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I. Introduction

Most of the dynamic general equilibrium models are developed in the framework of
representative agent paradigm. In this setting all individuals are identical and face the same
choices so their decisions coincide and therefore the aggregation is trivial. However, real
economies contain various sources of heterogeneity and so the question arises is there a way to
incorporate heterogeneity in an analytically tractable general equilibrium framework, or it makes
the economy too complex to be expressed in relatively simple and intuitively appealing
equations similar to the representative agent approach.

One fundamental example of heterogeneity is due to the stochastic nature of individual
income. Idiosyncratic shocks of income deal with situations where individuals face uncertainty
about their future income but due to the law of large numbers uncertainty on macro level may be
absent. This means that although individual consumption and asset holdings are stochastic,
aggregated counterparts and prices may be not.

As has already been stressed by Modigliany (1966) heterogeneity of this type makes
aggregation in general case impossible, i.e. there is no translation of equations from micro level
to macro level. Nakajima (2007) argues that to solve a model with idiosyncratic shocks is in
general a daunting task. This is because of the fact that aggregate variables become the type
distribution of agents, which in general is an infinite object.

It is for this reason that idiosyncratic income shocks are so difficult to incorporate into
general equilibrium frameworks. The model of Aiyagari (1994) with uninsurable productivity
shocks that will further be analyzed illustrates this point well. In this model each of the infinitely
lived agents goes through unique realization of stochastic process that governs the shifts in his
employment status. Due to uncertainty which the individual faces, consumption-saving decisions
are likely to depend in a complex manner on assets he accumulated throughout his unique life
path. Thus aggregate dynamics are likely to depend not only on the initial distribution of agents
but are also realization sensitive. How to deal with such an immense object?

One way to proceed is to resort to numerical methods. Aiyagari (1994) made an
important contribution by developing the numerical approach for solving for the steady state of
the model with uninsurable labor income shocks when there is no uncertainty on aggregate level.
Krussel and Smith (1998) generalized his approach and constructed a numerical algorithm for
obtaining an approximate solution for stochastic steady state in the presence of aggregated
productivity shocks. They proposed that a very high precision can be obtained by approximating

the distribution of agents using some moments of the distribution. In particular, they



demonstrated numerically that, the mean asset holding is sufficient statistics to obtain a
reasonable level of precision.

Since the breakthrough results of Krussel and Smith research has been mainly focused on
exploring the effects of different settings by applying essentially the same computational
technique. The main advantage of the numerical approach is that it offers a solution. The main
drawback is that it represents a black box. Leaving aside the complexity of the algorithms
involved, results obtained are hard to interpret. How robust is the constructed solution? Is it
unique? Is there room for understanding the reported characteristics or are they as mysterious as
those which we observe in real-life economies? In short, without knowing how to analyze the
behavior of such economies numerical methods alone leave us in the void. Although
sophisticated numerical models help us to approach reality, we still need simpler models that
would help us to approach the virtual reality generated by numerical models.

The main goal of this paper is to offer an analytical framework which attempts to close
this gap. We develop a method that throws light on the dynamics and steady state properties of
an economy with idiosyncratic shocks of income and allows us to explore such economies in
close analogy with the standard analytical tools used for representative agent models. Although
the exact solution is not feasible (we explain why), this method gives a remarkably high level of
approximation (in calibrated model it is 0,05%). The approach developed in this paper should be
regarded as a useful complementary tool for numerical methods of analysis. On the other hand if
our analysis is correct it means that computational techniques to solve these models can be
immensely simplified.

An important feature of an economy with idiosyncratic shocks of income as opposed to
representative agent framework is that equilibrium wealth distribution is purely endogenous.
This was stressed by earlier contributors and becomes even more explicit in the context of the
present analysis. Thus some interesting questions arise. How do the characteristics of
idiosyncratic shocks translate into the characteristics of equilibrium wealth distribution? Can the
presence of idiosyncratic income shocks explain the scale of wealth inequality that we observe in
real economies? We address these questions in what follows. One important conclusion we come
to replicates the numerical results of earlier research. We find that small idiosyncratic shocks
lead to large variations in wealth very close to what one observes in the data. The main
advantage of the analytical approach is that it shows explicitly why this is so.

The paper is organized as follows. Section Il contains the general setting and deals with
the aggregation issue. It formulates the necessary and sufficient conditions for the existence of
equations in aggregates, the so called aggregation theorem. This framework includes most of the

important macroeconomic models with idiosyncratic shocks (not necessarily income-shocks)
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known in the literature. The main goal is to offer a formal criterion for an economy to be
captured in aggregates.

Section Il builds on the results of previous section and turns to idiosyncratic shocks of
income in the framework close to Aiyagari (1994). It begins with individual consumption-saving
decisions and demonstrates that an exact solution is not feasible. The main focus is on the
analytical approach that permits to explore the dynamic behavior of such an economy with a
satisfactory level of precision. By constructing special boundary economies (the so called,
constant prudence economies) we form a narrow channel in which the dynamics of original
economy is trapped.

Section IV contains calibration and numerical results. The model calibrated to capture
unemployment shocks demonstrates that important characteristics can be extracted with high a
level of precision and without resorting to complicated numerical methods. This includes pinning
down interest rate, consumption behavior and reaction to the shift in parameters. A separate
point of interest is the evolution and stationary level of wealth inequality.

Section V concludes. For clarity of exposition all proofs are given in Appendix I.
Appendix Il revisits Blanchard (1985) finite horizon model. The reason to include this model is
that it can be nicely reinterpreted in terms of idiosyncratic income (wealth) shocks and is

straightforwardly analyzed by application of general approach developed in Section II.

II. General Setting and Aggregation Theorem

Consider an economy populated by a 1-continuum of agents. Each individual in period t
finds himself in one of two possible states of nature that will be referred as good, denoted G, and
bad, denoted B. These states may take different content depending on specific model we are
focusing on. Further we will present some examples of the models with idiosyncratic shocks in
which good state may be interpreted as the state in which individual is employed, earns high
salary, is alive or resets her price whereas bad state means unemployed, low salary, dead or not
resetting price.

Assume that transition between states follows a two-state Markov chain. Specifically, let
p; be the probability of retaining the state | (I=G,B) in the next period, correspondingly, 1 — p,,
be the probability of switching to the other state. In what follows I* denotes other than I. Since
there is a continuum of agents, the fraction of population at the state | in any period, denoted by
a;, is constant and equals (1 — p;<) /(2 — p; — py+) With a; + o« = 1.

This scheme is quite flexible to include most frameworks used in macroeconomics. If
p; = 1 — p;+ than the probability of going to the state | does not depend on the current state and

we have Poisson process. If p; = 1 — p; = 1 we have certainty case.
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We now introduce a useful concept to deal with aggregation issue. An economy is said to
exhibit a dichotomy of mean values and higher moments, or, in short, a dichotomy of moments if
relations between first moments of distributions for economic variables form a closed set of
equations, i.e. a set of equations in which higher moments of distributions are absent. Although it
is required that higher moments do not enter this set of equations, evolution of higher moments is

allowed to depend on lower moments.
Let a{,tdenote an individual state variable of agent j being at time t at state | . As we will

see in further examples this state variable can take on different interpretations ranging from asset
holdings to price of individually produced good. Generally, by solving individual optimization
problem, it is possible to write the next period value of the state variable a in terms of its current
period value, current state | (state variable), and a vector of economy wide parameters z:

a{+1 = Tl(a{'z)'

We now present one of the central results of this paper, the aggregation theorem. It states
that an economy exhibits the dichotomy of moments if and only if transition functions T;(-) are
linear in respect to individual state variable. For clarity of exposition we break down this claim
into necessary and sufficient condition.

The necessary condition for an economy to exhibit a dichotomy of moments is given by

the following proposition.

Proposition 1
Let a),, = T;(al,z) for 1=G,B be analytic functions in a) defined on the domain A. An

economy is characterized by a dichotomy of moments only if transition functions T, are linear

in respect to a}:

T,(d,z) = ,(2) - &) + p; ,(2)

This statement provides a clear condition that must be satisfied in order for any economy
to be captured by equations in aggregates. If this condition is not met then economy is not
tractable in aggregates. Further we give some examples of important macroeconomic models that
satisfy that condition and allow for aggregation.

Sufficiency results are summarized in the following claim.



Proposition 2
If the law of motion for individual state variable satisfies a linear form aj_, = 2, - a} + p;,

then:
Mean value E(a,) follows

E(ag1) =4 E(ay) + E(uye)
where E(u;:) = agle: + aplp,

Mean square E(aZ, ) follows
]E(a%ﬂ) =i ]E(a%) +2-4,- ]E(Hl,t : ]El(at)) + ]E(”'%,t)
where E(py, - Ef(a,)) = @ - g, - Eg(ay) + @ - pg. - Eg(a,) and
[E(M?,t) =g ”é,t t+ag- ﬂlzi‘,t
Higher moments are related by the chain rule of the form
E(at,,) = A - E(ap) + Fo(Er(a?™), uye Ae)

where Fn(IE,(a{f‘"), Mgy, A) represents a function of moments less than n.

