 ,  

and in the case of decreasing sequences Tm and Pm the following inequality holds: 

_i j r ~  ]u] p+q c2K2(m) / /  [uf da dt, m E N ,  -~pao dx dt <_ 

Ore+2 Q,~ 

(7.12) 

where 
K2(/Tt)  = (Trn -- Trn+l )  -1  -~- (Din -- Pm-t-1) - 2  "~- (Prn+l  -- P r o + 2 ) - 2 ;  

and the constant c2 depends only on A. 
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P r o o f .  It suffices to prove inequali ty (7.11) since (7.12) can then  be obta ined f rom (7.11) by relabeling. 
Set 

~ m  - ~ ( I x  - ~ ~  = G ~ + ~ , o ~ + , - , ~ ( l x  - ~ ~  

and 
1 2 

where the funct ion ~R,~(P) is defined in (7.5). Since the funct ion r in (7.1) is not assumed to vanish on the 
bo t tom of the cylinder QHR (i.e., for t = T - H) ,  we find by (7.1) tha t  

T T 

I I  ' i l  ' I f  - (aiju~sr , +utO)dxdt  = 7pao lulP+qxmdxdt >_ -~pao lul"+qdxdt. (7.13) 

T- rm+t  Ba T - r m + l  BR Q,~ 

We now find an upper  bound  for the lef t-hand side of (7.13). Using the no ta t ion  of (7.7), and taking 
account of the relations 

1 2 
utr = 7(w Xm)t, 

we obtain 

1 
aijuxj r 2P = Xrn'aijwxiwxj -4-w'aijWzj__ .(Xm)zi, 

P 

T T 

- - i  i (a i ju~ j r162  i i Xm" 
T- rm+l  T- rrn+l 

T 
1 1 

-- / / w ' a u w x j ( X m ) ~ ' d x d t - 2 / w 2 ( T ' z ) x m d z +  2 / w 2 ( T -  
T--rm+l 

aijwxlwxj dx dt 

Tm+l,X)Xm dx ~ A 

(here the integrat ion with respect to x extends over the suppor t  of the funct ion Xm). Now remarking 
that  Xm _< 1 and applying assumpt ion  (3) to the integrand in the first integral of the last equali ty and 
inequalities (7.9), (3), and (7.10) (with a = Iw~l, b = I(~m)~l.  Iwl, c = 2) to the in tegrand in the second 
integral, and taking account of the fact tha t  the th i rd  integral is nonposit ive,  we find tha t  

f f f f 1 f w2(T ,x)dx. (7.14) A <_ 3A Iw~i2 dxdt + A I(Xm)~12lw[2 dxdt + -~ - r m + l  

Qm-t-1 Qrn-I-1. Bprn+l 

Since [(Xm)xl ---< (Prn+l - tim) -1, est imat ing the first and thi rd  terms of the r igh t -hand side of (7.14) 
using inequalities (7.3) and  (7.4) with  R = Pro+2, r = flrn+2 -- tim+l, H = Tm+2, h = rm+2 - Vrn+l, we 
obtain an inequali ty which together  with (7.13) gives inequality (7.11). The  l emma is now proved. 

The  following es t imate  holds for the m a x i m u m  modulus  of a solut ion of Eq. (2) in terms of the L p 
norm of the solution: 

L e m m a  7.3 (similar to a theorem of J. Moser [20]). Let the function u be a solution of Eq. (2) in the 
cylinder QH and p > 2. Then for h C (0, H) and r E (0, R) we have the inequality R 

< C3 J (h  -1  -~- r--2)k/(k-1)(mesQH'l-1 I f  - " " R; lul pdxdt, m a x  
J J  
eI~ 

where c3 is a positive constant depending only on n and A and 

= J(R, r, H, h, n) = (l (--R-L-r-r)R J 

k=  

( )} H - :  h (R2 + H)  (1 + R) 4 (1 § H) 2 kl(k-1) 
R 2 + H 

{ is,  > 2, 
7, i f n =  l,2. 

(7.15) 
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We note that  the explicit dependence of the constant in inequality (7.15) on the quanti ty  h -1 + r -2 is 
used in an essential manner  to establish the main results for solutions of Eq. (2) in the case when - 1  < q < 0. 

The proof of Lamina 7.3 is carried out by applying the i teration technique of J. Moser [20]. For the 
sake of completeness we shall present it here. 

