
1 Introduction

There are many real-life situations in which people or businesses are uncertain about their
coalitional payo�s. Situations with uncertain payo�s in which the agents cannot await
the realizations of their coalition payo�s cannot be modeled according to classical game
theory. Several models that are useful to handle uncertain payo�s exist in the game theory
literature. We refer here to chance-constrained games [?], cooperative games with stochastic
payo�s [?], cooperative games with random payo�s [?]. In all these models stochastics plays
an important role.

Interval cooperative games are models of cooperation where only bounds for payo�s of
coalitions are known with certainty. Such games are called cooperative interval games. Let
I(R) be the set of all compact intervals of the real line R. Formally, a cooperative interval

game in coalitional form (Alparslan G�ok, Miquel and Tijs [?] is an ordered pair 〈N,w〉
where N = {1, 2, . . . , n} is the set of players, and w : 2N → I(R) is the characteristic
function such that w(∅) = [0, 0], where I(R) is the set of all nonempty, compact intervals
in R. For each S ∈ 2N , the worth set (or worth interval) w(S) of the coalition S in the
interval game 〈N,w〉 is of the form [w(S), w(S)]. We denote by IGN the family of all interval
games with player set N . Note that if all the worth intervals are degenerate intervals, i.e.
w(S) = w(S) for each S ∈ 2N , then the interval game 〈N,w〉 corresponds in a natural way
to the classical cooperative game 〈N, v〉 where v(S) = w(S) for all S ∈ 2N . Some classical
TU -games associated with an interval game w ∈ IGN will play a key role, namely the
border games 〈N,w〉, 〈N,w〉 and the length game 〈N, |w|〉, where |w| (S) = w(S) − w(S)
for each S ∈ 2N . Note that w = w + |w|. An interval solution concept F on IGN is a map
assigning to each interval game 〈N,w〉 ∈ IGN a subset of I(R)N .

Cooperative interval games are very suitable to describe real-life situations in which
people or �rms that consider cooperation have to sign a contract when they cannot pin
down the attainable coalition payo�s, knowing with certainty only their lower and upper
bounds. The contract should specify how the players' payo� shares will be obtained when
the uncertainty of the worth of the grand coalition is resolved at an ex post stage.

Note that the agreement on a particular interval allocation (I1, I2, . . . , In) based on
an interval solution concept merely says that the payo� xi that player i will receive in
the interim or ex post stage is in the interval Ii. This is a very weak contract to settle
cooperation within the grand coalition. It can be considered as a �rst step of cooperation,
where the following step should transform an interval allocation into a classical payo�
vector. Such procedures are described in Branzei, Tijs and Alparslan G�ok [?].

The study of interval game solutions begins with extentions of classical theory of co-
operative game solutions to interval games. For example, we can apply some single-valued
solution concept to both border games, and in the case when the solution of the upper
game weakly dominates that of the lower game, the corresponding interval vector could
be admitted as the interval solution, generated by a classical cooperative game solution.
Just in this manner the interval Shapley value for convex interval games was de�ned in
Alparslan G�ok, Branzei and Tijs [?]. The same approach can be applied to the extension
of set-valued solutions as well (Alparslan G�ok, Branzei and Tijs [?, ?]).

Naturally, the problem of existence of such interval solution arises. In fact if for some
interval game 〈N,w〉 the characteristic function values of the lower and upper games on the
grand coalition coincide, i.e., w(N) = w(N), then for any single-valued classical solution
ϕ the (vector) inequality ϕ(N,w) ≤ ϕ(N,w) is impossible, and this approach cannot be
applied to the extension of the solution ϕ to the interval game 〈N,w〉.
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It is clear that the possibility of the extension of a classical cooperative game solution
to interval games depends both on the class of interval games into consideration and on
monotonicity properties of the classical cooperative game solution itself. Thus, in the paper
by Alparslan G�ok, Branzei and Tijs [?] the class of convex interval games was introduced.
It turned out that interval games was introduced. It turned out that the most known
cooperative game solutions such as the core, the Shapley value, the Weber set, and are
extendable to the class of convex interval games. At last< in [?] it was shown that the
Dutta�Ray solution also can be extended to the interavl games.