We obtain these equations in Appendix | by deriving dynamic equations for conditional
density functions for both continuous and discrete type distributions. The results stated reveal the
dichotomy of moments when linearity condition is satisfied. Note that dynamic equation for
mean value of the state variable does not include higher moments. Thus dynamics can be
analyzed in aggregates. Equilibrium path of an economy with dichotomy of moments (if such
path exists) determines the paths for mean values and the economy wide parameters z
(equilibrium interest rates, wages et t.c.) and thus determines the paths for A, and y; .. Dynamics
of higher moments is then obtained by applying the chain rule: evolution of higher moment
depends only on its initial level and lower moments. In the further analysis we are interested

primarily in the second moments.

Some examples

We present some examples of macroeconomic general equilibrium models with
idiosyncratic shocks that can be captured in aggregates. The purpose is to demonstrate that our
framework can serve as a useful unification principle.

The New-Keynsian model with Calvo (1983) process for price setting offers a good
example of such model. Each period the firms that adjust their price are randomly selected, and a
fraction w adjust while remaining fraction 1-w do not adjust. Those firms that do adjust their

price do so to maximize the expected discounted value of current and future profits. It is easy to



verify that our general setting applies to this case. To see this note that in this case we can define

as G the state in which individual firm receives a signal and adjusts, whereas B refers to the state

with no adjustment. Then p; = 1 — pp = w and we have the Poisson process . State variable a{_t

represents individual price. Transition equations are straightforward: a{+1 = a; for firms at G at

time t, where a; is the optimal price chosen by all adjusting firms; al,;, = a{ for firms at B at
time t. This conforms with Proposition 1 and, thus, the model allows for exact aggregation.

In the agency costs models of Carlstrom and Fuerst (1997) or Bernanke, Gertler and
Gilshrist (1999) entrepreneurs borrow external funds to invest in a project that is subject to
idiosyncratic productivity shock. It is noteworthy that solution in aggregates is obtained because
utility is assumed to be linear in consumption. We see again that some form of linearity
requirement is indispensible. However ad hoc assumption of linear utility is not plausible. In
Sections 111 and IV we show how aggregated dynamics can be extracted without reverting to
such strong assumptions.

Next example refers to Blanchard (1985) eternal youth model. Each period and regardless
his age an individual faces constant probability of death, p. In this setting good state quite
naturally refers to staying alive while bad state occurs when individual passes away.
Alternatively one can interpret that in the bad state individual stays alive but is stripped of all his
wealth. In our terms p; = 1 — p, pp = 0. The Euler condition with logarithmic utility is linear in

individual consumption. This in turn implies that individual asset holdings at the good state

follow linear dynamic equation. At the bad state asset transition equation is just a{ﬂ = 0. We
analyze this model more thoroughly in Appendix Il. Now it suffices to point that aggregation
theorem clearly applies to this model and it is tractable in aggregates.

The last but not least example is the standard neo-classical growth model without
uncertainty (p; = 1 — pg = 1). In this case the basic Euler equation that links current and next-
period individual consumptions is linear in consumption. Thus there is a linear relation between
the next period and current period individual assets and the aggregation theorem applies. Two
last examples demonstrate that what really matters for aggregation is linearity of decision rules,

not linearity of utility.

III. Economy with labor income shocks

Individual consumption
The basic model is a version of Aiyagari (1994) model with uninsurable idiosyncratic
labor productivity shocks. An agent can have either high wage wg, or low wage wg, in each

period t. The productivity status follows a Markov process. One particular interpretation for
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agent’s productivity status is his employment: he can either be employed or unemployed. In this
case following Krussel and Smith (1998) wp, is set to be zero and wg . equals market clearing

wage.

The problem for the agent j being at the state | at time t and holding assets a{ is to

maximize

u(c{,t) +E,

2F -u(ci;i)] (1)
i=1

subject to the budget constraint

alyq = Repr - (@ +wye —cq,) (2)
First order necessary conditions condition is given by Euler equations that in the present

case takes the form

u (C{,t) =B Reyr - [pr v (C{,t+1) +(1-p)-u (C{*,t+1)] for 1=G,B
Suppose that preferences are given by
=9 -1
W) =—=—5-
where 6 is coefficient of risk averseness (6 > 1). With these preferences, the Euler conditions
become
i\ i N\?

C Cr«
ﬁ-Rm-p,-(’ﬁ“) +(1—p,)-<"j“> =1forl=GB  (3)

Crt Crt

Equation (3) is nonlinear in ratios of consumption, hence, these ratios are likely to depend
in non-trivial manner on other state variables, specifically, on the level of assets individual is
holding. The non-linearity of basic consumption equation makes impossible to get its counterpart
in terms of aggregated consumption.

In order to proceed, it proves helpful to express consumption equations in terms of
propensity to consume. As we will demonstrate shortly consumption and saving rules expressed

in this form have transparent and easy to interpret structure.
Let ‘Q{,t denote the propensity to consume out of wealth for agent j in state | and time t.
Using this notation propensity to consume are allowed to depend on time t, individual state | and
individual asset holdings a’ . By definition
C{,t = Q{,Hl ) (a{ + hl,t) 4
so that Q{,t relates individual consumption to his wealth, the sum of net asset holdings and

human wealth (the agent's superscript is dropped out in the expression for human wealth as it
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depends only on state | at time t). Human wealth is expressed as the current value of the present

Z(Rtﬂ)_i : Wt+i] (5)
i=1

where w; . is labor income at state | at time t.

and future expected labor income

hie =w +Epe

Denote Ah;, = h;, — h;+, the difference in human wealth between two states (Ah;, +
Ah;«, = 0). The following proposition sheds light on the optimal individual decision rule for

consumption.

Proposition 3

ARyt

a]t+h1,t
can be expressed as follows

2 3
; Ahl’ 1 Ahl' 1 ;
d,t =2 =@ <$> +0 <$ : (a]t + hl,t) (6)

a{L + hI,t a{L + hl,t

Suppose is small. Then the optimal consumption strategy for agent j at state I at time t

where function £, satisfies equation
1-0,7°
_) =1 (7

ﬁ : Rt+1 : (Rt+1'Qt+1 :
t
and precautionary saving functions ¢, . (1=G,B) satisfy the system of two equations

_ 02:1-2¢)

(6+1) X))
Pt = :

[p1¢1,t+1 +(1- p1)¢1*,t+1] T RECRY T ri(1-pp) (8)

¢4

These results are obtained in Appendix by application of perturbation theory. To see what
they imply for propensity to consume first note that dynamic equation for (2, is identical to the
propensity to consume equation in an economy without idiosyncratic shocks. Thus 2, can be
treated as the unperturbed part of propensity to consume. Expressing £, from equation (7) and
re-denoting one obtains the following forward looking equation

Xe =1+ Seq1* Xpaq
where x, = 1/2, and 5,41 = (B - R,4+1)'/? /R,,1. Solving this equation forward and imposing

no-bubble condition, yields

0=t (ST )
= — = S
t xt - k=1 t+k

With logarithmic utility (8 = 1) this gives constant propensity to consume s, = 8 and
Q, =1—f. In general case this equation determines (2, given future interest rate path that is
assumed to be known to rational consumers.

Individual consumption rules given in Proposition 3 provide a close approximation to the

optimal consumption strategy as long as |Ah,,t+1/(a{ +h,,t)| stays small. Suppose for the
10



moment that this is the case. What does this imply? Rewrite consumption rule ignoring the terms

of order of smallness greater than two.

(Bhyer)”

I1=G,B 9)
a{ + hl,t

C{,t =1 - (a{ + hl,t) — Q¢

The second term on the right side of equation (9) represents the precautionary saving

motive. It shows that there are two factors at play here. First is measured by precautionary saving

Ahjtiq

J
at+h1‘t

functions ¢, , that are only time and state dependent. Second factor measured by the term
depends on individual assets as well. It represents the ratio of human wealth differential in both
states to the current individual wealth.

Intuitively ¢;, at both states are positive functions so that uncertainty about the future
income forces consumers to save more and consume less than in the certainty case. It can be
verified that ¢;, are indeed positive. Note that these functions depend on the state | thus
precautionary behavior at the good state can slightly differ from that at the bad state. For further
analysis it will be helpful to write a single equation for the state-average precautionary saving

function. Define ¢, = a; ¢ + ap @p . From equations (8) it follows (see Appendix)

_ 0,(1-10,)  Opar + @+1) 0, (1 —pe)A —pp)(ps + pB)
D¢ q e 2 (1- 'Qt)Rt2+1 2—p;—Dps

(10)

t

Equation (10) represents a forward looking linear equation in respect to ¢,. Note that
both coefficient on the next period value of endogenous variable and the free term are positive.
Solving this equation forward and ruling out explosive paths one obtains the fundamental
solution for ¢, that is positive at any t for any interest rate path.

As individual accumulates more assets she reacts less to future income uncertainty and
moves closer to certainty equivalent behavior. Whatever interesting is this non-linearity of
consumption in respect to asset holdings it creates the major problem for analysis. For if
individual consumption at t is non-linear in his assets at t so are his assets at t+1. Thus by
Proposition 1 this economy does not exhibit a dichotomy of moments and there is no translation
of individual equations into aggregated counterparts. Put differently, dynamics of economy

populated by prudent consumers is of the type distribution.

