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I. Introduction 

Most of the dynamic general equilibrium models are developed in the framework of 

representative agent paradigm. In this setting all individuals are identical and face the same 

choices so their decisions coincide and therefore the aggregation is trivial. However, real 

economies contain various sources of heterogeneity and so the question arises is there a way to 

incorporate heterogeneity in an analytically tractable general equilibrium framework, or it makes 

the economy too complex to be expressed in relatively simple and intuitively appealing 

equations similar to the representative agent approach. 

One fundamental example of heterogeneity is due to the stochastic nature of individual 

income. Idiosyncratic shocks of income deal with situations where individuals face uncertainty 

about their future income but due to the law of large numbers uncertainty on macro level may be 

absent. This means that although individual consumption and asset holdings are stochastic, 

aggregated counterparts and prices may be not.   

As has already been stressed by Modigliany (1966) heterogeneity of this type makes 

aggregation in general case impossible, i.e. there is no translation of equations from micro level 

to macro level. Nakajima (2007) argues that to solve a model with idiosyncratic shocks is in 

general a daunting task. This is because of the fact that aggregate variables become the type 

distribution of agents, which in general is an infinite object.  

It is for this reason that idiosyncratic income shocks are so difficult to incorporate into 

general equilibrium frameworks. The model of Aiyagari (1994) with uninsurable productivity  

shocks that will further be analyzed illustrates this point well. In this model each of  the infinitely 

lived agents goes through unique realization of stochastic process that governs the shifts in his 

employment status. Due to uncertainty which the individual faces, consumption-saving decisions 

are likely to depend in a complex manner on assets he accumulated throughout his unique life 

path. Thus aggregate dynamics are likely to depend not only on the initial distribution of agents 

but are also realization sensitive. How to deal with such an immense object?  

One way to proceed is to resort to numerical methods. Aiyagari (1994) made an 

important contribution by developing the numerical approach for solving for the steady state of 

the model with uninsurable labor income shocks when there is no uncertainty on aggregate level. 

Krussel and Smith (1998) generalized his approach and constructed a numerical algorithm for 

obtaining an approximate solution for stochastic steady state in the presence of aggregated 

productivity shocks. They proposed that a very high precision can be obtained by approximating 

the distribution of agents using some moments of the distribution. In particular, they 
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demonstrated numerically that, the mean asset holding is sufficient statistics to obtain a 

reasonable level of precision. 

Since the breakthrough results of Krussel and Smith research has been mainly focused on 

exploring the effects of different settings by applying essentially the same computational 

technique. The main advantage of the numerical approach is that it offers a solution.   The main 

drawback is that it represents a black box. Leaving aside the complexity of the algorithms 

involved, results obtained are hard to interpret. How robust is the constructed solution? Is it 

unique? Is there room for understanding the reported characteristics or are they as mysterious as 

those which we observe in real-life economies? In short, without knowing how to analyze the 

behavior of such economies numerical methods alone leave us in the void. Although 

sophisticated numerical models help us to approach reality, we still need simpler models that 

would help us to approach the virtual reality generated by numerical models.   

The main goal of this paper is to offer an analytical framework which attempts to close 

this gap. We develop a method that throws light on the dynamics and steady state properties of 

an economy with idiosyncratic shocks of income and allows us to explore such economies in 

close analogy with the standard analytical tools used for representative agent models. Although 

the exact solution is not feasible (we explain why), this method gives a remarkably high level of 

approximation (in calibrated model it is 0,05%). The approach developed in this paper should be 

regarded as a useful complementary tool for numerical methods of analysis. On the other hand if 

our analysis is correct it means that computational techniques to solve these models can be 

immensely simplified.  

An important feature of an economy with idiosyncratic shocks of income as opposed to 

representative agent framework is that equilibrium wealth distribution is purely endogenous. 

This was stressed by earlier contributors and becomes even more explicit in the context of the 

present analysis. Thus some interesting questions arise. How do the characteristics of 

idiosyncratic shocks translate into the characteristics of equilibrium wealth distribution? Can the 

presence of idiosyncratic income shocks explain the scale of wealth inequality that we observe in 

real economies? We address these questions in what follows. One important conclusion we come 

to replicates the numerical results of earlier research. We find that small idiosyncratic shocks 

lead to large variations in wealth very close to what one observes in the data. The main 

advantage of the analytical approach is that it shows explicitly why this is so. 

The paper is organized as follows. Section II contains the general setting and deals with 

the aggregation issue. It formulates the necessary and sufficient conditions for the existence of 

equations in aggregates, the so called aggregation theorem. This framework includes most of the 

important macroeconomic models with idiosyncratic shocks (not necessarily income-shocks) 
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known in the literature. The main goal is to offer a formal criterion for an economy to be 

captured in aggregates. 

