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Abstract—We construct asymptotic solutions of the Navier—Stokes equations describing periodic
systems of vortex filaments entirely filling a three-dimensional volume. Such solutions are related
to certain topological invariants of divergence-free vector fields on the two-dimensional torus. The
equations describing the evolution of of such a structure are defined on a graph which is the set of
trajectories of a divergence-free field.
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1. ASYMPTOTIC SOLUTIONS OF THE NAVIER—STOKES EQUATIONS
AND THE TOPOLOGICAL INVARIANTS OF HAMILTONIAN FIELDS
ON THE TWO-DIMENSIONAL TORUS

1.1. The Structure of the Asymptotic Solution
The Navier—Stokes equations

0

o+ (W V)u+ VP =vAu,  (V,u)=0. (1)
describe the evolution of the velocity u(z,t) and pressure fields P(z,t) of an incompressible viscous
liquid (u is a time-dependent vector field in R and P is a scalar function, v is the the viscosity
coefficient). The periodic systems of Taylor-scale stretched vortices filling a three-dimensional volume
can be expressed as asymptotic solutions of these equations of the form

u(a:,t):U<S(x’t) S(z,t)

where h — 0, h? = v, and S(z,t) = (S1, S2) is the two-dimensional vector function, dS; and dS; are
linearly independent everywhere in the domain under consideration, and U(z, x, t) is 2w-periodic in the
“rapid” variables z = S/h. The axis of the vortex passing at time ¢ by the point z is directed along
the vector m(x,t) perpendicular to V.S and VSs. Substituting (2) into (1) and equating to zero the
coefficient of h=1 on the left-hand side of the equality leads to the following statement.

,a:,t>+hU1+..., P:H< ,x,t>+hH1+..., (2)

Statement 1.1. /f Egs. (1) admit asymptotic solutions of the form (2), then the function U
satisfies the equations

{(vaz)U+VZH:07 (3)

(V.,v) =0,
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and
(v, Vz)w =0, (4)

where YV, denotes differentiation with respect to the rapid variables z in the Euclidean met-
ric g = (VS;,VS;) on the torus T2, v; = 8S;/0t +dS;(U), and w = (U, m), where m is the unit
vector orthogonal to V Sy and V S,.

Remark. The construction of asymptotic solutions of the form (2) leads to the replacement of the
derivatives (a, V) (a is a vector field) by the derivatives (a, V) + h=1dS;(a)d/9z;, i.e., to the appearance
of a connection in the Cartesian product R3 x T2, whose horizontal space is defined by the vectors
a;0/0x; + b;0/0z; for which b; = dS;(a).

Remark. The equations for the two-dimensional vector field v are stationary Euler equations on the
torus with the given metric; the last equation for the function w implies that this function is constant on
the trajectories of the vector field v.

1.2. The Parametrization of the Solutions of the Euler Equations

The following step of the asymptotic procedure is to find equations for the parameters on which
the solutions of Eqgs. (3)—(4) depend. The papers [40—42, 54] dealt with the conjecture according to
which the topological invariants of divergence-free vector fields with respect to area-preserving (volume-
preserving, in the three-dimensional case) diffeomorphisms of the flow domain are parameters on which
the solutions of the Euler equations depend. Let us relate this conjecture to our case.

Consider a divergence-iree vector field v(z) on the two-dimensional torus; we assume that all
the equilibrium positions of this field are nondegenerate and, in addition, almost all the trajectories
are closed. Denote by I' the quotient of the torus by the trajectories of v; obviously, ' is a graph
whose vertices correspond to equilibrium positions and edges to domains smoothly stratified into closed
trajectories of v. There is a natural parametrization on each edge: to a periodic trajectory v we assign

the number
1
I=— / Al dZQ
2 5

(the action variable). The parametrized graph I' is an invariant of the field v with respect to area-
preserving diffeomorphisms of the torus; in addition, an (also invariant) function assigning to each
periodic trajectory of the field v its frequency w([) is defined on this graph; obviously this function is
continuous on I' and smooth on each edge. If the field v satisfies the Euler equations, then the function of
the frequency is related to the Bernoulli integral B = %02 + IT; for our present purposes, it is convenient
to use the function B instead of w.

Conjecture. There exists an open (in a suitable sense) subset in the set of pairs T', B, where T
is a parametrized graph and B is a continuous function on I, smooth on the edges, such that,
for each pair from this open subset, there is a smooth solution v,11 of the Euler equations (3) for
which the graph T is the set of trajectories of the field v, and B is the Bernoulli integral.