Setting 

DUn(w) = H -1R -~ / / w 2 dxdt  

o~ 

for a function w = w(t, x) defined in the cylinder QH, we use the following known lemma, which is a 
corollary of the Sobolev imbedding theorem: 

L e m m a  7.4. The inequality 

(DH(wk)) 1/k ~ c4(g-l l t~2-n f f  ]wzl2dxd~i2r- t~-n �9 

q~ 

max / w2(t,x)dx) t6[T-H,T] 
BR 

holds for any function w for which these integrals exist. The constant c4 depends only on n, and the quantity 
k is defined in Lemma 7.3. 

For a solution u of Eq. (2) in the cylinder QH and p > 2 we set R 

- - ~ ( lu l l )  ~ ,  . 0 , 1 , 2 , 3 ,  , 

= Q / t - h .  where and we remark that  (u,)  k u~+l. We define a sequence of cylinders as follows: Q i / =  R-~. , 

( ) ( h , =  1 - 1 + ( 2 i / _ 1 ) H  h, r i / =  1 - 1 + ( 2 , _ 1 ) R ) r ,  , = 0 , 1 , 2 , 3 , . . . ,  

_ _  _ _  f)H--h so t h a t R - r < R - r i / < R , H - h < H  h , < H ,  a n d Q 0 = Q R  s , Q i / - - ' , ~ R _ ~  a s , ~ + o c .  
We apply Lemma 7.4 (setting w = u , ,  R = R - r,+~, H = H - h . + l )  and then inequalities (7.3) and 

(7.4) with 

R = R - r , ,  H = H - hi/, h = hv+l - h, ,  r = ru+l -- ru, p = pk"; 

(r,ig_h~,~cl / [,~g_hp_~ 1 ( R--_ri/ )n  H -- hi/ ( . ~ _ _  Ti/)__~t(i~ - -  hp)__ 1 X 
JJR--r~+l I, Uu+I)) 1/k "~ k-cJR-r.+l ((~tt~)) 1/k ~ C4\R__ Fi/_l_ 1 H - hi~t1 

) 2 / /  lpk ' - l )x]2  X ~'l.(R--ri/+l l(ul~t[ dx dt 

Q~+I 

J I ( ,xlj. < tf[T-(H-h~+l),T] 
BR-r~+ 1 

H~ (;ki/)2 
ClC4(~__~_r)lr~ n H-H h(R2 -~ Z ( p V : i ) 2  {(hu+l - h v ) - i  nc(ru+l--V~')-2}DH---rh;(ui/)" 

Now extract ing the k" th  root in this inequality and taking into account the relations 

( r ~ + l  - r . )  - 2  < 4 ~+1 (1 + / / ) 4  R~ ~ -~ ,  (h~+~ - h . )  -1 < 4 ~+~ (1 + H )  ~h_~ ,  
- -  - -  H 

( p h i _ l )  2 < 4 ,  since pk v > p >__ 2, 
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and sett ing 

( r ~ H - h .  ," , ,1/k u R ~ H (1 (1 

we obtain the following recurrence relation: 

Ou+, <_ 4 (~+l)/k" {c5(n, ;)" J l "  (h -1 + r - 2 ) }  l /k"  " Ou. 

Now carrying out the corresponding i terat ion process, we find tha t  

4 j=~ {C5(~,/~)" J1" ( h-1  + r -2)} /=~ " O0 ~__ Ov+l :> 

H R ,~ / { 
/ ( lu lp)  r§ 

H - - h  
Q R - r  

dx dr} 1/k~+1 ---+ max  ]u[ p. 
I] "-~ r o H - h 

" ~ R - - r  

oo 1 k 
It now remains only to remark  tha t  ~-]5 ~j -- 

k 1" j=O 
The l emma is now proved. 

w 8. T H E  S U P E R L I N E A R  E Q U A T I O N  

Throughout  this section we assume tha t  the exponent  q in Eq. (2) is positive. 

T h e o r e m  8.1.  Let the function u be a ~olution of Eq. (2) in the cylinder Q~ = (T - 1, T] • Bl(X~ 
at the center of the top of the cylinder we have the inequality 

Then 

_< (8.!) 

where the positive constant (~o depends only on n, A, ao and q. 

P r o o f .  Let c > 0 be a number  satisfying the condit ion 

(1 + c ) 3 =  1 + q/2 (8.2) 

(so that  c depends  only on q). In what  follows we shall use the no ta t ion  of L e m m a  7.2. Wi th  this nota t ion  
we set 

6 i l  2 p m = ~ -  j~ ,  T in=pro ,  m c N ,  
j= l  

so that  the increasing sequences Pm and vm are bounded:  0 < Pm< 1, 0 < ~-m < 1 and Pm Y ! and T m T 1 
a s  ~ t  T O0. 