Section III builds on the results of previous section and turns to idiosyncratic shocks of 

income in the framework close to Aiyagari (1994). It begins with individual consumption-saving 

decisions and demonstrates that an exact solution is not feasible. The main focus is on the 

analytical approach that permits to explore the dynamic behavior of such an economy with a 

satisfactory level of precision. By constructing special boundary economies (the so called, 

constant prudence economies) we form a narrow channel in which the dynamics of original 

economy is trapped.  

Section IV contains calibration and numerical results. The model calibrated to capture 

unemployment shocks demonstrates that important characteristics can be extracted with high a 

level of precision and without resorting to complicated numerical methods. This includes pinning 

down interest rate, consumption behavior and reaction to the shift in parameters. A separate 

point of interest is the evolution and stationary level of wealth inequality. 

Section V concludes. For clarity of exposition all proofs are given in Appendix I. 

Appendix II revisits Blanchard (1985) finite horizon model. The reason to include this model is 

that it can be nicely reinterpreted in terms of idiosyncratic income (wealth) shocks and is 

straightforwardly analyzed by application of general approach developed in Section II.   

II. General Setting and Aggregation Theorem 

Consider an economy populated by a 1-continuum of agents. Each individual in period t 

finds himself in one of two possible states of nature that will be referred as good, denoted G, and 

bad, denoted B. These states may take different content depending on specific model we are 

focusing on. Further we will present some examples of the models with idiosyncratic shocks in 

which good state may be interpreted as the state in which individual is employed, earns high 

salary, is alive or resets her price whereas bad state means unemployed, low salary, dead or not 

resetting price. 

Assume that transition between states follows a two-state Markov chain. Specifically, let 

𝑝𝐼 be the probability of retaining the state I (I=G,B)  in the next period, correspondingly, 1 − 𝑝𝐼, 

be the probability of switching to the other state.  In what follows 𝐼∗ denotes other than I. Since 

there is a continuum of agents, the fraction of population at the state I in any period, denoted by 

𝛼𝐼, is constant and equals (1 − 𝑝𝐼∗)/(2 − 𝑝𝐼 − 𝑝𝐼∗) with 𝛼𝐼 + 𝛼𝐼∗ = 1.  

This scheme is quite flexible to include most frameworks used in macroeconomics. If 

𝑝𝐼 = 1 − 𝑝𝐼∗ than the probability of going to the state I does not depend on the current state and 

we have Poisson process. If 𝑝𝐼 = 1 − 𝑝𝐼∗ = 1 we have certainty case.  
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We now introduce a useful concept to deal with aggregation issue. An economy is said to 

exhibit a dichotomy of mean values and higher moments, or, in short, a dichotomy of moments if 

relations between first moments of distributions for economic variables form a closed set of 

equations, i.e. a set of equations in which higher moments of distributions are absent. Although it 

is required that higher moments do not enter this set of equations, evolution of higher moments is 

allowed to depend on lower moments. 

Let 𝑎𝐼,𝑡
𝑗

denote an individual state variable of agent j being at time t at state I . As we will 

see in further examples this state variable can take on different interpretations ranging from asset 

holdings to price of individually produced good. Generally, by solving individual optimization 

problem, it is possible to write the next period value of the state variable a in terms of its current 

period value, current state I  (state variable), and a vector of economy wide parameters z:   

𝑎𝑡+1
𝑗

= 𝑇𝐼 𝑎𝑡
𝑗
, 𝒛 . 

We now present one of the central results of this paper, the aggregation theorem. It states 

that an economy exhibits the dichotomy of moments if and only if transition functions 𝑇𝐼(∙) are 

linear in respect to individual state variable. For clarity of exposition we break down this claim 

into necessary and sufficient condition. 

The necessary condition for an economy to exhibit a dichotomy of moments is given by 

the following proposition. 

 

Proposition 1 

Let 𝒂𝒕+𝟏
𝒋

= 𝑻𝑰 𝒂𝒕
𝒋
, 𝒛  for I=G,B be analytic functions in 𝒂𝒕

𝒋
 defined on the domain 𝑨. An 

economy is characterized by a dichotomy of moments only if transition functions 𝑻𝑰 are linear 

in respect to 𝒂𝒕
𝒋
: 

𝑻𝑰 𝒂𝒕
𝒋
, 𝒛 = 𝝀𝒕 𝒛 ∙ 𝒂𝒕

𝒋
+ 𝝁𝑰,𝒕 𝒛             

 

This statement provides a clear condition that must be satisfied in order for any economy 

to be captured by equations in aggregates. If this condition is not met then economy is not 

tractable in aggregates. Further we give some examples of important macroeconomic models that 

satisfy that condition and allow for aggregation.  