Boundary economies

We now develop an analytical approach that offers a solution to the aggregation problem

described above.
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The idea is to characterize the (infinitely) complex behavior of the original economy by
exploring simpler limiting cases that allow for aggregation and whose dynamics serve as the
upper and lower bounds for the economy of interest. Moreover, if stationary solutions for these
simpler economies can be shown to be close to each other, the behavior of the original economy
would be pinned down. We proceed by defining what is required from these boundary
economies.

Upper bound asset accumulation economy is an economy which is characterized by
1) dichotomy of moments 2) average assets in any period are higher than in the original
economy provided the same for two economies initial mean asset holdings a, and interest
rate, wage and capital stock paths: Ea, > Ea,fort =1,.., x.

Lower bound asset accumulation economy is an economy which is characterized by
1) dichotomy of moments 2) average assets in any period are lower than in the original
economy provided the same for two economies initial mean asset holdings a, and interest

rate, wage and capital stock paths: Ea; < Ea, fort =1,..,co.

The main issue is to construct such economies. It turns out that it is possible to find
economies with desired properties by considering the so called constant prudence economy
(CPE). By this we mean a hypothetical economy in which precautionary saving behavior does
not depend on individual asset level. Formally, a constant prudence economy differs from the
original economy only in that individuals consume according to the rule

(Bhyeer)”

¢, (CPE) =0, - (a, + hyy) — @1, - P

I=G,B (11)

The only difference between consumption rules (9) and (11) is that in the later agent j
asset holdings a{_t are replaced by economy-wide level aj,.
It is straightforward to demonstrate that any constant prudence economy exhibits the

dichotomy of moments. To see this substitute (11) in the asset accumulation equation (2). This

yields

2
. - Ahyiiq
a{H-l =Ry (1—10,)- ai + |Riqq (Wl,t - chl,t + Qe .—(a* _{t_ hl) forl=G,B
It ,t

This equation clearly satisfies Proposition 2.

A constant prudence economy captures in most simple way both heterogeneous and
homogenous aspects of consumption. All individuals behave alike in respect to precautionary
savings. Nevertheless the time heterogeneity is presented by the first term in (11) since

12



consumption depends on current individual wealth. It is due to the linearity of this term in
respect to wealth that economy is tractable in aggregates.

We can use constant prudence economies to construct boundary cases. One limiting case
is obtained when aj, is very large or goes to infinity. Then individuals consume according to

¢/, (MinPE) = 0, - (@} + hy,) (12)

Thus they consume as in the certainty case. It is natural to call economy in which
individual consumption is given by (12) the minimal prudence economy. Further it will be shown
that minimal prudence economy presents a lower bound asset accumulation economy.

The other side of the specter is not so obvious. As we see from (11) precautionary savings

rises when aj, decreases. This term goes to infinity when wealth, a;, + h;,, approaches zero.

Ahjii1

J
at+h1‘t

Recall however that (9) is a good approximation for optimal consumption only if IS

sufficiently small in absolute value. In other words it serves as approximation for sufficiently
high levels of wealth. With decreasing wealth optimal consumption rule diverts further from
(112).

Relation between optimal consumption rule and second order approximation given by
(11) is summarized in Fig.1. It can be seen that there is such value of a at state | and time t for
which approximation (11) calls for zero consumption. Denote this value af,. By definition

ajf, = (%)1/2 “Bhyepg = hyey (13)

We call economy in which individual consumption is given by (11) with aj’, from (13)
the maximum prudence economy. It follows directly from Fig.1 that individual optimal
consumption can be characterized by the following inequality

(Bhye)”

- 14
aiy™ + hye (19

C;,t > C;,t (MaxPE) = 0, - (ai + hl,t) — Qe

It turns out that maximum prudence economy is an upper bound asset accumulation

economy.
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Fig. 1. Consumption rules
Blue line: optimal consumption rule
Black line: second order approximation of optimal consumption rule
Higher red line: consumption rule for Minimum Prudence Economy
Middle red line: consumption rule for Constant Prudence Economy with a;, = 0
Lower red line: consumption rule for Maximum Prudence Economy

It should be stressed that consumption rules described for constant prudence economies
should not be regarded as providing optimal solutions for some specific consumer decision
taking problem. Moreover, we do not even require that “consumption” given by (11) to be non-
negative as is shown in Fig. 1. One should treat these economies as a useful formal instrument to
evaluate the behavior of the original economy. The main advantage is that these economies allow
for solution in aggregates and set bounds for original economy. This is formulated in the
following proposition.

Proposition 4
An economy in which individual j consumes according to the rules

C](.;,t =0, (a{r + hG,t) — 2@ - Ahyyy (15)

Clg,t =10 (a{t + hB,t) — 2@ - Ahyyy (16)
is an upper bound asset accumulation economy.

An economy in which individual j consumes according to the rules
e =2 (@ +he) (A7)

p, =0 (a,+hg)  (18)

is a lower bound asset accumulation economy.

14



This claim is quite strong. Recall that dynamics of the original economy is influenced not
only by initial probability distribution but also by specific realizations of individual agent life
paths, i.e. individual transitions between states. Nevertheless (15)—(16) and (17)—(18) are proved
to be the bounds regardless of initial distribution or realization paths.

It should be stressed that this proposition deals with partial equilibrium aspect. It shows
that with price paths set exogenously there is an economy with dichotomy of moments in which
assets accumulate faster than in the original economy (upper bound) and an economy with
slower asset accumulation (lower bound). This result provides the basis for general equilibrium
analysis.

What can be said about dynamic properties of upper and lower bound economies
presented in Proposition 4? In the next subsection we will analyze this question in more detail
and show that these two economies are characterized by dynamics similar to the standard
Ramsey model. Both economies are saddle path stable. Moreover the lower bound economy

coincides with the standard representative agent economy. It settles in a steady state with

modified golden rule interest rate Ry = 1/'3. The upper bound is also characterized by saddle

path with slightly lower steady state interest rate: Ry, < Rss.

As should be already clear from preceding analysis the original economy has no
dichotomy of moments and is a complex infinite-dimension object that cannot be expressed by
some closed system of dynamic equations. Thus, it is not possible to make general judgments
about the existence of the steady state or even the existence of equilibrium path in this economy.
It is possible however to identify dynamic properties of this model presuming there exists a

steady state. This is given by the following proposition.

Proposition 5
Assume that there is a steady state in the original economy. Then in capital-consumption

space this steady state lies between the steady states of lower and upper bound economies:
kys < kg5 < kygand €55 < €55 < Cg5

This is the key result. Let us outlay the main argument (for detailed proof see Appendix).
Suppose the contrary. Specifically, imagine that in the steady state original economy
accumulates more capital than the upper bound economy: kg > kg. Since capital is a

decreasing function of interest rate, we have Rys < R,. It can be shown that stationary level of

assets accumulated in the upper bound economy increase with stationary interest rate. Thus,

. (Rss)< ags(Rss). We see that R level of interest rate is associated with a capital deficit in
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the upper bound economy: demand exceeds supply. But we know by definition that upper bound
economy accumulates more assets than the original economy. By consequence there should be
even more severe misbalance of capital and assets in the original economy at R, and we run into
contradiction. Similar argument using the lower bound economy can be made to show that

ks < kg, cannot occur in equilibrium.

Generally speaking nothing can be said about uniqueness of the steady state. Proposition
5 set bounds for stationary equilibria. If the steady states for upper and lower bounds economies
are very close to each other then steady state(s) for the original economy (assuming it exists) can

be pinned down precisely.

Upper and Lower Bounds: Dynamics

Now we are well positioned to formulate the system of equations that rules the dynamics
of the upper and lower bound economies. We begin with the upper bound that represents an
economy with constant (independent of individual asset holdings) precautionary savings.

In order to simplify slightly analysis we assume logarithmic utility (6 = 1). In this case
undisturbed propensity to consume (2, does not depend on interest rates: Q, =1 — . This is
without loss of generality and lowers the number of dimensions by one.

Consumption rules for this economy are given in Proposition 4. Integrating these
equations in respect to the states | and individuals j we obtain the following equation for the
mean value (aggregate) of consumption

Ec; = (1 —=pB) - (Ea; + Eh,) =/ (1 = B)@; - Ahiyq (19)

It is convenient to write down the consumption equation in the form that relates mean
values of consumptions in periods t and t+1. This can be done by writing (19) for the period t+1,
using mean asset accumulation equation Ea;,; = R, (Ea; + w; — Ec,) to substitute Ea,,, in

it and expressing Ea, from (19) to substitute Ea, in it. After some rearrangement we arrive at

Eciy1 = BRiyq - B + /(1 — B)[Rt+1\/a *Aheyq — \/fpt_+1 : Aht+2] (20)

This equation deserves short comment. It can be interpreted as generalized Euler equation
that incorporates precautionary savings motive. Relation Ec;,; = SR, - Ec; is the standard
Euler equation for an economy without uncertainty. Second term on the right of (20) represents
distortion of the standard form due to uncertainty about future income. We see that the impact of
uncertainty on consumption depends positively on human wealth differential between two states
and precautionary saving function ¢,.