Remark. Any divergence-free field v almost all of whose trajectories on the torus are closed is
Hamiltonian; i.e., it can be expressed as the skew gradient of a scalar function ¢ (the current function).
In the coordinates z, we have

oY oY

622’ 621 ’

where v is a periodic function of z. Obviously, I is a Reeb graph (the set of level lines) of the function .

v =

Remark. Equation (4) means that w is a well-defined function on I'. Thus, the complete set of
“parameters” on which the solutions of Egs. (3)—(4) depend consists of triples I', B, w, where T is
a parametrized graph and B,w are continuous functions on I' which are smooth on the edges. The
functions B, w also depend on the “slow” variables x, . Below we obtain equations for these functions
determining the evolution of the vortex system.
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2. THE CO-KERNEL OF THE LINEARIZED EULER EQUATIONS

Equations for the parameters arise in the analysis of the next approximation in the asymptotic

procedure. Namely, after substituting (2) into (1), we equate the coefficients of A% on both sides of (1),

obtaining equations for the field Uy, which are the linearized equations (3)—(4) with right-hand side. The

required equations arise from solvability conditions for this problem, i.e., conditions for the orthogonality

of the right-hand side to the co-kernel of the linearized operator (3)—(4). First, let us describe the co-

kernel of the linearized Euler operator on the two-dimensional torus; it consists of divergence-iree vector
fields ¢ satisfying the equations

ov™
z)S T &_ zX — Y. 5
(0, V)6 = 5= €+ Vax =0 (5)

Statement 2.1. The co-kernel of the linearized Euler operator is infinite-dimensional; namely, it
contains any divergence-free field commuting with v.

Proof. Suppose that ¢ is a field commuting with v; we substitute it into (5) and apply the operator curl, .
Replacing (v, V)& by (&, V,)v = (0v/0z)E, we obtain

curl, <(U,Vz)§ — %7;* §> = curlz<<% — %v;)f) = (&, Vy)curl, v + (V,,€) curl, v.

Both summands on the right-hand side are zero, i.e., the field £ is divergence-iree and the scalar function
curl, v = A is constant on the trajectories v, and hence on the trajectories of the field £ (commuting
with v) as well. O

Remark. The space in the co-kernel of the linearized Euler operator is generated by the variation of
an arbitrary function B and can be interpreted as the space of functions on the graph I'. Indeed, let us
introduce the variables “action—angle” I, ¢ ([2, 3]) in an arbitrary domain of the torus smoothly stratified
into the trajectories v. In these coordinates, the fields v and £ are of the form w(I)9/0y and A\(I)9/0¢p,
respectively, where w(I) and A(I) are the frequencies of these fields on the trajectory corresponding to
the parameter I. Thus, the field ¢ is given by the function A\(I) defined on the graph T".

Remark. The co-kernel of the operator corresponding to Eq. (4) obviously consists of all functions
constant on the trajectories of the field v, i.e., of functions on I". Thus, the pairs of the functions on this
graph lie in the co-kernel of the linearized operator of system (3)—(4).

3. SOLVABILITY CONDITIONS FOR THE CORRECTION EQUATION

The equations of the first approximation (i.e., the equalities obtained by equating the summands of
order 1 arising after substituting (2) into (1)) have the following form:

(v1,V)v+ (v,V,)v1 + V. 11} = —F,
{ (Vz,01) = =G, (6)
(v, Vwy + (v1, V)w = —H,
where the vector function F' and the scalar functions G, H are expressed in terms of v, w, II, and by wv1,
w we denote the functions
ol = dSiU)la, wi = (Ur,m)ag,,

The conditions for the orthogonality to the space (described in the previous section) in the co-kernel
of the linearized Euler operator imply a relation between F, G, and H; more precisely, the following
statement is valid.

Theorem 3.1. Suppose that there exist smooth solutions of Eqs. (6). Then the functions F, G and
H satisfy the equalities

0B Oa ow
F +a(L2 = =+ | Gde = Hdp+a— =0. 7
[y( v) dp + a( )81 0, a7 [y dp =0, [y dy aé)[ 0 (7)

Here B =11+ %vz is the Bernoulli function, ~y is an arbitrary closed trajectory of the field v, ¢ is
the angular coordinate on the trajectories, and a is an auxiliary function on the graph T.
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Proof. Let usprove the first equality in (7). To this end, let us multiply the vector equation in (6) scalarly
by v, obtaining

(F,v) + (v, (0, V2)v' + (v}, Vo )v + V1) = 0.
Transforming the last three summands, we find that
(F,v) + (v, V) [(v,0}) + 11| + (v}, V,)B = 0.