Sufficiency results are summarized in the following claim.  
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Proposition 2 

If the law of motion for individual state variable satisfies a linear form 𝒂𝒕+𝟏
𝒋

= 𝝀𝒕 ∙ 𝒂𝒕
𝒋

+ 𝝁𝑰,𝒕  

then: 

Mean value  𝔼(𝒂𝒕)   follows 

𝔼(𝒂𝒕+𝟏)  = 𝝀𝒕 ∙ 𝔼(𝒂𝒕) + 𝔼(𝝁𝑰,𝒕) 

where 𝔼(𝝁𝑰,𝒕) = 𝜶𝑮𝝁𝑮,𝒕 + 𝜶𝑩𝝁𝑩,𝒕 

Mean square 𝔼 𝒂𝒕+𝟏
𝟐   follows 

𝔼 𝒂𝒕+𝟏
𝟐  = 𝝀𝒕

𝟐 ∙ 𝔼 𝒂𝒕
𝟐 + 𝟐 ∙ 𝝀𝒕 ∙ 𝔼 𝝁𝑰,𝒕 ∙ 𝔼𝑰(𝒂𝒕) + 𝔼 𝝁𝑰,𝒕

𝟐   

where 𝔼 𝝁𝑰,𝒕 ∙ 𝔼𝑰(𝒂𝒕) = 𝜶𝑮 ∙ 𝝁𝑮,𝒕 ∙ 𝔼𝑮(𝒂𝒕) + 𝜶𝑩 ∙ 𝝁𝑩,𝒕 ∙ 𝔼𝑩(𝒂𝒕) and 

𝔼 𝝁𝑰,𝒕
𝟐  = 𝜶𝑮 ∙ 𝝁𝑮,𝒕

𝟐 + 𝜶𝑩 ∙ 𝝁𝑩,𝒕
𝟐  

Higher moments are related by the chain rule of the form 

𝔼 𝒂𝒕+𝟏
𝒏  = 𝝀𝒕

𝒏 ∙ 𝔼 𝒂𝒕
𝒏 + 𝑭𝒏(𝔼𝑰 𝒂𝒕

𝒏−𝒊 , 𝝁𝑰,𝒕, 𝝀𝒕) 

where 𝑭𝒏(𝔼𝑰 𝒂𝒕
𝒏−𝒊 , 𝝁𝑩,𝒕, 𝝀𝒕) represents a function of moments less than n. 

 

We obtain these equations in Appendix I by deriving dynamic equations for conditional 

density functions for both continuous and discrete type distributions. The results stated reveal the 

dichotomy of moments when linearity condition is satisfied. Note that dynamic equation for 

mean value of the state variable does not include higher moments. Thus dynamics can be 

analyzed in aggregates. Equilibrium path of an economy with dichotomy of moments (if such 

path exists) determines the paths for mean values and the economy wide parameters z 

(equilibrium interest rates, wages et t.c.) and thus determines the paths for  𝜆𝑡  and 𝜇𝐼,𝑡 . Dynamics 

of higher moments is then obtained by applying the chain rule: evolution of higher moment 

depends only on its initial level and lower moments. In the further analysis we are interested 

primarily in the second moments.  

 

Some examples 

We present some examples of macroeconomic general equilibrium models with 

idiosyncratic shocks that can be captured in aggregates. The purpose is to demonstrate that our 

framework can serve as  a useful unification principle. 

The New-Keynsian model with Calvo (1983) process for price setting offers a good 

example of such model. Each period the firms that adjust their price are randomly selected, and a 

fraction w adjust while remaining fraction 1-w do not adjust. Those firms that do adjust their 

price do so to maximize the expected discounted value of current and future profits. It is easy to 
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verify that our general setting applies to this case. To see this note that in this case we can define 

as G the state in which individual firm receives a signal and adjusts, whereas B refers to the state 

with no adjustment. Then 𝑝𝐺 = 1 − 𝑝𝐵 = 𝑤 and we have the Poisson process . State variable 𝑎𝐼,𝑡
𝑗

 

represents individual price. Transition equations are straightforward: 𝑎𝑡+1
𝑗

= 𝑎𝑡
∗ for firms at G at 

time t, where 𝑎𝑡
∗ is the optimal price chosen by all adjusting firms;  𝑎𝑡+1

𝑗
= 𝑎𝑡

𝑗
 for firms at B at 

time t. This conforms with Proposition 1 and, thus, the model allows for exact aggregation.  

In the agency costs models of Carlstrom and Fuerst (1997) or Bernanke, Gertler and 

Gilshrist (1999) entrepreneurs borrow external funds to invest in a project that is subject to 

idiosyncratic productivity shock. It is noteworthy that solution in aggregates is obtained  because 

utility is assumed to be linear in consumption. We see again that some form of linearity 

requirement is indispensible. However ad hoc assumption of linear utility is not plausible. In 

Sections III and IV we show how aggregated dynamics can be extracted without reverting to 

such strong assumptions. 