Equation for state-average precautionary savings function ¢, was derived earlier and is

given by (10). Using expression for constant Q, it simplifies to
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1 (1-8)A—=ps)A—pp)(ps + ps)
Rt2+1 B 2—p;—ps
Human wealth dynamics can be extracted from the definition of h;, (5). Using this

(2D

Qr =P Q1+

definition one can relate current human wealth to it next period values

1
hie =wp + Reeg [Pl “hyepr+(A=pp)- hl*,t+1] for 1I=G,B
From this it is easy to obtain an equation for human wealth differential between states,

Ah, = hg . — hg,, the term that is present in consumption equation (19)

“(pg +pp — 1) - Ahyyy (22)

1
Ak, = A
‘ Ve " Rt+1

where Aw, = w; , — wpg, is wage differential between two states.

We assume the Cobb-Douglas production function y, = ltl_“ - k¥ with inelastic labor
supply I, that equals a; (the fraction of population that is employed). This implies standard
relations for production, interest rate and market-clearing wage

ye=ag -k (23)

(24! 1-y
u-(—) +1-8=R, (24
ke
ar\"7v
A-n-(ZF) =wee @9
t
WB,t = 0

Using last two equations wage differential is

Substituting this wage differential in (22)

1 a; -Y
M=z (g +pp = DMy + A=+ (32)  26)
Ri1 ke

Finally we have the following capital accumulation equation
ke =ag okl +(1=6) -k, —Ec,  (27)

There are four dynamic equations. Aggregate consumption, Ec,, dynamics is given by
(20); dynamic equation for precautionary savings function, ¢,, is represented by (21); (22)
governs the dynamics of human wealth differential, Ah,; finally, equation for capital stock k,
dynamics is (27). Together with relation between capital stock and interest rate (24) and
transversality condition these equations determine equilibrium path for this economy.

We now turn to the steady state of the upper bound economy and show that it is unique.
In the steady state all endogenous variables take constant values that we denote by subscript ss.

Begin with equation for consumption (20). In the steady state it becomes
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R 1
Ecss_lis—ﬁRss (1=B) - @ss * Dhgs (29)

Firstly, this relation reveals that equilibrium interest rate should be lower than 1/8, the
level of interest rate in the certainty case. Secondly, it shows that it stays very close to that level
as long as human wealth differential is small. Both results are intuitive as prudent behavior
forces individuals to save more and thus lowers equilibrium interest rate.

The steady state level of precautionary saving function ¢, is obtained from (21). This
yields

1 (1-pe)(A —pp)(ps + ps)
Vs = BRE, 2 —pg — s (30)

Equation (26) provides the steady state level of human wealth differential

-1
1 —_—
Bhgs = (1—R—- (6 + s —1)) a-n-({) e

SS

Finally, equations (24) and (27) become in the steady state

ag 1-y
)/(k—> +1—-38 =R (32)

1
ss = E(yss - ]Ecss) (33)

Equations (29)—(33) simultaneously determine the steady state values of R, Ec,, ks,
Ahg, @g. It can be shown that this steady state exists and is unique. The easy way to verify this
is to note that equation (32) defines the steady state capital stock as decreasing function of the

steady state interest rate. This relation can be expressed as follows

1/1—]/
ag Y
s (RSS6— 1)

kY (Rys) = (34)

On the other hand, equations (29)-(31) and (33) yield the following relation between
capital stock and interest rate
1
-17 /11—y

R.,—1 1 1
KOR) = |1—a-—= =~ [ 1- (g +pp—1) 35
> 5% 1- ﬁRss Ris Ris P ™ Ps ( )

where 4 = ﬂjﬂ (1-pg)(A—pp)(pc+rp)
@ \ B 2-pG—ps
Functions k'’ (Rys) and k&) (R,,) from (34) and (35) are plotted in the Fig.2. Their

unique intersection is close to 1/8 from below and determines the equilibrium interest rate
18
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1 Y
Fig. 2. Steady state in the upper bound economy

It can be shown that the equilibrium has a saddle-point structure. Behavior of the upper
and lower bound economies is very similar. As was pointed earlier dynamic equations for lower
bound economies for average consumption and capital stock coincides with the standard Ramsey
model. Dynamics of the upper bound economy is a little trickier because it contains two
additional dimensions, Ah,, and ¢,. Nevertheless a stable arm converging to the steady state can
be constructed. Steady state for the upper bound is slightly shifted relative to the lower bound
economy due to precautionary savings. Stable arms for both economies can be viewed as a
channel for the path of the original economy (presuming it exists). This is summarized in Fig.3.
Since equilibrium paths of the original economy are of the type distribution there must be an
infinite number of paths that converges to the steady state C that lie in the channel formed by

saddle paths of lower and upper bounds economies.
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Ec

B Ec = f(k) — 6k

Fig. 3. Boundary economies

Evolution of Higher Moments

We now focus on the implications of idiosyncratic income shocks for wealth inequality.
There are various measures of inequality used by economists. In the context of our exposition the
most relevant is coefficient of variation (the ratio of standard deviation to mean value).

The derivation of dynamic equation that governs unconditional square assets E(a?) in the
upper bound economy follows directly from Proposition 1 and equations of preceding

subsection. We obtain
E(“?H) = /1% : E(a?) +2-2 - [E(.ul,t : El(at)) + E(ﬂlz,t) (36)

where 1, = BR, [E(.Uu : [El(at)) = Y= e Eray = Y—gpa- [Rt+1 : (Wl,t -(1-5)-
Nl t—(1-4)pt-Art+1-Elat and
E(ut) = > @ ()’ = ) e [Rey (Wi = (1= B) - hyy == B - Ae)]
I=G,B I=G,B
To gain some insight recall that in any economy characterized by the dichotomy of
moments mean values of variables form a closed system of dynamic equations and determine the

paths for 4, , ., E;(a;), Ea,. Given these paths and initial condition equation (36) determines
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dynamics of E(a?). Economy in aggregates follows the saddle path and converges to the steady

state. So if aggregates are settled in the steady state, (36) becomes

IE(atg+1) = A?s : [E(atz) +2- /155 -E (:ul,ss : II5:1 (ass)) + ]E(:u'IZ,SS) (37)
Equation (37) shows that even when first moments are already settled in the steady state,

second and higher moments need not to be so. Recall that A,, = R,,/f and R, < %. Thus

Aqe < 1 and (37) ultimately converges to the stationary level

(2 * /155 - E (.ul,ss ’ IIE:1 (ass)) + E(#IZ.SS))

As o2 (a) = Ea?, — (Eay,)?, stationary dispersion is
2- Ass -E (:ul,ss * II5:1 (ass)) + [E(,ulz,ss)
1— 2%

Using (38) one obtains the stationary coefficient of variation.

— (Eai)*  (38)

Uszs (a) =

Equation (38) also shows that equilibrium asset distribution can be characterized by high
inequality if equilibrium Ay is close to unity This exercise demonstrates that asset structure
becomes purely endogenous. Evolution of higher moments can be described by the chain rule.
Once first n-1 moments are determined, there is a dynamic equation that determines the
evolution of n-s moment given n-1 moments. In Appendix | we derive explicitly dynamic
equations that govern evolution of density functions. In view of this it is possible not only
recover higher moments separately but get the whole picture of distribution dynamics. In
Appendix | after the proof of Proposition 2 we provide an illustrative numerical example how

density distribution functions evolves.

IV. Calibration and Results

One natural way to apply analytical framework developed above and calibrate the model
consists in interpreting good and bad states as referring to employed-unemployed status. Two-
state Markov chain might be a relevant approximation for transition between employed and
unemployed since data suggests there is substantial difference in probabilities of keeping a job
and finding one.

There are five constants to be calibrated: probabilities p, and pg, utility factors
6 and B, capital share y, depreciation rate §. At quarter frequency we set: f = 0.99,y = 0.36,
6 = 0.025. These values are close to commonly used in simulation experiments. We choose
pp = 0.6 so that average duration of an unemployment spell, p; /(1 — pp), equals 1.5 quarters

which corresponds to US data. We set p; = 0.98 to match the unemployment rate,
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(1 —pc)/(2 —pe —pp), of 5%. It is commonly accepted that realistic values for coefficient of
risk aversion are somewhere between 1 and 5. We set 6§ = 1 for the benchmark case and then
explore how higher risk averseness affects the results.

In the previous subsection we analyzed two boundary economies whose stable arms form
the channel for original economy. Consumption rules for lower bound (15)-(16) and upper
bound (17)—(18) are constructed to provide the simplest possible dynamic systems. Indeed, lower
bound economy so chosen coincides with the standard neo-classical model and upper bound
economy contains just two additional dimensions. For the purpose of analytical simplicity we
also used logarithmic utility.

However for the purpose of simulation experiments we can construct much more refined
bounds by choosing from the class of constant prudence economies introduced by (11).

