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Abstract—For a certain class of two-dimensional autonomous systems of differential equations
with an invariant curve that contains ovals, we indicate necessary and sufficient conditions for
these ovals to be limit cycles of phase trajectories.
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Two-dimensional autonomous systems of differential equations with given programmed motions
were considered by numerous authors. The statement of the problem goes back to G. Darboux
and N.P. Erugin.

The paper [1] deals with the systems

dx

dt
= F (x, y)Hy(x, y) + a(x, y)H(x, y) ≡ P (x, y),

dy

dt
= −F (x, y)Hx(x, y) + b(x, y)H(x, y) ≡ Q(x, y),

(1)

where the functions a, b, F , and H are single-valued and analytic in the domain G, and conditions
for system (1) to be conservative near the ovals (nonsingular compact connected components) of
the curve H = 0, as well as conditions for the existence or absence of limit cycles other than ovals
of H = 0, were obtained. In particular, the following assertion holds.

Theorem 1. Let the function F (x, y) be nonzero on an oval L ⊂ {(x, y) : H = 0} and inside
the domain B ⊂ G, ∂B = L; in addition, let

(a/F )x + (b/F )y ≡ 0 (2)

in B. Then system (1) has an integrating factor μ = (FH)−1, and all trajectories of system (1) are
closed in some neighborhood S(L, ε) of the oval L.

In the present paper, we indicate classes of systems satisfying condition (2); in addition, we do
not exclude the case in which F (x, y) = 0 in the domain B.

1. Let us show that the condition F (x, y) �= 0 inside B, ∂B = L, is important for the conserva-
tiveness of system (1) near L.

Indeed, if

a(x, y) ≡ x, b(x, y) ≡ y, F ≡ x2 + y2, H ≡ x2 + y2 − 1, (3)

then system (1) has the unique equilibrium (0, 0), the limit cycle is described by the equation
x2 + y2 = 1, has the integrating factor μ = (x2 + y2)−1(x2 + y2 − 1)−1, and has the first Darboux
integral (x2+y2−1)(x+iy)−i/2(x−iy)i/2 = C. In addition, system (1) with right-hand sides defined
in accordance with (3) satisfies condition (2) everywhere except for the point (0, 0) at which F = 0.
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The set of systems (1) satisfying relation (2) contains real systems of the form

dx

dt
= β1Φ1yΦ2 · · ·Φk + Φ1

k∑

j=2

βjΦ2 · · ·Φj−1ΦjyΦj+1 · · ·Φk ≡ P,

dy

dt
= −β1Φ1xΦ2 · · ·Φk − Φ1

k∑

j=2

βjΦ2 · · ·Φj−1ΦjxΦj+1 · · ·Φk ≡ Q,

(4)

where the Φj are coprime polynomials in real variables x and y and are irreducible over the field
of complex numbers, and the quantities βj �= 0, j = 1, . . . , k, and the coefficients of Φj(x, y) are
complex in the general case and such that P and Q are coprime polynomials.

The properties of systems (4) were considered in [2–10] for various values of the number k
and degree of the polynomials Φj and under changes of the quantities βj and the coefficients
multiplying Φj.

Note that if k = 1 or k = 2, then the real system (4) has no limit cycles [2]. If k ≥ 3,
then system (4) can have only algebraic limit cycles; in this case, the cycles are hyperbolic, the
polynomials specifying the limit cycles occur in an analytic expression for the first Darboux integral
Γ(x, y) = Φβ1

1 · · ·Φβk

k = C and the integrating factor μ = (Φ1 · · ·Φk)−1, and the function Γ(x, y) is
multivalued in a neighborhood of an arbitrary limit cycle [2]. By [11], for algebraically nonintegrable
systems (4) (which have finitely many algebraic invariant curves), we have k ≤ n(n + 1)/2 + 1,
where n = max(deg P,deg Q).

Note that the above example is obtained from system (4) for k = 3, β1 = 1, β2 = −i/2, β3 = i/2,
H ≡ Φ1 ≡ x2 + y2 − 1, and F ≡ Φ2Φ3, where Φ2 = x + iy and Φ3 = x − iy.

2. Note that the problem on the limit cycles of system (1) for the case in which F (x, y) is
a linear function, a(x, y) ≡ a, b(x, y) ≡ b, and a, b ∈ R was considered in [12–14]. For the existence
of a limit cycle specified by an oval � of the curve H = 0, it is sufficient that the line F = 0 does not
meet the oval � and, in addition, aFx + bFy �= 0. If these conditions are satisfied, then system (1)
has no limit cycles other than ovals of H = 0; in addition, the limit cycles defined by the equation
H = 0 are hyperbolic [1, 12, 13].

By a straightforward verification with the use of Theorem 1, one can justify the following asser-
tion.

Lemma. Let the following conditions be satisfied for system (1):
(i) F (x, y) = αx + βy + γ, a(x, y) ≡ a, b(x, y) ≡ b, where a, b, α, β, γ ∈ R, |a| + |b| > 0, and

|α| + |β| > 0,
(ii) identity (2) holds,

then there exists a number ν �= 0 such that a = −νβ, b = να, and system (1) has the first integral
HF−ν = C and the integrating factor μ = (HF )−1 and has no limit cycle.

Theorem 2. Let condition (i) of the lemma be satisfied , and let H(x, y) be a polynomial of
degree n such that max(degP,deg Q) < n. Then system (1) is algebraically integrable, has the first
Darboux integral HF−n = C and integrating factor μ = (HF )−1, and has no limit cycles.

Proof. Since max(deg P,deg Q) < n, it follows that the homogeneous polynomial Hn(x, y) of
degree n contained in H satisfies the condition

(αx + βy)Hny + aHn ≡ 0, (αx + βy)Hnx − bHn ≡ 0. (5)

By (5), we have
(αx + βy)(bHny + aHnx) ≡ 0.

If |α|+|β| > 0, then this implies that Hn(x, y) = C(ay−bx)n, where C ≡ const �= 0. By substituting
this expression Hn(x, y) into (5), for |a| + |b| > 0, we obtain the identity

(nα − b)x + (nβ + a)y ≡ 0,

whence we obtain b = nα and a = −nβ. Consequently, relation (2) holds, and the lemma, where
ν = n, can be used. The proof of the theorem is complete.
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Note that under the assumptions of Theorem 2, system (1) is obtained from (4) for β1 = 1,
β2 = −n, k = 2, Φ1 ≡ H, and Φ2 ≡ F . If the polynomial H is irreducible, then the following
assertion can be used.

Theorem 3 [8]. Let k = 2, max(degP,deg Q) = n, degΦ1 = m1, deg Φ2 = m2, and , in addition,
m1 + m2 > n + 1. Then β1m1 + β2m2 = 0, and all trajectories of system (4) are algebraic.

The lemma and Theorem 1 in [12] (Theorems 1 and 2 in [1]) imply the following assertion.

Theorem 4. Suppose that assumptions (i) of the lemma are satisfied ; then the limit cycles of
phase trajectories of system (1) are given only by ovals of the curve H = 0 lying in the domain
G if and only if the line F = 0 does not meet the ovals of H = 0 and aFx + bFy = αa + βb �= 0;
in addition, the cycles are hyperbolic.

Theorem 4 implies the assertions of Theorems 3.3 and 3.5 in [15] dealing with the limit cycle
x2 + y2 = 1 of the quadratic system and its hyperbolicity.
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