Next example refers to Blanchard (1985) eternal youth model. Each period and regardless 

his age an individual faces constant probability of death, p. In this setting good state quite 

naturally refers to staying alive while bad state occurs when individual passes away. 

Alternatively one can interpret that in the bad state individual stays alive but is stripped of all his 

wealth. In our terms 𝑝𝐺 = 1 − 𝑝,  𝑝𝐵 = 0. The Euler condition with logarithmic utility is linear in 

individual consumption. This in turn implies that individual asset holdings at the good state 

follow linear dynamic equation. At the bad state asset transition equation is just  𝑎𝑡+1
𝑗

= 0. We 

analyze this model more thoroughly in Appendix II. Now it suffices to point that aggregation 

theorem clearly applies to this model and it is tractable in aggregates. 

The last but not least example is the standard neo-classical growth model without 

uncertainty (𝑝𝐺 = 1 − 𝑝𝐵 = 1). In this case the basic Euler equation that links current and next-

period individual consumptions is linear in consumption. Thus there is a linear relation between 

the next period and current period individual assets and the aggregation theorem applies. Two 

last examples demonstrate that what really matters for aggregation is linearity of decision rules, 

not linearity of utility. 

III. Economy with labor income shocks 

Individual consumption 

The basic model is a version of Aiyagari (1994) model with uninsurable idiosyncratic 

labor productivity shocks. An agent can have either high wage 𝑤𝐺,𝑡  or low wage 𝑤𝐵,𝑡  in each 

period t. The productivity status follows a Markov process. One particular interpretation for 
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agent’s productivity status is his employment: he can either be employed or unemployed. In this 

case following Krussel and Smith (1998) 𝑤𝐵,𝑡  is set to be zero and 𝑤𝐺,𝑡  equals market clearing 

wage. 

 

The problem for the agent j being at the state I at time t and holding assets 𝑎𝑡
𝑗
 is to 

maximize 

𝑢 𝑐𝐼,𝑡
𝑗
 + 𝐸𝐼,𝑡   𝛽𝑖 ∙ 𝑢 𝑐𝑡+𝑖

𝑗
 

∞

𝑖=1

           (1)  

subject to the budget constraint 

𝑎𝑡+1
𝑗

= 𝑅𝑡+1 ∙  𝑎𝑡
𝑗

+ 𝑤𝐼,𝑡 − 𝑐𝐼,𝑡
𝑗
           (2) 

First order necessary conditions condition is given by Euler equations that in the present 

case takes the form 

𝑢′ 𝑐𝐼,𝑡
𝑗
 = 𝛽 ∙ 𝑅𝑡+1 ∙  𝑝𝐼 ∙ 𝑢

′ 𝑐𝐼,𝑡+1
𝑗

 +  1 − 𝑝𝐼 ∙ 𝑢′ 𝑐𝐼∗,𝑡+1
𝑗

    for I=G,B 

Suppose that preferences are given by 

𝑢 𝑐 =
𝑐1−𝜃 − 1

1 − 𝜃
 

where 𝜃 is coefficient of risk averseness (𝜃 ≥ 1). With these preferences, the Euler conditions 

become 

𝛽 ∙ 𝑅𝑡+1 ∙  𝑝𝐼 ∙  
𝑐𝐼,𝑡+1
𝑗

𝑐𝐼,𝑡
𝑗  

−𝜃

+  1 − 𝑝𝐼 ∙  
𝑐𝐼∗,𝑡+1
𝑗

𝑐𝐼,𝑡
𝑗  

−𝜃

 = 1  𝑓𝑜𝑟 𝐼 = 𝐺, 𝐵            (3) 

Equation (3) is nonlinear in ratios of consumption, hence, these ratios are likely to depend 

in non-trivial manner on other state variables, specifically, on the level of assets individual is 

holding. The non-linearity of basic consumption equation makes impossible to get its counterpart 

in terms of aggregated consumption. 

In order to proceed, it proves helpful to express consumption equations in terms of 

propensity to consume. As we will demonstrate shortly consumption and saving rules expressed 

in this form have transparent and easy to interpret structure. 

Let Ω𝐼,𝑡
𝑗

 denote the propensity to consume out of wealth for agent j in state I and time t. 