All that is required for an economy to present a lower bound asset accumulation economy
is that precautionary savings in it are less than average precautionary savings in the original
economy (given same price paths). Recall that precautionary savings motive is captured by the
second term in (9). Thus we need to choose aj, so that

2 2
fq),,t -Mdﬂ(a{) > 01 Lhs) 6B 39)

*
al + hy, are +hye

If we set aj, = E;a, then (39) is clearly satisfied. Put simply average precautionary
savings are higher than precautionary savings of “representative” agent with average asset
holdings. There is one caveat however. As Fig.1 illustrates, optimal consumption rule diverts
from the second order approximation as individual wealth approaches zero. Thus there is a

fraction of population in the original economy with wealth close to zero whose extra savings

2
(Ahpe41)

. However this fraction with lowest
Ejacthy;

(compared to certainty case) are less than ¢, -

possible assets is miserable and it is highly improbable that it changes the inequality sign. To
rule out completely such possibility we generously set aj, = 2IE;a, for lower bound estimation.

On the opposite, if we choose a;j, = 0 we produce an economy with relatively high
average precautionary saving. All individuals in such economy behave with much prudence as if

they had zero assets. Again Fig.1 shows that there are some individuals with negative assets

(

2
whose extra savings are greater than ¢, , Ah;l;“) The fraction of such individuals is likely to
It

be very small and it is highly improbable that they can make average saving in the original

(

2
economy greater than ¢, , - Ah;l';“). To rule out such possibility completely we set a;, = —E;a,
It
for the upper bound economy.
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Note that with this new setting lower and upper bound economies become more
complicated objects compared to (15)—-(16) and (17)—(18). Now there are two precautionary
saving functions ¢, , one for each state instead of just one state-average ¢,, two conditional
means E;a, instead of one Ea,, three human wealth functions h;, Ah,, instead of one Ah,,
and finally propensity to consume term £2, is no longer constant with 8 > 1. Thus, number of
equations that characterizes these economies is increased by five. This is the price one has to pay
to reach higher level of precision than by using simpler bounds of the previous section.

How this setting translates into steady state values of interest rate, capital stock,
processes for consumption, asset accumulation and asset inequality?

The key finding is that the steady states for aggregates in the boundary economies are
extremely close to each other. The difference between steady state values for capital stock in two
economies is 0,05% (0,02% for average consumption). This means that the original economy can
be pinned down with astonishing precision. If we apply simpler bounds presented in (15)—(16)
and (17)—(18) the difference between capital stocks widens to 1.5% (0,54% between average
consumptions). Thus even in this case we gain very good approximation.

Further we report basic equilibrium relations in one of the two refined boundary
economies. Since they form extremely narrow channel there is no observable difference between
the two.

We find that equilibrium interest rate is lower but very close to 1/ , the steady state
value for an economy without uncertainty. The difference between the two is 0.00005 quarterly.
This corresponds to A = 0.99996, compared to unity in certainty case. Thus idiosyncratic
uncertainty implied by this model leads to 0.2% shift of capital stock and 0.07% shift of average
consumption from the certainty case. This shows that effects of these shocks are considerably
smaller than effects of aggregate productivity shocks in the standard RBC models.

Individual consumption clearly depends on employment status. Equilibrium consumption
strategies for both states are as follows

¢t =001 (al +64.2)—0.002  (40)
¢, =001 (a +62.7) —0.003  (41)

In the certainty case individual consumption would be

¢/ =0.01-(a +64.1)

Figures in parentheses represent human wealth in corresponding state measured in
quarterly output. Figures on the right of (40), (41) capture precautionary savings in both states.
We see that uncertainty about future income increases savings of employed by 0.2% of output
and by 0.3% of unemployed. These figures might give impression that precautionary savings are
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minor. However they should be put in perspective. Recall that implied income uncertainty is
very small as well: employed faces a 2% chance that his human wealth falls by 2% in the next
period. Thus, in relative terms prudent behavior is not negligible as will become clear in further
example with increased income uncertainty.

Consumption is extremely smooth. When individual becomes unemployed he reduces his
consumption by just 1.6% . A slight decrease is due mainly to reduction in human wealth. Since
current labor income falls sharply for unemployed and consumption is stable, assets are melting

in bad times. Specifically, we find that assets evolve
al,, = 0.99996 - a/ +0.03 for employed

al,, = 0.99996 - a/ — 0.63 for unemployed

Thus, individual asset holding are continuously changing whereas average assets for two
states and whole economy do not.

One of the most intriguing results concerns equilibrium measure of inequality. We find
that even small labor income uncertainty builds into large variations of assets and income.
Coefficient of asset variation, g, /EA, is as high as 4.2. Interestingly this value corresponds
nicely to what one finds in US data.

Now we show how shifts in parameters affect the results. First let us look at the effects of
growing uncertainty.

In the following example probability pp is increased to 0.94. This translates in that
average duration of bad times goes to 16 quarters and difference in human wealth between the
states goes to 17% from just 1.5 quarters and 2% in the benchmark case. We report

2 =0.9991
R =1/ —0.001
0,/EA = 4.7

¢t =0.01-(al +71.4) - 0.08

ch =0.01-(a] +615)—0.09

We see that increased income uncertainty lowers interest rate. Steady state shifts much
further than in the benchmark case. Capital stock moves by 4,2% and average consumption by
1,5% from certainty case. Measure of asset inequality stays virtually unaffected. However,
precautionary savings grow substantially: each period individual in both states saves additional
8% and 9% of output compared to the certainty case.
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In order to analyze the impact of risk averseness we set 8 = 5 with other parameter
values as in the benchmark case. We report the following results
A =0.99991
R =1/ —0.0001
o,/EA =29
¢t =0.01- (al +68.9) — 0.0066
¢k =0.01-(al +67.4)—0.0073
This shows that measure of risk averseness has strong effect on equilibrium asset

deviation. Growing risk averseness also increases precautionary savings.

V. Conclusion

The purpose of this paper was to characterize rigorously the dynamics of economies with
idiosyncratic income shocks. To this end we developed an approach that helps to fulfill the
general equilibrium analysis of such economies. The main finding is that it is possible to
construct an analytically tractable economy, so called constant prudence economy, that replicates
the behavior of original economy with great precision. We believe that this approach can prove

helpful in other settings that include idiosyncratic shocks of different nature.
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Appendix I

Proposition 1
Let T;(a},, z) for 1=G,B be analytic functions in a] , defined on the domain A. An economy is
characterized by a dichotomy of means and higher moments only if transition functions T, are

linear in aj, and take the form:

T/(a), 2z) = 4,(2) - @}, + p1,(2)

Proof

To simplify the notation let a’ denote the next period value of a. Then an individual agent
that holds a in the current period will hold in the next period a = T;(a, 2) if she is currently at
the good state and a' = T(a, z) if she is at the bad state.

Consider the two delta-function type distributions of a:

D(a) =8(a—ap), f{(@=8@—ay) and fP(a) =8(a—(a+ 1), [P () =

6(a—(ay — Z—Z - A)) where ag, ap are the fraction of population in good and bad state. Note that

both distributions are constructed to produce the same unconditional mean a,. Using the
transition functions for two states it is easy to verify that next period mean values of a produced
by two distributions are:
Ea (1) = ag - Ts(ao, 2) + ap - Tz(ap,2) (1)
a

Ea (2) = ag -+ Te(ag+ A, z) + ag - Tz(ag ——z-A,z) @)

a

By assumption of the dichotomy next period mean does not depend on the characteristics
of current distribution other than its current mean value. As both distributions has same mean,
next period means are equal to each other: Ea (1) = Ea (2). Subtracting (1) from (2) and

rearranging yields the following equation:
a a
TG(ao,Z) - TG(ao + A,Z) = _B . (TB (ao - _G . A,Z) - TB(ao,Z))
ag ap
This equation must hold for any a, and A provided that arguments belong to the domain.

Dividing both sides by A and rewriting the equation:

ag
Te(ag +A,z) — Tg(ag, z) Tp (aO T ap A, Z) — Tg(ao, 2) 3)
T (B9

ap
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Letting A go to zero we see that two sides of this equation represent partial derivatives of
transition functions in respect to a. We can rewrite it in the form

0T¢(a,z) 0Tg(a,2z)
e~ oa P

This holds for any a in the domain. Thus, transition functions can be related
T;(a,z) = Tg(a,z) + c(2)
Use this relation to substitute Ty in the equation (3) and rewrite it as:

Tg(ag,z) —Tg(ag + A, z) = iy (TG (ao _ . A, Z) —Ts (ao,z)> (5)
Ag ap

Since transition functions are analytic in a they can be represented by convergent Taylor

series for small enough A:

TG(a0+A,Z) :TG(aOIZ)-{_ZCn'An (6)

n=1
ag - (04 n
TG<a0—a—B'A,Z)=TG(a0,Z)+ZCn‘<_£'A) (7)
n=1

where C,, = % T (ay, 2)

Substituting (6) and (7) into (5) and isolating the first term in the series yields:

] 5 oo o n
—Cl-A—ZCn-A”=—Cl-A+—-ZCn-<——-A>
ag ap
n=2 n=2

or

Yn=2Cp * [1 - (— Z—Z)n_l] -A"= 0.