However. both the prenucleolus and the tau-value are not aggregate monotonic on the
class of convex TU games [?], [?]. Therefore, interval analogues of these solutions either
should be de�ned by another manner, or perhaps they exist in some other class of interval
games. Both approaches are used in the paper: the prenucleolus of a convex interval game
is de�ned by lexicographical minimization of the lexmin relation on the set of joint excess
vectors of lower and upper games. On the other hand, the τ -value is shown to satisfy
extendability condition on a subclass of convex games � on the class of totally positive
convex games.

The interval prenucleolus is determined in Section 2, and the proof of existence of the
interval τ -value on the class of interval totally positive games is given in Section 3.

2 The Nucleolus for interval games

An interval game is an ordered triple 〈N, (w,w)〉, where N is a �nite set of players,
w,w : 2N → R are the lower and upper characteristic functions satisfying inequalities
w(S) ≤ w(S) for each coalition S ⊂ N. Cooperative game with transferable utilities (TU)
〈N,w〉, 〈N,w〉 are called, respectively,the lower and the upper games of the interval game
〈N, (w,w)〉.

Denote be GN an arbitrary class of TU games with the players' set N, and by IGN

denote the class of interval games with the players' set N such that for every interval game
〈N, (w,w)〉 ∈ IGN both the lower and the upper games 〈N,w〉, 〈N,w〉 belong to the class
GN .

Denote by X(N,w), X(N,w) the sets of feasible payo� vectors of the lower and the
upper games, and by Y (N,w), Y (N,w) � the set of e�cient payo� vectors:

X(N,w) = {x ∈ RN |
∑

i∈N xi ≤ w(N)},
X(N,w) = {x ∈ RN |

∑
i∈N xi ≤ w(N)},

Y (N,w) = {x ∈ X(N,w) |
∑

i∈N xi = w(N)},
Y (N,w) = {x ∈ X(N,w) |

∑
i∈N xi = w(N)}.

De�nition 1 A single-valued solution (value) φ for the class IGN of interval games is
a mapping assigning to every interval game 〈N, (w,w)〉 ∈ IGN a pair of payo� vectors
φ(N, (w,w)) = (x, y) ∈ RN ×RN , satisfying the conditions x ∈ X(N,w), y ∈ X(N,w) and
x ≤ y.

Let N be an arbitrary universe set of players. Denote by GN the class of cooperative
games

GN =
⋃

N⊂N

GN ,
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and by IGN � the class of interval games

IGN =
⋃

N⊂N

IGN .

A value ϕ for the class GN generates the interval value φ for the class GN , if for every
interval game 〈N, (w,w)〉 ∈ IGN

φ(N, (w,w)) = (ϕ(N,w), ϕ(N,w). (1)

Now consider the class Gc
N of convex TU games with the players' set N.

The class IGc
N of convex interval games with the universe set of players N is de�ned

as follows:

〈N, (w,w)〉 ∈ IGc
N ⇐⇒ N ⊂ N and the games 〈N,w〉, 〈N,w〉, 〈N,w − w〉 are convex .

For any �xed vector x ∈ RN and coalition S ⊂ N we denote by xS the projection of x
on the subspace RS , and by x(S) we denote the sum x(S) =

∑
i∈S xi.

The existence of interval values generated by a TU game value ϕ, i.e. satisfying in-
equalities (1),is equivalent to the following monotonicity property of the value ϕ on the
class of convex TU games:

Convex monotonicity (CvM). If 〈N, v〉, 〈N, v′〉, 〈N, v′ − v〉 are convex TU games such
that v′(S) ≥ v(S) for all S ⊂ N, then ϕ(N, v′) ≥ ϕ(N, v).

Let us compare this property with the other monotonicity cooperative game solutions:
1:

Aggregate monotonicity (AM). If v′(N) > v(N) and v′(S) = v(S) for all S $ N, then
ϕ(N, v′) ≥ ϕ(N, v).

Contribution monotonicity (CM). For each i ∈ N inequalities
v′(S ∪ {i})− v′(S) ≥ v(S ∪ {i})− v(S) for all S 63 i imply ϕi(N, v′) ≥ ϕi(N, v).

Weak contribution monotonicity (WCM) (Hokari, van Gellekom [?]). If for all i ∈ N
and all coalitions S 63 i the inequalities v′(S ∪ {i})− v′(S) ≥ v(S ∪ {i})− v(S) hold, then
ϕ(N, v′) ≥ ϕ(N, v).