Using this notation propensity to consume are allowed to depend on time t, individual state I and 

individual asset holdings 𝑎𝑡
𝑗
. By definition 

𝑐𝐼,𝑡
𝑗

≡ Ω𝐼,𝑡+1
𝑗

∙  𝑎𝑡
𝑗

+ ℎ𝐼,𝑡           (4)       

so that Ω𝐼,𝑡
𝑗

  relates individual consumption to his wealth, the sum of net asset holdings and 

human wealth (the agent's superscript is dropped out in the expression for human wealth as it 
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depends only on state I at time t). Human wealth is expressed as the current value of the present 

and future expected labor income 

ℎ𝐼,𝑡 = 𝑤𝐼,𝑡 + 𝐸𝐼,𝑡    𝑅𝑡+𝑖 
−𝑖 ∙ 𝑤𝑡+𝑖

∞

𝑖=1

           (5) 

where 𝑤𝐼,𝑡  is labor income at state I at time t.  

Denote ∆ℎ𝐼,𝑡 = ℎ𝐼,𝑡 − ℎ𝐼∗,𝑡   the difference in human wealth between two states  (∆ℎ𝐼,𝑡 +

∆ℎ𝐼∗,𝑡 = 0). The following proposition sheds light on the optimal individual decision rule for 

consumption. 

Proposition 3 

Suppose  
∆𝒉𝑰,𝒕+𝟏

𝒂𝒕
𝒋
+𝒉𝑰,𝒕

  is small. Then the optimal consumption strategy for  agent j at state I at time t 

can be expressed as follows 

𝒄𝑰,𝒕
𝒋

=  𝜴𝒕 − 𝝋𝑰,𝒕 ∙  
∆𝒉𝑰,𝒕+𝟏

𝒂𝒕
𝒋

+ 𝒉𝑰,𝒕

 

𝟐

+ 𝓞  
∆𝒉𝑰,𝒕+𝟏

𝒂𝒕
𝒋

+ 𝒉𝑰,𝒕

 

𝟑

  ∙  𝒂𝒕
𝒋

+ 𝒉𝑰,𝒕           (6) 

where function 𝜴𝒕 satisfies equation 

𝜷 ∙ 𝑹𝒕+𝟏 ∙  𝑹𝒕+𝟏𝜴𝒕+𝟏 ∙
𝟏 − 𝜴𝒕

𝜴𝒕
 
−𝜽

= 𝟏          (7) 

and precautionary saving functions 𝝋𝑰,𝒕 (I=G,B) satisfy the system of two equations 

 

𝝋𝑰,𝒕 =
𝜴𝒕(𝟏−𝜴𝒕)

𝜴𝒕+𝟏
 𝒑𝑰𝝋𝑰,𝒕+𝟏 + (𝟏 − 𝒑𝑰)𝝋𝑰∗,𝒕+𝟏 +

 𝜽+𝟏 

𝟐

𝜴𝒕

(𝟏−𝜴𝒕)𝑹𝒕+𝟏
𝟐  𝒑𝑰 𝟏 − 𝒑𝑰          (8) 

 

These results are obtained in Appendix by application of perturbation theory. To see what 

they imply for propensity to consume first note that dynamic equation for 𝛺𝑡  is identical to the 

propensity to consume equation in an economy without idiosyncratic shocks. Thus 𝛺𝑡  can be 

treated as the unperturbed part of propensity to consume. Expressing 𝛺𝑡  from equation (7) and 

re-denoting one obtains the following forward looking equation 

𝑥𝑡 = 1 + 𝑠𝑡+1 ∙ 𝑥𝑡+1 

where 𝑥𝑡 = 1/𝛺𝑡  and 𝑠𝑡+1 =  𝛽 ∙ 𝑅𝑡+1 
1/𝜃/𝑅𝑡+1. Solving this equation forward and imposing 

no-bubble condition, yields 

𝛺𝑡 =
1

𝑥𝑡
=  1 +   𝑠𝑡+𝑘

𝑖

𝑘=1

∞

𝑖=1

 

−1

 

With logarithmic utility (𝜃 = 1) this gives constant propensity to consume 𝑠𝑡+𝑘 = 𝛽 and 

Ω𝑡 = 1 − 𝛽. In general case this equation determines 𝛺𝑡  given future interest rate path that is 

assumed to be known to rational consumers. 

Individual consumption rules given in Proposition 3 provide a close approximation to the 

optimal consumption strategy as long as  ∆ℎ𝐼,𝑡+1/(𝑎𝑡
𝑗

+ ℎ𝐼,𝑡)  stays small. Suppose for the 
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moment that this is the case. What does this imply? Rewrite consumption rule ignoring the terms 

of order of smallness greater than two. 