The last equation must hold for any (small enough) A. This is true only if C,, = 0 for

n = 2,..,. Recalling that C,, = % . Tén) (ag, 2z) and that the value a, was picked arbitrary from

the domain we conclude that 7™ (a, z) = 0 for n = 2,.., o for any a.
Thus, T (a, z) is linear in respect to a: T (a,z) = A(2) - a + ug(2). Since it was shown

that both transition functions differ by c¢(z), Tz(a,z) = A(2) - a + up(2).
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Proposition 2
If the law of motion for individual state variable satisfies a linear form a{+1 = a’,',t + Wy
then:
Mean E(a,) follows:
E(ai11) = 4. E(ay) + E(uye)
where E(u;.) = aglg: + apip:
Mean square E(aZ,,) follows:
]E(a%ﬂ) =2 ]E(a%) +2-2;: ]E(Hl,t ) ]El(at)) + ]E(”'%,t)
where IE(,u,_t . ]E,(at)) =ag - tge * Eg(ay) + ag - up, - Ep(a,) and
E(ufe) = ag - ug, + ag - uf,
Higher moments are related by the chain rule of the form:
E(ap.,) = A7 - E(a}) + Fo(E;(a?™), e A0

where F, (E;(a? ™), up ¢, 1) represents a function of moments less than n.

Proof

To obtain these equations in the case of continuous probability distributions we first
derive an evolution equation for density functions for both states. Consider a small neighborhood
of ap: (ap — & a9+ €). Then f; .1(ay) is probability density of population at the point a in
the good state in period t+1 and f; .1 (ao) - 2¢ is the fraction of population in the neighborhood
of a, of the population in the good state in period t+1. There are two ways an individual agent

finds himself in this fraction. Firstly she could arrive from the good state in the previous period if

ao H(;_S a9 H(;
A’

her assets were in the domain ( + ) The mass of such agents was f; , (~=- G)

ap— HG

|n period t. Since only part p; of that mass retained the state there is mass pg - f; . (

2; of individuals who are in the good state in t+1 in the given domain and retained their state

from the previous period. Alternatively she could arrive to the given neighborhood in the good

ag l/‘B € aO_.uB_I_

state in t+1 from the bad state in period t if her assets in t lied in the domain ( — T

I)' Since probability of changing states from B to G is 1 — pp and = a— is the ratio of population
B

ao—HB

sizes in both states, there is mass z_a (1 —pg) - f.( ) - 2% of individuals who are in the
B

good state in t+1 in the given domain and who switched the state from B to G. Collecting the

terms one has the following mass conservation equation
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&

fous1(@0) - 26 = P - fe (“512) - 25+ 2+ (1= pg) - fr o () - 25

1-pg
1-pp

a— g, a— g,
fG,t( i Gt) fo.e (A—Bt>
Ae

Evolution equation for conditional density function for bad state is derived in complete

a— Ug, a— Hg,
for () for ()
A—t+(1_p3)'l—t

Using evolution equation for density functions one can obtain evolution equations for the

Dividing by 2¢, noting that Z—G = and recalling that a, was chosen arbitrary
B

fe,e+1 (a) = pg - (D

analogy

fB 41 () =pg - (2)

moments. Convenient way to proceed is to move from density functions to moment generating
function representation.

By definition

@ = [ fu@eda

Multiplying equations (1) and (2) by e*%, integrating them in respect to a and using
replacement of variables in order to carry through the integration of the right hand side of (1)
and (2) yield

Mg 41 (X) = pg - eHet™* - mg  (A,x) + (1 —pg) - eF2r™ -mp, (4x)  (3)
Mg 41(x) = pp - e#2t* - mp (Aex) + (1 —pp) - e#6* -mg, (4,x)  (4)
Denoting by a dote derivative in respect to x and differentiating equations (3) and (4)
Mg e+1(X) = pg [.uG,t ~mg(Aex) + mG,t(/ltx)] cetat™ + (1 —pg)
Nuse - mpr(Aex) + g (A,x)] - eFBe* (5)
mpe11(x) = pp - [#B,t ~mp(Ax) + mB,t(/ltx)] ~etBt* + (1 —pp)
[t - Mg (Aex) +1hg (Aex)] - eFer™ (6)
By properties of moment generating functions
m;.(0) =1
m; (0) = E;(a;) , where E;(a,) denotes conditional mean of a in states I=G,B in period t.
Using these facts in equations (5) and (6) one obtains
Eg(are1) =06 - (g + A - Eg(ar) ) + (1 —pg) - (upe + ¢ - Ep(ay) )
Eg(ac+1) =pp - (g + A - Ep(a) ) + (1 —pp) - (g, + A - Eg(ay) )
Evolution equation for unconditional mean follows from these equations using relation

E(a;) = agzE;(a;) + agEg(a;) and definition of a; and aj. It takes the form
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E(aiy1) = 4 E(ay) + E(uye)

where E(u; ) = aglge + aglip,

To derive equations for conditional mean squares E,(a?) differentiate equations (5) and
(6) in respect to x and use the following properties of moment producing functions: m;.(0) = 1,

Th,}t(O) = ]E[(at) ,m['t(O) = [E,(a?) Th|S glves

2
Eg(at1) = pg - (A2 Eg(a?) + 2+ A - g - Egar) + (ge) ) +

(1 —pe) - (2 Ep(@d) + 2+ 4 pp, - Eg(ar) + (us,) )

and
2
Ep(af1) = pp - (/15 +Ep(a?) + 2+ A - pug, - Eg(ar) + (uz,) ) +

(L —pp) - (2 Eg(@d) + 2 A pg, - Eg(a) + (ug,) )
Equation for unconditional mean square follows from these two equations using the
relation E(a?) = a;E;(a?) + agEg(a?). It can be written in the form
E(af;1) = 47 - E(af) + 2 4, - E(uy, - Ey(a)) + E(uf,)
where IE(,u,lt . IE,(at)) =ag - Uge - Eg(ay) + ap - pup, - Eg(a,) and
E(uf) = ag - pué, +ag - puj,
Same method can be used to derive equations for expected values of powers of a higher
than two. For instance, third moments can be expressed by twice differentiating equations (5)
and (6) and using the fact 7#,;,(0) = E;(a?). This procedure leads to the chain equations for
higher powers of a of the form
E(azy,) = 47 - E(ai) + Fn(IE,(a?_i),u,,t, Ay

where F, (E, (a?‘i), Ugp ¢, A¢) represents a function of moments less than n.

If distribution is of discrete type than probability density can be represented by

generalized §-functions. Assume that current period conditional distributions are given by
fo(@ =% w5 - 8(a—ag) and fp(a) = X% wh - §(a—ap) with X wj =1 (I=GB).

Transition equations for individual a in the two states are a; = A - a; + i; (1I=G,B).
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It is easy to verify that next period conditional density functions can be written as

fo@=p5- ) o 8(a-@-ab+n))+ A =pe)- ) wh-6(a—(1-ah +up))
i=1 i=1

and similarly

fé(a):PB'ng‘5(a—(A'aE+HB))+(1—pB)'zwé;'5(‘1—(1'512+HG))
i=1 i=1

These density function evolution equations imply the above stated dynamic equations for
expected values of a. We confine ourselves by demonstration of equation for means. This is

obtained by multiplying equations () and () by a integrating them in respect to a. Recalling the

property of §-functions fjooo a-o6(a—ay)da = a, we have

ng np
Eq(a) = pe -Zwé-(l-ag +MG)+(1—PG)'Z(UE : (l-ag +,uB)
i=1 i=1

npg ng
]EB(a’):PB‘Z(UE'(A'afa-l-ﬂB)"‘(l—PB)'Zwé'(l-aé+u6)
i=1 i=1

Noting that Y\, w} - aj = E;(a) for I=G,B these equations become
E¢(a) = pg - (Bg(@) + pg) + (1 — pg) - (Eg(a) + pp)
Eg(a) = pp - (Bp(@) + up) + (1 — pp) - (Eg(a) + ug)
Since E(a) = a;E;(a) + agEg(a), combining these equations gives
E(a) = 2-E(a) + E(ny)
where E(u;) = agpc + agup

Numerical example of density function evolution
We set p; = pp = 0.5. Transition equations for individual state variable x are
symmetrical
Xey1 =09, +1forl =G
Xey1 =09x, — 1 forl =B
Initial distribution is uniform with support [0,5] for both states. Equations (1) and (2)
show that in this case conditional density functions for both states coincide: f; . (x) = fz.(x) =
f(t,x). The following figures present how the density function evolves in time. The limit
distribution function is symmetrical around zero. In this example after just 12 periods density

function looks very smooth but its microstructure reveals extremely complex fractal-like pattern.
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Fig. 4. Numerical example of density function evolution

Proposition 3

Ahpeiq

Suppose Tt

is small. Then the optimal consumption strategy for the agent j at state | at

time t can be expressed as follows

Cle

Ah
Qi —Qre |

Lt+1
J
at + hl,t

where function £, satisfies equation

;