We remark tha t  
Pm+] -- Pm >_ dl m - 3 ,  7"m+1 - Tm >-- d2 rn-6, 

where dl and d2 are certain positive constants;  therefore 

max{(W2m+l -- T2m) -1,  (P2m+l -- fl2m) -2,  ( f l 2 m  - -  fl2m--1) -2} ~ dry6, (8.3) 

where d is a positive absolute constant .  
We set 

Mm = / /  'u'2 dx dt, 

Qm 

where the cylinder Qm is defined in Lemma  7.2. 

mEN, 
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The theorem is proved by contradiction. Suppose the inequality 

lu(T, x~ > '~o (8.4) 

holds, in which the number  o~0 = a0(n,  ~, a0, q) > 0 in (8.1) will be chosen below. Since the function u is 
also a solution of Eq. (2) in the cylinder Q1, applying Lemma 7.3 with p = 2, we obtain 

M~ = f / l u l  ~ dxdt  ___ c0~maxlul ~ >_ cglu(T,x~ ~ > (c0a0) 2, (8.5) 
J J  r2 Q~ Q O 

1 where r0 = ~Pl, and the constant c0 depends only on n and s 
We now choose a0 so that  the equality 

(COO/0) 2 -- exp{(1 --~ s (8.6) 

holds, where the constant k0 = ~0(n, A, a0, q) > 0 will be found below. We shall prove by induction that  

M2m-,  > exp{(1 + s176  '~  C N; (8.7) 

by (8.2) this will lead to a contradiction with the fact that u E L2(Q{). Indeed, when m = 1, inequality 
(8.7) holds by (8.4), (8.5), and (8.6). Suppose the re  is an  index  ,no E N such t h a t  

M2mo-1 > exp{(1 q- C)k~176 (8.8) 

yet 
M2~o+1 _< exp{(1 + c) k~176 

We shall show that  this is impossible. 
Applying inequality (7.11) of Lemma 7.2 with m = 2m0 - 1, we arrive at the inequality 

in which, by (8.3), 

f f 
ao I I  ful2+qdxdt ~ c2I(l(2mo -1)~u 

Q2m0--1 

K,(2-~0 - 1) _< sd,~, 
and c2 is the constant from Lemma 7.2, which depends on A. 

We now apply Jensen's inequality [21, p. 84] to the !eft-hand side of inequality (8.10): 

(// 7/ ]u(t,x)ldxdt _< ( m e s D ) ' - '  I~(t,x)l" dxdt, u >_ t, 

D D 

and, taking account of the fact that  q > 0, we obtain 

i i  Ittl2+q d$ d, = i / f  (l?.tl)2) 1+-~ dx dt; > 

Q2mo- 1 Q2-~o- 1 

(mesQ2m~ i i  l"l'd"<~t) '§ 
Q2m0--1 

Thus, combining inequalities (8.10), (8.11), and (8.12), we find that 

(M2mo-1) 1+~ _< aC#(mes @l):-~o~M2mo+l - c6(~, ~, ~o, q).~M2~o+~. 
ao 

(8.9) 

(8.1o) 

(8.11) 

> (mesQ~)-~(M2mo_l )  1+2. (8.12) 

(8.13) 
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From inequalities (8.13), (8.8), and (8.9), taking account of (8.2), we find that 

exp{(1 + c) = (exp{(1 + s176176 1+-} % 

(M2rn0_l)l+  < C6moM2m0+16 <_ C6mo6exp{(1 _]_s 

from which we find the following inequality for the index rn0 

exp{e(1 -1-s k~176 } < C6~rt ~. (8.14) 

We now choose and keep fixed a number k0 = ko(n, ),, a0, q) > 0 from (8.6) such that the inequality 

e(1 + c) k~ >_ (1 + e) -2mln{m 6. max(e, c6)} 

holds for all rn E N. With such a choice of It0 in (8.6) we arrive at a contradiction with (8.14). Therefore 
inequality (8.7) must hold. This proves inequality (8.1) with a0 from (8.6) depending only on n, A, a0 and 
q by virtue of the choice of k0. The theorem is now proved. 