𝑐𝐼,𝑡
𝑗

= 𝛺𝑡 ∙  𝑎𝑡
𝑗

+ ℎ𝐼,𝑡 − 𝜑𝐼,𝑡 ∙
 ∆ℎ𝐼,𝑡+1 

2

𝑎𝑡
𝑗

+ ℎ𝐼,𝑡

    𝐼 = 𝐺, 𝐵             (9) 

The second term on the right side of equation (9) represents the precautionary saving 

motive. It shows that there are two factors at play here. First is measured by precautionary saving 

functions  𝜑𝐼,𝑡  that are only time and state dependent. Second factor measured by the term 
∆ℎ𝐼,𝑡+1

𝑎𝑡
𝑗

+ℎ𝐼,𝑡

 

depends on individual assets as well. It represents the ratio of human wealth differential in both 

states to the current individual wealth.  

Intuitively 𝜑𝐼,𝑡  at both states are positive functions so that uncertainty about the future 

income forces consumers to save more and consume less than in the certainty case. It can be 

verified that 𝜑𝐼,𝑡  are indeed positive. Note that these functions depend on the state I thus 

precautionary behavior at the good state can slightly differ from that at the bad state.  For further 

analysis it will be helpful to write a single equation for the state-average precautionary saving 

function. Define 𝜑𝑡 ≡ 𝛼𝐺 𝜑𝐺,𝑡 + 𝛼𝐵 𝜑𝐵,𝑡 . From equations (8) it follows (see Appendix) 

𝜑𝑡 =
𝛺𝑡(1 − 𝛺𝑡)

𝛺𝑡+1
∙ 𝜑𝑡+1 +

 𝜃 + 1 

2

𝛺𝑡

(1 − 𝛺𝑡)𝑅𝑡+1
2

 1 − 𝑝𝐺  1 − 𝑝𝐵 (𝑝𝐺 + 𝑝𝐵)

2 − 𝑝𝐺 − 𝑝𝐵
          (10) 

 

Equation (10) represents a forward looking linear equation in respect to 𝜑𝑡 . Note that 

both coefficient on the next period value of endogenous variable and the free term are positive. 

Solving this equation forward and ruling out explosive paths one obtains the fundamental 

solution for 𝜑𝑡  that is positive at any t for any interest rate path. 

As individual accumulates more assets she reacts less to future income uncertainty and 

moves closer to certainty equivalent behavior. Whatever interesting is this non-linearity of 

consumption in respect to asset holdings it creates the major problem for analysis. For if 

individual consumption at t is non-linear in his assets at t so are his assets at t+1. Thus by 

Proposition 1 this economy does not exhibit a dichotomy of moments and there is no translation 

of individual equations into aggregated counterparts. Put differently, dynamics of economy 

populated by prudent consumers is of the type distribution.  

Boundary economies 

We now develop an analytical approach that offers a solution to the aggregation problem 

described above. 
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The idea is to characterize the (infinitely) complex behavior of the original economy by 

exploring simpler limiting cases that allow for aggregation and whose dynamics serve as the 

upper and lower bounds for the economy of interest. Moreover, if stationary solutions for these 

simpler economies can be shown to be close to each other, the behavior of the original economy 

would be pinned down. We proceed by defining what is required from these boundary 

economies. 

Upper bound asset accumulation economy is an economy which is characterized by 

1) dichotomy of moments 2) average assets in any period are higher than in the original 

economy provided the same for two economies initial mean asset holdings 𝒂𝟎 and interest 

rate, wage and capital stock paths:  𝔼𝒂𝒕  ≥ 𝔼𝒂𝒕 for 𝒕 = 𝟏, . . , ∞. 

Lower bound asset accumulation economy is an economy which is characterized by 

1) dichotomy of moments 2) average assets in any period are lower than in the original 

economy provided the same for two economies initial mean asset holdings 𝒂𝟎 and interest 

rate, wage and capital stock paths: 𝔼𝒂𝒕 ≤ 𝔼𝒂𝒕 for 𝒕 = 𝟏, . . , ∞. 

 

The main issue is to construct such economies. It turns out that it is possible to find 

economies with desired properties by considering the so called constant prudence economy 

(CPE). By this we mean a hypothetical economy in which precautionary saving behavior does 

not depend on individual asset level. Formally, a constant prudence economy differs from the 

original economy only in that individuals consume according to the rule 

𝑐𝐼,𝑡
𝑗  𝐶𝑃𝐸 = 𝛺𝑡 ∙  𝑎𝑡

𝑗
+ ℎ𝐼,𝑡 − 𝜑𝐼,𝑡 ∙

 ∆ℎ𝐼,𝑡+1 
2

𝑎𝐼,𝑡
∗ + ℎ𝐼,𝑡

   𝐼 = 𝐺, 𝐵          (11) 

The only difference between consumption rules (9) and (11) is that in the later agent j 

asset holdings 𝑎𝐼,𝑡
𝑗

 are replaced by economy-wide level 𝑎𝐼,𝑡
∗ .  