(

Ahl,t-{—l

J
at + hl,t

and precautionary saving functions ¢, , (1=G,B) satisfy the system of two equations

ﬁ ) Rt+1 ) (Rt+19t+1 :
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_ 2:.(1-02y)

(0+1) 0
Pre = -

[P11e41 + (A =D p41] + 2 G_aoRE, p(1—p))

D¢+1

Proof
Take as a starting point the Euler equation for an individual agent who is at state G in
period t :
u'(ce) = BResa[pe - U (corer1) + (1 —pg) - u (coea1)] ()
The identity relations that defines propensity to consume at good state (; ., and bad state

QB,t:
Cer = Qg - (at + hG,t) (2)

Coet1 = Qa1 - (@es1 +hger1)  (3)

Cpes1 = Qprir - (Qepr + hgrr1) (4)
The budget constraint is

Ary1 = Reyr* (at T We — CG,t) (%)
Substituting (2) into (5)

Aiy1 = Rt+1[(1 - QG,t)(at + hG,t) +wge — hG,t] (6)
Equation for human wealth at good state is given by:
1
hee = we, + Roms (P heesr + (A =pg) - hpesr) ()
Substituting (6) into (3) and using (7) one obtains
Cet+1 = Rt+1'QG,t+1(1 - 'QG,t) : (at + hG,t) +(1- pG)'QG,t+1 “Ahyyq (8)
where Ahyyq = hg i1 — hpeyr (9)
Similar equation holds in respect to c; .1, and is derived in the same way as (8)
pes1 = Rer1Qp i1 (1— Qg ) - (a¢ + hgr) — D6 Qp et - Aheyy (10)
Inserting (2) (9) and (10) into (1) and dividing both sides by (a, + hG,t)_g :
_ -0
059 = BRe106[Re+1Q6,041(1 = Qg ) + (1 = pe) Q641 - €6¢]  + BRea (1 —
-6
pG)[Rt+1'QB,t+1(1 - ‘Q'G,t) — D6 Qpry1- 5G,t] (11)
where
L By
G't o Clt + hG,t

In complete analogy to derivation of (11) started with Euler equation (1) it can be

repeated for bad-state Euler equation

u’(CB,t) = ﬁRt+1[PB ‘U (CB,H-I) + (1 —ps): u,(CG,t+1)]
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This provides us with equation in respect to Qp , analogous to (11):

_ -6
'QB,et =PRiy1 D5 [Rt+1'QB,t+1(1 - QB,t) — (1 —pp)Q% 41 EB,t] + BRi 1 (1 —

pg) [Rt+1'QG,t+1(1 - 'QB,t) + v Qgrq1- SB,t]_e (12)

Ahpyq
at+hB’t

where e, =

g ¢ and g . defines perturbation terms in (11) and (12).

We will now use the method of perturbations to determine approximate solution for
propensities to consume Q;, and Qp,. First note that unperturbed equations (11) and (12)
coincide. Let Q, be the solution of unperturbed equation

Qr° = BR11[Ry 11911 (1 - Q)] 7% (13)

To find first order approximation assume:

Qe =Q +Y6e - € +0(E2) (14)
Qp: = Q +vp, - e + 0(?) (15)

Using (14) and (15) and taking linear expansion of (11) and (12) in respect to ¢ it is easy

to verify that y; . = 0 and yz . = 0. Thus the first non-zero perturbation term is of second order:
Qee =0 —Pg e 3(2;,t +0(e*) (16)
Qe =Qr — @, e§. +0(3) (17)

Now we can use the form of solution given by (16) and (17) to determine second order
perturbation functions ¢, and ¢g,. Use (16) and (17) to write Taylor expansion of (11) and

(12). After isolating terms of order 2 we have the following equation

1 —(0+1 B
BRit1 6 - ‘Qt( ’ )(pG,t = 0pg[Rr 41041 (1 — Q)] @+1) . Rt+1[(1 — Q)P i1 —

Ot+19Gt+0(1-pG)Rt4-10t+11—Q1—041-Ri+1(1—OL) @B, t+1—-0t+19G,t4-88+12pGRe
+I0t411-Q1—0421—pG2V+12+86+12(1—p6) Ri+101411—-Qt—(0+2)pG20412
(16)

Similar equation can be obtained from (12) for the second state. It has mirror form to (16)

with indexes G and B interchanged. Dividing both sides of (16) by 6 - Qt_w“) and using (13)
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1 _6+1
— @t = (BRyy1) @

BR¢ 11
'Rt+1[pG(1 — Q)41 — D196 + (1 — ) (1 — Qg — (1
0+1) _0+202
—06)Q+106] + T(ﬁRt+1) g ;; [pg - (1 —pg)* + (1 —p¢) - Pé]
t

After some arrangement it simplifies to

_ 9:(1-9Qp

(0+1) Q,
Pt =

[PG‘PG,t+1 + (- PG)‘PB,:+1] = RECRYT ps(1 —pg) (17)

t+1

And mirror equation for ¢p ,

Q(1-9y)
Qey1

6+1 Q
[PB‘PB,t+1 +(1- PB)‘PG,t+1] T )(1_Qt;R%+1 pp(1 —pg) (18)

Ppt =

For state average function ¢, = a; @ + ap g, using (17), (18) and definition of a;

and ap one obtains

_ Q-9 0 6+1) @  (A-p)A-pp)Ps+Ps)
‘ Qi1 e 2 (1- ‘Qt)R?—i-l 2—-pe—Ds

Proposition 4

An economy in which individual j consumes according to the rules

Cia,t =0, (a’; + hG,t) — V2@, - Ahy 4

CIB,t =2, (a{ + hB,t) — 2@ - Ahyyy

Is an upper bound asset accumulation economy.

An economy in which individual j consumes according to the rules

CiG,t = 'Qt . (a{; + hG,t)

C’l;’t == ﬂt . (a{: + hB,t)

is a lower bound asset accumulation economy.

Proof
Consider an upper bound case first. Note that consumption rules given in the proposition

imply that individual assets change according to:
Aryp = A a;,t + Ut
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where A, = R4, (1 — Q) and p;; = Reyq (Wi, — Qb +/Qe@, - Ahyyy) for 1=G,B. Thus by
the proposition 2 this economy is characterized by dichotomy of moments.

Relation between individual optimal consumption rule and second order approximation
given by (9) from the text is shown in Fig.1 from the text. It can be seen that there is such value
of a at time t and state | that the rule () prescribes zero consumption. Denote this value

aj';. Then, by definition

1/2
_ (o1
aﬁt +h, = (Q[:t) “Ahyy (1)

Consider a hypothetical economy in which individual consumption rules are given by

2
i Ah
CI,MtaxP =0, - (a{ + hl,t) — @ (a?:_:ll[)t for I=G,B (2)

We call this economy a maximum prudence economy (MP). Substitute (1) into (2)
ot =0, (a] + hyy) — JQupry - Ak for 1I=G,B (3)

Maximum prudence economy satisfies conditions of proposition 0 and, thus, is also
dichotomic in moments.

It is clear from Fig. 1 that given the same interest rate and wage paths an individual’s
consumption in maximum prudence economy is less than that in the original economy provided
they are at the same state and with same assets:

P (@) < () (4)

Next step is to compare mean assets accumulation paths in the two economies. In order to
do so assume the following set identities of parameters for the two economies:

1) Identical initial distribution of assets with mean a,

2) Identical paths for capital stock, wages, interest rates

3) Every individual J in the MaxPE economy with initial assets a{) has his twin in

the original economy with the same initial assets aé and the same sequence of states

I(Ht=1,..,00

It can be shown that asset accumulation paths for twins J in the two economies are such
that
a’@r () > a;,(J) foranyJlandt=1,..,00 (5)
To demonstrate this, write individual asset accumulation equations for twins J
ay,ttflp () =Ry [a%axp ) +wp, — CI,MtaxP (])] (6)
ae1() = Rt+1[al,t ) +wp —cpy (])] (7)
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Consumption rules in the two economies are such that we can write them in the form
CII\’/ItaxP U) — ﬂt . (a;lfl’taxP (]) + hl,t) _ AItVIaXP (8)
e (D) =2 - (a, () + hy) — A )
where precautionary saving functions AY%*F and A, satisfy
AMP > A, fort=0,..,0 (10)
The last inequality is satisfied by construction of MaxPE economy (see Fig. 1)
Inserting (8) and (9) into (6) and (7) and then subtracting (7) from (6)

af'% () = 41 () = Ress (1= 0,) (@l () = 10 (D) + Resa (AP — ) (10)
Re-denoting (11)
Xepq1 = exe +up (12)
withA, >0andu, >0 fort=0,..,00 (13)
Last inequality follows from (10).
Equation (12) can be solved backwards relative to u,. Solution is given by
X, = Yh jue [I554 A fort=1,..,0 andx, =0 (14)

It follows from (14) and (13) that

xe = arP (D) —a;.(J) >0 oralt ™ (J) > a;,(J) fort =1,..,00 andall J (14)
Integrating in respect to J

Ea¥®*P > Ea fort=1,..,% (15)

Since MaxPE economy has dichotomy of moments, EaX” dynamics does not depend on
type distribution but only on identities 1) and 2) (same initial mean assets and price paths). Thus,
inequality (15) holds even if initial asset distribution in the two economies differ (but have the
same mean) and there is no twins, i.e. it holds in the absence of identity 3).