T h e o r e m  8.2 (the connection between the dimensions of the cylinder in which the solution is defined 
and the value of the solution at the center of the top of the cylinder). There ezists a positive constant 
c depending only on n, A, no, and q such that if the function u is a solution of Eq. (2) in the cylinder 
QH =_ QH(T, Xo), the following inequality holds: 

lu(T, x~ _< c{min(H, R2)} -~/q < c(tI  -~/q + R-2/q).  (8.15) 

Proof .  We first assume that H = R 2. Eq. (2) is invariant under the following transformations of variables 
and functions: 

t ~ R ~ ( t  ' - T ) + T ,  x ~ R ( x ' - x ~  0' u ~ R - ~ / %  '. 

Under this transformation the cylinder Q~2 maps onto the cylinder Q1 and the function 

= ~ 2 i u'( t ' ,x ' )  R u ( R ( t - T ) + T , R ( x ' - x ~  ~ 

is a solution of Eq. (2) in the cylinder Q]. Applying Theorem 8.1 to the function u', we find that 
R2/q]u(T,x~ = ]u'(T,x~ <_ C~o = c, from which the desired estimate (8.15) now follows. 

In the general case, since the function u., as a solution of Eq. (2) in QHR is a solution of (2) in the 

cylinder r)R~ where R0 = @rnin(H, R2), we obtain (8.15) from the previous reasoning. '~R0' 
In the situations analogous to those of part I this theorem can be used to obtain information on the 

properties of solutions of Eq. (2). 

1. T h e  b e h a v i o r  of  so lu t ions  in u n b o u n d e d  domains .  Let the function u be a solution of Eq. (2) in 
one of the unbounded domains exhibited in w 3, See. 1. Then we have the following respective results: 1) 
lu(t, x)l <_ ct-Uq, (t, x) E (0, +oc) x R n, and consequently u(t, x) ~ 0 as t ~ +oo uniformly with respect to 
x ~ R~; 2)I~(t, x)l _< c(x,) -2/q, ( t ,x)  e {xi > 0}, and consequently u( t ,x )  --. 0 as xi --~ +oo uniformly with 
respect to ( t , ~ )  ~ 3 ) i u ( t , x ) l  _< c{min(t ,x~)} -1/q, ( t ,x)  E {t > O, xi > 0}, and therefore u( t ,x )  ~ 0 
as t --* +oo and xi --* +oo uniformly with respect to 2i E R~- I ;  4) [u(t, x)[ _< c{min(t, dist (x, Oft))}-Uq, 
( t ,x)  E (0,+oo) x (R ~ \ ft), and therefore u(t ,x)  ~ 0 as t ~ +oo and Ixl +oo; 5) lu(t ,x )l _ 
c{min(Ha,R~)} -l/q, ( t z ,x~)  E l, and consequently u(t~,x~) -* 0 as (t~,x~) E l, ~r ~ +oo. 

2. Behav io r  of so lu t ions  nea r  t he  b o u n d a r y  of a cy l inde r .  Let f~ C R n be a bounded domain, and let 
the function u be a solution of Eq. (2) in the cylinder (0, T] x f~ or the unbounded domain (0, T] x (R ~ \ ft). 
Then the following inequality holds: 

lu(t, x)l <_ c{min(t, dist2(x, 0~'~))} -1/q 
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3. Un iquenes s  and cont inuous  d e p e n d e n c e  on b o u n d a r y  condi t ions  for the  so lut ion  of  the 
exterior  init ial  b o u n d a r y  p r o b l e m .  In (0, +co) x (R ~ \ ~), where ~2 C R ~ is a bounded domain, we 
consider the exterior initial boundary problem (3.1), (3.2) for Eq. (2), where )/(t, x) is a bounded function 
on [0, +eo) x 0Q. The following theorem is established on the basis of Theorems 8.2 and 7.0 in analogy 
with Theorem 3.2. 

T h e o r e m  8.3. If  the functions u' and u" 6 C([0, +co) x (R n \ ft)) are solutions of the problem (2), (3.1), 
(3.2) with boundary functions X' and X" respectively, then for (t ,x) e [0, +ec)  x ( n  n \ f~) the following 
inequality holds: 

sup I x ' - x " l .  
[o,+oo) x a~ 

It follows from this theorem that the solution of the exterior initial boundary problem is unique. 

4. T h e  removable  s ingular i t ies  theorem.  

T h e o r e m  8.4. Let the coefficients aij, i , j  = 1 , . . . , n ,  of the operator L be continuously differentiable 
functions in R '~+1. I f  Q c R '~+1 is a domain containing the point (0,0), q > 2/n, and u is a solution of 
Eq. (2) in Q \ {(0, 0)}, the function u can be defined at the point (0, O) so as to be a solution of Eq. (2) in 
Q. 