It is straightforward to demonstrate that any constant prudence economy exhibits the 

dichotomy of moments. To see this substitute (11) in the asset accumulation equation (2). This 

yields 

𝑎𝑡+1
𝑗

= 𝑅𝑡+1 ∙  1 − 𝛺𝑡 ∙ 𝑎𝑡
𝑗

+  𝑅𝑡+1  𝑤𝐼,𝑡 − 𝛺𝑡ℎ𝐼,𝑡 + 𝜑𝐼,𝑡 ∙
 ∆ℎ𝐼,𝑡+1 

2

𝑎𝐼,𝑡
∗ + ℎ𝐼,𝑡

     𝑓𝑜𝑟 𝐼 = 𝐺, 𝐵 

This equation clearly satisfies Proposition 2.  

A constant prudence economy captures in most simple way both heterogeneous and 

homogenous aspects of consumption. All individuals behave alike in respect to precautionary 

savings. Nevertheless the time heterogeneity is presented by the first term in (11) since 
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consumption depends on current individual wealth. It is due to the linearity of this term in 

respect to wealth that economy is tractable in aggregates.  

We can use constant prudence economies to construct boundary cases. One limiting case 

is obtained when 𝑎𝐼,𝑡
∗  is very large or goes to infinity. Then individuals consume according to 

𝑐𝐼,𝑡
𝑗  𝑀𝑖𝑛𝑃𝐸 = 𝛺𝑡 ∙  𝑎𝑡

𝑗
+ ℎ𝐼,𝑡            (12) 

Thus they consume as in the certainty case. It is natural to call economy in which 

individual consumption is given by (12) the minimal prudence economy. Further it will be shown 

that minimal prudence economy presents a lower bound asset accumulation economy. 

The other side of the specter is not so obvious. As we see from (11) precautionary savings 

rises when  𝑎𝐼,𝑡
∗  decreases. This term goes to infinity when wealth, 𝑎𝐼,𝑡

∗ + ℎ𝐼,𝑡 , approaches zero. 

Recall however that (9) is a good approximation for optimal consumption only if 
∆ℎ𝐼,𝑡+1

𝑎𝑡
𝑗

+ℎ𝐼,𝑡

 is 

sufficiently small in absolute value. In other words it serves as approximation for sufficiently 

high levels of wealth. With decreasing wealth optimal consumption rule diverts further from 

(11). 

Relation between optimal consumption rule and second order approximation given by 

(11) is summarized in Fig.1. It can be seen that there is such value of a at state I and time t for 

which approximation (11) calls for zero consumption. Denote this value 𝑎𝐼,𝑡
# . By definition  

𝑎𝐼,𝑡
# ≡  

𝜑𝐼,𝑡

𝛺𝑡
 

1/2

∙ ∆ℎ𝐼,𝑡+1 − ℎ𝐼,𝑡+1          (13) 

We call economy in which individual consumption is given by (11) with 𝑎𝐼,𝑡
#  from (13) 

the maximum prudence economy. It follows directly from Fig.1 that individual optimal 

consumption can be characterized by the following inequality 

𝑐𝐼,𝑡
𝑗

> 𝑐𝐼,𝑡
𝑗  𝑀𝑎𝑥𝑃𝐸 ≡ 𝛺𝑡 ∙  𝑎𝑡

𝑗
+ ℎ𝐼,𝑡 − 𝜑𝐼,𝑡 ∙

 ∆ℎ𝐼,𝑡+1 
2

𝑎𝐼,𝑡
𝑚𝑖𝑛 + ℎ𝐼,𝑡

          (14) 

It turns out that maximum prudence economy is an upper bound asset accumulation 

economy. 
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It should be stressed that consumption rules described for constant prudence economies 

should not be regarded as providing optimal solutions for some specific consumer decision 

taking problem. Moreover, we do not even require that “consumption” given by (11)  to be non-

negative as is shown in Fig. 1. One should treat these economies as a useful formal instrument to 

evaluate the behavior of the original economy. The main advantage is that these economies allow 

for solution in aggregates and set bounds for original economy. This is formulated in the 

following proposition. 

  

Proposition 4 

An economy in which individual j consumes according to the rules 

𝒄𝑮,𝒕
𝒋

= 𝜴𝒕 ∙  𝒂𝒕
𝒋

+ 𝒉𝑮,𝒕 −  𝜴𝒕𝝋𝒕 ∙ ∆𝒉𝒕+𝟏          (15) 

𝒄𝑩,𝒕
𝒋

= 𝜴𝒕 ∙  𝒂𝒕
𝒋

+ 𝒉𝑩,𝒕 −  𝜴𝒕𝝋𝒕 ∙ ∆𝒉𝒕+𝟏          (16) 

is an upper bound asset accumulation economy.   