We proved that MaxPE is an upper bound asset accumulation economy.

Note that MaxPE slightly differs from the consumption rules presented in the proposition

C{,t = Qt : (a{ + hG,t) - W,Qt(pt * Aht+1 fOf IZG,B

instead of (3). To see what this implies integrate them on j. This gives

Ec/!®? =0, - (Ea}'™" + Eh,) — (aG\/(pG,t + aB\/pr,t) 2k (16)

Ec, = Q; - (Ea; + Ehy) — Qi - Ahyyy (17)
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By Jensen inequality: aG\/q)_G,t +apJop: < aPe: + appp, = \/E Using this fact
together with economy-wide asset accumulation equations
EaM%P = R, 1 (Ea¥**f + w, — EcM®") and Ea, ., = Ry41(Ea, + w, — Ec,) it is easy
to show that (16) and (17) imply
Ea, > EaM®™? fort=1,..,0 (18)
Finally, from (15) and (18)
Ea; > Ea; fort=1,..,00

This completes the proof for the upper bound case.

The second part of the proposition concerning the lower bound economy can be proven in
complete analogy.

Proposition 5
Assume that there is a steady state in the original economy. Then in capital-consumption

space this steady state lies between the steady states of lower and upper bound economies

kss < kgs < k_ssand Css < Css < Css

We outlined the proof of this claim in the text. The only element that lacks in this proof is
showing that stationary level of asset holdings in the upper bound economy is increasing
function of stationary interest rate. To see this plug (15) and (16) in the individual asset
accumulation equation (2). This yields

@y =Reyr - (1 =0) - a] +[Repi(Wie — Qehye + (200, - AR )] (D)
Integrating (1) in respect to j and | and dropping time index for stationary levels it
becomes
a=R-(1-0) a+[R(Ew— QEh +./Q¢ - EAR)] (2)
From equation (7) in the text
R(1—-10) = BRY? (3)
From (2) and (3)

_ R(Ew — QEh) Q¢ -EAh 4
~ 1—BRY? 1— BRY/® )

Let us inspect the terms that appear on the right of (4).

R(1-2)-1

1/6 _ )
As Eh = %IEW, Ew — QEh = ( )]Ew = ﬁRR—llle and the first term

collapses to — % Ew. From (25) and (32) average wage is a decreasing function of interest rate
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1-y
(1_7’)aa
Ew =
W ==tan L+(R§1)

Y/
1-y
l . From two last expressions it follows that the first term in

(4) increases in R for R>1.
Now we analyze the second term. From (31), (30), (34) in the text this term can be
expressed as

y -1
JQ¢ - EAR 1 p
&W”[(l‘m)ﬂ?—(l—pa—pB))(1+( ] )) y]

where c is a positive constant. It can be seen that this is an increases in R for R € [1,1/8].

Appendix II

Finite Horizons

Another potential source for wealth inequality arises when individuals face finite life
horizons. Assets different individuals are holding may vary for two main reasons 1) individual’s
propensity to consume and to save is likely to depend on his/her age. Elder with less life
expectancy are likely to consume more and save less or dissave 2) individual’s asset holding may
differ with age, the longer individual is in place the more assets he/she had time to accumulate.

Blanchard (1985) provides a useful framework for exploring the later possibility. The
original paper concentrates on dynamic and steady state properties of the model and effects of
government spending. Our focus is somewhat different: we are interested in the implications of
finite horizons for equilibrium asset structure. We do so by applying density functions approach
developed earlier to this case. In this model individuals face the same probability of death
irrespective of how long they have been alive so that life expectancy is constant throughout life.
With this assumption propensity to consume does not depend on individual’s age and, by
consequence, results of Proposition 1 can be used.

In discrete time version of the model an individual j alive at time t maximizes

u(el) + ) (8 u(cl,))
i=1
subject to the budget constraint

i _p (A A
alyy = Ry - (af +wy, Cl,t)

where 8 =p- B and R,y = R,y + (1 —p).
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In these expressions p represents the probability of survival into the next period. Asset
accumulation equation differs from the standard version in that effective interest on assets, Ry,
is standard gross interest, R,, plus 1-p. This additional interest is interpreted as payment received
by an individual from an insurance company in exchange for his assets in case of death (so that
expected profit for company is zero). We see that probability of death, 1-p, increases the value of
current consumption relative to the future consumption and provides additional source of income
from asset holdings.

The Euler equation for this problem takes the form

' (c]) =F R 1 ()

Assume CRRA utility so that Eurler equation becomes:

i _ I 1 1 :
Ci+1 = (B : Rt+1) /9. C{

Next period consumption is linear in current t period consumption. This implies that
propensity to consume does not depend on individual’s wealth. Specifically one can show that in

the present case propensity to consume, Q,, obey the following equation

-6

’ 7 7 1 - Qt
B “Reqq - (Rt+1'Qt+1 : Q ) =1 (41)
t

This equation is identical to (7) with effective discount factor and effective interest rate.

Using this linear relation between consumption and wealth in one obtains
where 4, = Rpyq - (1— Q) and pr, = Ryyq - (W, — Q- )

In last expression labor income, w,, and, by consequence, human wealth, h,, is assumed
to not vary with age.

Human wealth is present value of expected labor income

he= ) Rip) ™ we (43)
i=0

or, equivalently:

h
h, = w, + —+ (44)

Rt+1

Now in order to apply a two-state scheme developed earlier one can interpret these two
states as “being alive” and “being dead”. We can think that “being alive” means that individual

goes on with his assets in which case his assets are transformed according to (40) whereas “being
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dead” means that he is just stripped of all his wealth and a{ +1 = 0 in this case. Thus we can
apply aggregation theorem of Section I.
Mean value of assets follows the law of motion
Ea;y1 =p - (A - Ea; + 1) (45)
Mean squared assets follow the law of motion:
Eafi; =p-(Af -Eaf +2- 4 - Ea, - p, + (u)?)  (46)

The Cobb-Douglas production function y, = l}"“ - k¥ with inelastic labor supply [, that
equals 1 implies that production, interest rate and wage
ve=ki  (47)
p-(k)F1+1-6 =R, (48)
A=)k =w,  (49)

The model is closed by adding a capital market equilibrium condition which takes the

form
Ea;, = R; - k; (50)

Six equations form a closed system for six endogenous variables. These equations and
variables are: equation for propensity to consume term Q, (41), equation for aggregated assets
Ea; (45), equation for human wealth h, (44), equation for wage w, (49), equation for gross
interest rate R, (48), capital market equilibrium condition for k, (50). Together with initial
condition for capital stock and transversality condition these equations determine the equilibrium
path for this economy.

Finally, equation (46) together with initial condition for mean square assets determines
how this variable change over time.

The dynamic system can be characterized by saddle point structure. Stable arm converges
to unique steady state to which we turn to.

Determination of the steady state is straightforward. In the steady state propensity to
consume

Qs =1= (@Y - (Rgs + 1 —p)1=0)/° (51)

We have

As =Rgs - (1=Qg) =[p- B+ (Res + 1 —p)]*/* (52)
Then from (45)

D Uss

Eqg = — 55
fss 1_p'/155
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Using the fact that w, = Rfesjl - hy, last expression takes form

Ea :p'(/lss_l)
5 1_p'/15$

Note from (52) that there is a positive relation between R, and A.. Expressing human

: hss (53)

wealth and capital as functions of lambda, capital market equilibrium condition can be written
/155 -
1- p- /155

From this equation equilibrium value of A, is determined which is then used to solve for

: hss (Ass) = Ry (/155) : kss (Ass) (54')

interest rate and other steady state values.

It can be shown that equation (54) has a unique solution. This solution lies in a well
defined interval. Note that in order for the left side of (54) to be positive A, should belong to the
interval: (1;1/p). If the left side is associated with supply of assets and right side with demand
for assets one can determine equilibrium as intersection of supply and demand functions.

Now we can focus on implications for equilibrium asset structure. For this we turn to
equation (46). The fact that steady state value of A, is less than 1/p ensures that this equation is
stationary and Ea? converges to the steady state value

2 P (2 Ags - EBag, - pos + (,uss)z)

Eaé, = 55
a’SS 1 _ p . /1?5 ( )
Thus, using relation 5% = EaZ, — (Ea,,)? we have
% —1
5%(a) = T—p 22 (Eays)?
and coefficient of variation is
1 1/2
s [ P!

SR A 56
Ass l_p';{gs ( )

How does inequality of assets measured by this ratio change when life horizon increases.
One might expect that as individuals live longer they accumulate more assets through time and
thus inequality between old and young rises. Expression (55) shows that this need not to be so.
When life expectancy that is given by 1/(1 — p) rises p moves closer to unity and this implies
A¢s QOes to unity as well. Thus, nominator and denominator in (56) both go to zero and result is
ambiguous. In fact in calibrated model inequality slightly decreases with increasing life

expectancy.
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