On the basis of Theorems 8.2 and 7.0 this theorem can be proved in analogy with Theorem 4.1. When 
this is being done, the solvability of the corresponding initial boundary problem for Eq. (2) follows from 
the results of [16, Ch. 7], and the existence of the fundamental solution E(t, x; r, ~) of the operator L and 
estimate (4.7) with I(1,  /s kl ,  and/{2 depending only on n, A, and To + To follows from [17, w167 7-8] (el. 
also [18]). 

9. T H E  S U B L I N E A R  E Q U A T I O N  

In this section we assume that - i  < q < 0 in Eq. (2). 

T h e o r e m  9.1. There exists a positive constant /30 depending only on n, A, ao, and q such that if the 
fanction u is a ~olution of Eq. (2) in the cylinder QI = (~r_ 1,T] • BI(X ~ and 

lul n0, (9.1) 
Q1 

then the equality u ( T ,  x ~ = 0 holds. 

Proof .  Fix an arbitrary p > 3. Let c > 0 be a number satisfying the condition 

( l + c )  -4 = l + q / p  (9.2) 

(so that c depends only on q). From now on we shall use the notation of Lemma 7.2. In this notation we 
set 

0 
pm -- 1 + 77 7-m = p 2  m e N, 

7----m 

so that the decreasing sequences pm and rm are bounded: 

1 1 ~<pm_<l, ~ <~-m < 1, (9.3) 

pl = = 1; pm I 1 /2 ,  I 1 /4  as m T 
Remarking that 

P m  - P m + l  --~ ~'~-~ m - 2 ,  
7r ~ 

T m --Trn+l ~ 94?29,--4 , 
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we obtain the following inequalities: 

max{(T3m -- T3m+l) -1 ,  (P3m -- P3m+l)  -2 } __< d 7yt4, 

max{(T3m-2  - T3m-1) -1,  (P3m--2 -- P 3 m - 1 ) - 2 , ( P 3 m - 1  -- P3m) -2}  -< dtr~l, 

where d is a certain positive absolute constant. 
/31/4 and We set Q ~  = ~o~1/2 

M m  = m a x  I 1, qm 

where the cylinder Qrn is defined in Lemma 7.2. 
We now define the number/3o in (9.1) as follows: 

m C N U {oo}, 

flo = exp{--(1 + C)k~ 

(9.4) 

(9.5) 

where the quantity ko = ko(n, A, ao, q) > 0 will be chosen below. Starting from this, we prove by induction 
that 

-~3m--2 ~< exp{ - (1  + c)k~ m C N. (9.7) 

When m = 1, inequality (9.7) holds by (9.1), (9.6), and the equality Q1 = Q~. Assume that  there exists an 
index m0 E N such that  

-M3mo--2 <_ exp{--(1 -4- 5)k~176 (9.8) 

yet 
M3mo+l > exp{- (1  + c)k~176 (9.9) 

Since p + q > 2, applying inequality (7.15) with 

R = fl3m0, r = fl3mo - -  P3mo+l, H ~-~ T3mo, h = T3m o - -  T3mo+l, 

and then inequality (7.12) with m = 3m0 - 2 and taking account of (9.4), we find that  

( M 3 m o + l )  p+q -~- max p+q < c3Jmo(mesQ3mo)-1((73mo - Tam0+1) -1 + 
Q3m0+l 

(fl3m~ - P3mo+l )-2)C~-'~ //I 1 
Q3m 0 

4 k 2c2 [ [  dx dt < caJmo(mes Qoc)-l(2dmo)~ I(2 (3m0 - 2 )  [uf  dx dt 
JJ pao 

Q 3 m  0 -- 2 

2c2cames Q1 
< J m o ( 2 d m 4 ) k / ( k - 1 ) I ( 2 ( 3 m o  -- 2)(1~amo_2) p, (9.10) 
- pa0rnes Qoo 

where the quanti ty Ymo is given in terms of the d of (7.15) by 

Jmo -= J( f l3mo,P3mo " D3mo+l,T3mo,T3mo - - T 3 m o + l , T t )  ~ (2n+9) k / ( k -1 )  ~- C7(n) 

by virtue of (9.3), and 

K2(nmo -- 2) ---- (T3m0_ 2 -- T3mo_l) -1 -[-(P3mo--2 -- P3mo- l )  -2 -- (P3mo-1 -- fl3mo) -2 ~ 3dm~ 

by (9.5). The constants c2 and ca in Lemmas 7.2 and 7.3 depend respectively on A and on n and A. 
Thus, taking the pth root in (9.10), we obtain the inequality 