Afterintegrating along the trajectory -, we see that the second summand vanishes; in addition, since the
Bernoulli integral B is constant on the trajectories, it follows that the last summand after the integration

will have the form
0B
/,( ,V.)Bdp = al/vzd%

where v! = v}9/0I + v »0/0¢p. This implies the first equality in (7) and the equality

a:/v}dgp.
g

Similarly, the second and third equalities are obtained by integrating along the trajectory « of the second
and third equations in (6). O

Remark. The conditions obtained above follow from the conditions for the orthogonality of the right-
hand side of (6) to the infinite-dimensional space (described above) in the co-kernel of the linearized
Euler operator (see Statement 2.1). Namely, equalities (7) are orthogonality conditions written in a
specially chosen “utility basis for this space,” which, roughly speaking, consists of §-shaped fields with
supports on the trajectories of the field v. It is this particular choice of the “basis” that allows us to
reduce the determination of the orthogonality conditions to averaging along the trajectories.

4. EVOLUTION OF THE VORTEX SYSTEM

Equalities (7) are equations determining the evolution of the “parameters” of the vortex structure,
i.e., of the functions B, w given on the graph I" and depending on the “slow” variables z, t. These
equations must be considered simultaneously with the Euler equations (3)—(4); the following statement
demonstrates their structure more fully.

Theorem 4.1. Equalities (7) are equivalent to the system of equations

0B 0B 9,0
e + ((U), V)B+aW+Q(B w) = WD B
da
o7 + (V. 0)) + E(B,w) = 0, (8)
ow ow 0 28
N + ((U},V)w%—aﬁ + K(B,w) = ED T

Here the angular brackets denote averaging along the trajectories of the field v,

92 \?
D*=g( | —
{(5) )
where g = det(V S;, V.S;) and the functions Q, E, K depend on B, w, I, z,t.
Proof. Consider the first of the equalities (7). The function F' is the orthogonal (to the vortex axis)

component of the vector field

- oU oIl 0*U
F=— I
N + (U,VU) + VII + VSJO (VSJ,VSk)a v
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Let us multiply this vector scalarly by V.S, obtaining

N 0 0 82Sk
(VS F) = <§ + (U, V)>(U, V) — <U 5 VSt 5 U> + (VS VII)
82

Let us replace (U, VSy) by v, — 0S)/0t, multiply the obtained equality by gx;v;, sum over j, k, and
integrate over the periodic trajectory of the field v. Taking into account the equality v?/2 = B — II, where
the Bernoulli function B is constant on the trajectories and, therefore, is factored out of the integral, and
performing cumbersome calculations similar to those in [40], we obtain the first of the equalities (8). The

other two equations are obtained in a similar way (by projecting the vector F onto the vortex axis m and
writing out the second equality in (7) in explicit form); note that the function w, just as B, is constant on
the trajectories of the Eulerian field v. O

Remark. The summands

0 50 0 50

ar” ar? ar? ar
in Eqgs. (8) describe the effect of viscosity of the liquid on the vortex system under consideration. Note
that the “coefficient of viscosity” D? depends on the unknown functions B, w. A similar phenomenon
arises in the description of well-developed turbulence: dynamical equations contain the so-called
turbulent viscosity depending on an unknown velocity field. Note that the expression for turbulent
viscosity it is not known beforehand; it is chosen from physical considerations or from those of the

maximal simplicity of the model. In our case, D? is some definite (although intricately defined) function
of B, w.

Remark. Equations (8) with respect to the variable I are given on the graph I'. Below we discuss
conditions at the vertices of the graph that are satisfied by the functions a, B, w.

5. THE KIRCHHOFF CONDITIONS

Obviously, the functions w, B are continuous on the graph I'. The derivatives of these functions, as
well as the function a, satisfy Kirchhoff’s equalities of electric network theory at each vertex. Namely,
the following assertion is valid.

Statement 5.1. /n each interior vertex (i.e., vertex of degree greater than 1) of the graph T, the
functions a, D? %’?, and D2 o T satisfy the Kirchholf conditions

OB OB w ow
. ) 2 _ 2_ 2 JEE— = 2—
Gout = Cin; <D ol > <D oI >in’ <D oI >out <D o1 > in’

where the index “out" denotes the sum of the limits of the corresponding function at the given
vertex along the outgoing edges and the index “in" denotes the sum of the limits of the function
along the incoming edges.

Proof. A vertex of the graph corresponds to a separatrix of the vector field v. Consider a smooth finite

vector field vg, coinciding with v! in a neighborhood @ of the separatrix bounded by closed trajectories,
and let us integrate its divergence over Q). We obtain

J =iz = [ o [ (wo,as)

here the summands on the right-hand side of the equality are the flows of the field vy across the external
(y™) and internal (v~ ) boundaries in the neighborhood Q. On the other hand,

/ (vo, ds) = dmagys, / (vo,ds) = Amaiy,
e o
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(recall that v' = v}8/dI 4+ v,0/D, where a = (v)). Since the neighborhood @ can be taken arbitrarily
small, the formulas given above imply Kirchhoff’s equalities for the function a. Similarly, we can obtain
Kirchhoff’s equalities for the other functions as well, but, instead of (V.,v'), we must integrate A, B
and A,w, respectively. O

Remark. At the vertices of degree 1 of the graph I (they correspond to the elliptic equilibrium positions
of the field v), the function a vanishes (the proof is similar).