Note that all these properties were de�ned for games with the same sets of players. It
is clear that

CM =⇒ WCM =⇒ AM. (2)

Let us check where convex monotonicity is placed in relations (2).

Proposition 1 On the class of convex games Gc
N

WCM =⇒ CvM =⇒ AM.

Proof. Let 〈N, v〉, 〈N, v′〉, 〈N, v′−v〉 be convex games such that v′(S) ≥ v(S) for all S ⊂ N.
Then for all i ∈ N and S 63 i

v′(S ∪ {i})− v′(S) ≥ v(S ∪ {i})− v(S). (3)

1The de�nitions of the properties are given for an arbitrary class of TU games, so this class is not

indicated.
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If a value ϕ on Gc
N satis�es weak contribution monotonicity, then ϕ(N, v′) ≥ ϕ(N, v), and

ϕ satis�es convex monotonicity.
From (2) and Proposition 1 it follows that the values satisfying contribution mono-

tonicity generate the corresponding interval values, and the values not satisfying aggregate
monotonicity do not.

�������������
Let 〈N, (w,w)〉 be a convex interval game, x = N (N,w), y = N (N,w)� the nucleoli

of the lower and upper games respectively (recall that for convex games the nucleolus
coincides with the prenucleolus). If x ≤ y, then the pair (x, y) is called the nucleolus of the
interval game 〈N, (w,w)〉. However the inequality x ≤ y, in general does not hold. In fact,
with each convex TU game 〈N, v〉 we can associate an interval game 〈N, (w,w)〉 such that
w = v, w = v′ where v′(N) = v(N)+a, a > 0, v′(S) = v(S) for other S ⊂ N. The nucleolus
over the class of convex games does not satisfy aggregate monotonicity (Hokari, 2000)
implying that x 6≤ y may happen, and the nucleolus for interval games in the de�nition
above does not exist.

Therefore, the problem is to de�ne the interval nucleolus IN for all convex interval
games such that

IN (N, (w,w)) = (x, y), x = N (N, {w}), y = N (N,w), if x ≤ y.

If the last inequality does not hold, de�ne the nucleolus by the following way.
For each payo� vectors x ∈ X(N,w), y ∈ X(N,w) de�ne the sets

Xy = {x ∈ X(N,w) |x ≤ y}, Y x = {y ∈ X(N,w | y ≥ x}.

The nucleoli of games 〈N,w〉, 〈N,w〉 on the sets Xy, Y x, i.e. the maximums of the lexmin
relations of excess vectors

−e(x,w) = {x(S)− w(S)}S⊂N , −e(y, w) = {y(S)− w}S⊂N

over the domains Xy, Y x respectively, denote by xy = N (N,w,Xy), yx = N (N,w, Y x)
respectively. They exist by the Schmeidler theorem (Schmeidler 1969). Thus, we have
mappings N : X(N,w) → X(N,w), N : X(N,w) → X(N,w) de�ned by

N(x) = xyx
, N(y) = yxy

.

Both mappings N,N are continuous and, though their domains are not compact, have
�xed points, The proof of their existence are similar to the proof of the existence of the
prenucleolus for TU games [4].

Let x∗ be a �xed point of the mapping N, Then by the de�nition of the mappings N,N

x∗ = N (N,w,Xyx∗
), yx∗

= N (N,w, Y x∗
). (4)

that means that y∗ = yx∗
is a �xed point of the mapping N.

De�nition 2 Given an interval game 〈N, (w,w)〉, the set of �xed points {(x∗, y∗)} of the
mappings N,N such that y∗ = yx∗

is called the Interval Nucleolus Set (INS) of this
interval game.
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It is clear that if N (N,w) ≤ N (N,w), then (N (N,w),N (N,w)) ∈ INS(N, (w,w)),
and this de�nition is well-de�ned.

However the Interval Nucleolus Set, in general, is not single-valued. For example,(
N (N,w),N (N,w, Y N (N,w)

)
,

(
N (N,w,XN (N,w)),N (M,w)

)
∈ INS(N, (w,w)). Thus,

a more precise de�nition of the interval nucleoli is necessary to obtain its uniqueness.