{ 6dc2c3c7mes Ql }1 
(M3mo+ 1)1+~ ~ paomes Qo~ (2d)_~_ r FmoMamo_27 --~___ C8(rt,/~, ao)m~2~/iamo_2 ' 

where 7 = P 
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By (9.11), (9.8), and  (9.9), taking account of (9.2), we have 

exp{--(1 + s k~176 ~--- (exp{--(1 + s176176 l+t < (M3m0+l) 1+~ 

__< csrnJMam0-2 < csmJexp{-(1 + e)k~176 

from which we find tha t  
exp{c(1 + c) k~176 < csm~. 9.12) 

From this point  on we reason as in (8.14) (with obvious modifications).  In this way we find and hold 
fixed the  quant i ty  k0 = ko(n, A, a0, q) > 0 of (9.6) such tha t  inequali ty (9.12) will be violated. This proves 

(9.7). 
Taking account  of (9.2) and  passing to the limit as m ~ ec in (9.7), we find tha t  

max lul = Mo~ ~ o, 
Q~ 

from which, in part icular ,  it follows tha t  u(T, x ~ = 0. The theorem is now proved. 

T h e o r e m  9.2.  I f  the function u is a .solution of Eq. (2) in the cylinder QH -- Q H ( T  ' x o) and 

max lul _< 9o rain( H-~/q,  R-2/q) ,  
Qg 

where flo is the constant from Theorem 9.1, then u(T, z ~ = O. 

P r o o f .  We first assume tha t  H = R 2. We carry out a change of variables and functions: 

x~ = 1 t' = 1 T) + T, u ~ R~u .  _fi(~ _ x o) + ~o, - ~ ( t  - = 

Under  this t ransformat ion  the cylinder Q~2 maps  onto the cylinder Q1 and the funct ion u'( t ' ,x ' )  = 
R2/qu(t ,x)  will be a solut ion of Eq. (2) in the cylinder Q] such tha t  max  I~'1-/30. Applying Theorem 9.1 

ol 
to the funct ion u' ,  we find tha t  R2/qu(T, x ~ = u'(T, x ~ = O. 

In the general case if R0 = x /min (H ,  Re), then  by the hypothesis  of the theorem we have 

ma~ I~I ~ ~ax I~I ~ ~o(Ro) -~/~. 
" ~ R  0 

Consequent ly u(T, x ~ O.  The  theorem is now proved. 

T h e o r e m  9.3 (vanishing of the  solution).  Let f~ C R ~ be a bounded domain, and let the function u be a 
solution of Eq. (2) in the unbounded domain (0, +ee )  x ( R  n \ (~) such that 

lu(t,x)] = o(min( t  -1/q, Ixl-2/~)), t -~ + ~ ,  Ixl ~ + ~ .  

Then there exist  Ro > 0 and Ho > 0 so large that  ~ - 0 on [Ho, + ~ )  x ( R  n \ BRo(0)). In particular this 
theorem holds for bounded solutions. 

P r o o f .  Let R1 > 0 be such tha t  ft C BRI(O). For 0 < c i /3o 91/q there exist Po = p0(c) > •1 and 
To = ~-o(C) > 0 such tha t  

lu ( t , x ) [  <_ c m i n ( t - 1 / q ,  jxl - 2 / q )  

for t _> To and Ix] _> po. Consequent ly  if [x~ -= 2R_> Ro = 2po, t o = 2H_> Ho =- 2To, then  on the set 
{( t ,x)  C (0, +cx~) x ( a  n \ ~ ) :  R _< Ixl < 3R, H < t < 9H} we have the  inequali ty 

lul _< 909 l/q min{(9H)  -1/q, (3R) -2/q} -</30 min(HA1/q ,R-2 /q) ,  
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QR(t ,x~ which is contained in the set in question. Applying which holds in particular in the cylinder H 0 
Theorem 9.2, we obtain the equality u(t ~ x ~ ~- 0. The theorem is now proved. 

The proof of the following theorem is analogous to the proof of Theorem 5.4. 

T h e o r e m  9.4. A bounded solution u E C([0, +co) x R '~) of the Cauchy problem for Eq. (2) with an initial 
function u(O, x) = Uo(X) of compact support has compact support in [0, +cx)) x R ~. 
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