Remark. In the general position, all the interior vertices I' are vertices of degree 3; in this case, the
Kirchhoff conditions take the form

0B 0B 0B ow ow ow
_ 2 2 2 2 0w 2 2
ay = az + as, <D af> <D af> (D az) (D az) <D az> <D az>

where the index “1” denotes the limit along the incoming edge, while the indices “2” and “3” are the
limits along the outgoing edges.

6. REYNOLDS STRESSES

[t is well known (see, for example, [6]) that, the averaging of hydrodynamic equations is accompanied
by the appearance of summands describing the effect of fluctuations on the mean field (Reynolds
stresses); in our case, the role of the mean field is played by the integral of the velocity field over the
two-dimensional torus of the “fast” variables z. Namely, the following statement is valid.

Theorem 6.1. Suppose that Eqs. (8) have a smooth solution. Then the following relations hold:

%_gﬂU V) + Vil+(0.V0) $6(V,0) =0, (V,0)=0. 9)

Here ©® = U — U and the bar denotes averaging over the torus T?:

f= f(2)dz dz,.

T2

Proof. Substituting the functions (2) into the Navier—Stokes equation (1), we obtain summands
containing the parameter h to the zeroth power. The requirement of the equality to zero of the sum
of these summands takes the form

85, U ouU ol
<— + (U, VS, )>a_1 + (U1, 8)) 7= + VS;—

ot 82]' J 82]'
ou 0*U
— Im— 1
+ e +(U,VU)+V (VSJ’VSk)82]8zk 0, (10)
0
—(VS;,U1)+(V,U) =0. (11)
0z
In the first equation, we put U = U and average this equality over the torus, obtaining
ou ou
e +(U,V)U +(0,V)0 V)@+VH+UJ8_zJ_O' (12)
Averaging Eq. (11), we see that
(V,U) =0.

Thus, we have proved the second of the equalities (9). Further, multiplying Eq. (11) by U and integrating
over the torus, we obtain

U(V., o)+ (V, 00U =
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whence, in view of the equality (V,U) = 0, we have

ou
vi— =(V,0)0
J aZj
(here, in the first summand, the derivatives are moved from v! to U'). Substituting this relation into (12),
we obtain
ou -
e + (U, VU + (0,V)o+ (V,0)0+VP O

Remark. The summands

k=(0,V)0+0(V,0)

in Egs. (9) exactly coincide with the Reynolds stresses (see, for example, [6, 20, 36]); expressed in
coordinates, they are

R; = (V, @@Z)

Remark. Equations (9) are conditions for the orthogonality of the right-hand side of (6) to a constant
vector field. Such a field, naturally, commutes with any field, in particular, with v and, therefore, lies in
the co-kernel of the linearized Euler operator.

Remark. In the limit of vanishing viscosity (h — 0), the vortex structure described above does not
become the solution of the Euler equations. The weak limit of this structure satisfies the Reynolds
equations; the “envelope” of rapid oscillations (which is, obviously, nonzero) is a function of the slow
variables z, t, varying according to a complicated law; to find this limit, we must find the maximum with
respect to the rapid variables of the solution of Egs. (8).

7. SCENARIO FOR THE OCCURRENCE OF TURBULENCE

“Reynolds stresses” appearing in equality (9) do not vanish as h — 0. As is well known, the
presence of such summands leads to an increase in the internal energy and entropy of a liquid. In the
papers of one of the authors (V. P. Maslov “Gibbs paradox, liquid phase as an alternative to the Bose-
condensate, and homogeneous mixtures of new ideal gases”, Math. Notes 89 (3), 2011, 366—373 and
V. P. Maslov “Incompressible liquid in thermodynamics, new entropy and the scenario for the occurrence
of turbulence for the Navier-Stokes equation”, Math. Notes 90 (6), 2011, 859—866), a new theory was
developed, according to which the molecules in a gas or a liquid combine into “clusters” as soon as the
entropy reaches some critical value. By our scenario, it is these clusters (moving in an incompressible
liquid) that generate turbulence.

Note that, as a rule, the transition to turbulence is related to the presence of “coherent structures”;
the solutions of the Navier—Stokes equations constructed in the present paper describe the evolution
of one of such structure types. The phenomenon of the occurrence of a coherent structure requires a
special study; possibly, it is related to the small compressibility of a real liquid and the transformation of
discontinuities as compressibility tends to zero.
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