Note that in De�nition 2 for each (x∗, y∗) ∈ INS(N, (w,w)) the determining ofN (N,w,Xy∗
),N (N,w, Y x∗

)
was ful�led independently, in fact, both prenucleoli were calculated under given y∗, x∗ re-
spectively. Since nucleoli express the idea of minimization of relative dissatisfaction of
players and coalitions, i.e. excess vectors, in TU games, the interval nucleolous should
minimize dissatisfactions at once both in lower and upper games. Thus, we can try to
minimize lexicographically the vector of excesses of both games. For each pair of payo�
vectors (x, y), x ≤ y, x ∈ X(N,w), y ∈ X(N,w) denote by E(x, y) ∈ R2n+1−4 the vector of
excesses w(S)−x(S), w(T )− y(T ), S, T ⊂ N,S, T 6= N, ∅, arranged in a weakly decreasing
manner.

Then we come to the following

De�nition 3 The interval nucleolus (IN ) of an interval game 〈N, (w,w)〉 is a pair (x∗, y∗)
of payo� vectors x∗ ∈ X(N,w), y∗ ∈ X(N,w) such that x∗ ≤ y∗) and

−E(x∗, y∗) �lexmin −E(x, y) for all x ∈ X(N,w), y ∈ X(N,w), x ≤ y. (5)

Theorem 1 There exists the unique interval nucleolus on the set of convex interval games.

Proof. The proof of the existence of the interval nucleolus is similar to that of Schmeidler
of the existence of the nucleolus and the prenucleolus for TU games.

Let (x1, y1) be the solution of the problem (5) without the condition x ≤ y, i.e.

−E(x1, y1) �lexmin −E(x, y) for all x ∈ X(N,w), y ∈ X(N,w). (6)

Then x1 = N (N,w), y1 = N (N,w), and there exists a solution of the problem (5). The
uniqueness of the solution follows from convexity of the domain {(x, y) |x ∈ X(N,w), y ∈
X(N,w), x ≤ y}.

Corollary 1 The interval nucleolus belongs to the interval core.

Proof. For all (x, y) ∈ C(N, (w,w)) we have x ≤ y and

max
S(N

(w(S)− x(S)) ≤ 0, max
S(N

(w(S)− y(S)) ≤ 0.

Therefore, for each pair of vectors (z, u) /∈ C(N,w,w), z ≤ u

−E(x, y) �lexmin −E(z, u),

and the maximum of the lexmin relation cannot be out of the interval core.
For the interval nucleolus an analogue of Kohlberg's characterization [3] can be proved:
For each vectors x ∈ X(N,w), y ∈ X(w) and α ∈ R denote by

B0(x, y) = {i ∈ N |xi = yi}, Bα(x) = {S ⊂ N |w(S)−x(S) ≥ α} Bα(y) = {S ⊂ N |w(S)−y(S) ≥ α}.

Theorem 2 A pair (x∗, y∗) = IN (N,w,w) if and only if the collections of coalitions

Bα(x∗) ∪ {{i} ⊂ N | i /∈ B0(x∗, y∗)}, Bα(y∗) ∪ {{i} | i ∈ B0(x∗, y∗)} are empty or weakly

balanced with positive weights for coalitions from Bα(x∗), Bα(y∗) for each α.
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section*Example
Consider the example of convex game 〈N, v〉 from [2] showing not aggregate mono-

tonicity of the nucleolus.

N = {1, 2, 3, 4}, v({i}) = 0∀i ∈ N,
v({1, 3}) = 0, v(S) = 2 for other S, |S| = 2,
v({1, 2, 3} = 4, v(S) = 6 for other S, |S| = 3,
v(N) = 10.

Then the nucleolus N (N, v) = (2, 2, 2, 4). Let 〈N, v′〉 be the game whose characteristic
function v′ di�ers from v only on the grand coalition:

v′(N) = 12, v′(S) = v(S) for other S ⊂ N.
Then the nucleolus N (N, v′) = (3, 3, 3, 3).
Consider the interval game 〈N, (v, v′)〉. Denote x = N (N, v), y = N (N, v′). Then x 6≤ y,

and we have

N (N, v′, Y N (N,v)) = (8/3, 8/3, 8/3, 4), N (N, v,XN (N,v′)) = (7/3, 7/3, 7/3, 3).

The interval nucleolus in the de�nition above is equal IN (N, (v, v′)) = (2, 2, 2, 4). In
fact, it is not di�cult to show that the interval nucleolus has a form za = (a, a, a, 10− 3a),
and the vector of excesses {e(S, x)}S⊂N lexicographically dominates all vectors {e(S, za)}S .
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