 

An economy in which individual j consumes according to the rules 

𝒄𝑮,𝒕
𝒋

= 𝜴𝒕 ∙  𝒂𝒕
𝒋

+ 𝒉𝑮,𝒕           (17) 

𝒄𝑩,𝒕
𝒋

= 𝜴𝒕 ∙  𝒂𝒕
𝒋

+ 𝒉𝑩,𝒕           (18) 

is a lower bound asset accumulation economy. 

 

Fig. 1. Consumption rules 
Blue line: optimal consumption rule 

Black line: second order approximation of optimal consumption rule 

Higher red line: consumption rule for Minimum Prudence Economy 

Middle red line: consumption rule for Constant Prudence Economy with 𝑎𝐼,𝑡
∗ = 0 

Lower red line: consumption rule for Maximum Prudence Economy 
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This claim is quite strong. Recall that dynamics of the original economy is influenced not 

only by initial probability distribution but also by specific realizations of individual agent life 

paths, i.e. individual transitions between states. Nevertheless (15)–(16) and (17)–(18) are proved 

to be the bounds regardless of initial distribution or realization paths.  

It should be stressed that this proposition deals with partial equilibrium aspect. It shows 

that with price paths set exogenously there is an economy with dichotomy of moments in which 

assets accumulate faster than in the original economy (upper bound) and an economy with 

slower asset accumulation (lower bound). This result provides the basis for general equilibrium 

analysis.  

What can be said about dynamic properties of upper and lower bound economies 

presented in Proposition 4? In the next subsection we will analyze this question in more detail 

and show that these two economies are characterized by dynamics similar to the standard 

Ramsey model. Both economies are saddle path stable. Moreover the lower bound economy 

coincides with the standard representative agent economy. It settles in a steady state with 

modified golden rule interest rate 𝑅𝑠𝑠 = 1
𝛽 . The upper bound is also characterized by saddle 

path with slightly lower steady state interest rate: 𝑅𝑠𝑠 < 𝑅𝑠𝑠 .  

As should be already clear from preceding analysis the original economy has no 

dichotomy of moments and is a complex infinite-dimension object that cannot be expressed by 

some closed system of dynamic equations. Thus, it is not possible to make general judgments 

about the existence of the steady state or even the existence of equilibrium path in this economy. 

It is possible however to identify dynamic properties of this model presuming there exists a 

steady state. This is given by the following proposition. 

 

Proposition 5 

Assume that there is a steady state in the original economy. Then in capital-consumption 

space this steady state lies between the steady states of lower and upper bound economies: 

𝒌𝒔𝒔 < 𝒌𝒔𝒔 < 𝒌𝒔𝒔 and 𝒄𝒔𝒔 < 𝒄𝒔𝒔 < 𝒄𝒔𝒔 

This is the key result. Let us outlay the main argument (for detailed proof see Appendix). 

Suppose the contrary. Specifically, imagine that in the steady state original economy 

accumulates more capital than the upper bound economy: 𝒌𝒔𝒔 > 𝒌𝒔𝒔. Since capital is a 

decreasing function of interest rate, we have 𝑹𝒔𝒔 < 𝑹𝒔𝒔. It can be shown that stationary level of 

assets accumulated in the upper bound economy increase with stationary interest rate. Thus, 

𝒂𝒔𝒔(𝑹𝒔𝒔)< 𝒂𝒔𝒔(𝑹𝒔𝒔). We see that  𝑹𝒔𝒔 level of interest rate is associated with a capital deficit in 
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the upper bound economy: demand exceeds supply. But we know by definition that upper bound 

economy accumulates more assets than the original economy. By consequence there should be 

even more severe misbalance of capital and assets in the original economy at 𝑹𝒔𝒔 and we run into 

contradiction. Similar argument using the lower bound economy can be made to show that 

𝒌𝒔𝒔 < 𝒌𝒔𝒔 cannot occur in equilibrium. 

Generally speaking nothing can be said about uniqueness of the steady state. Proposition 

5 set bounds for stationary equilibria. If the steady states for upper and lower bounds economies 

are very close to each other then steady state(s) for the original economy (assuming it exists) can 

be pinned down precisely.  

Upper and Lower Bounds: Dynamics   

Now we are well positioned to formulate the system of equations that rules the dynamics 

of the upper and lower bound economies. We begin with the upper bound that represents an 

economy with constant (independent of individual asset holdings) precautionary savings. 

In order to simplify slightly analysis we assume logarithmic utility (𝜃 = 1). In this case 

undisturbed propensity to consume Ω𝑡  does not depend on interest rates: Ω𝑡 = 1 − 𝛽. This is 

without loss of generality and lowers the number of dimensions by one. 

Consumption rules for this economy are given in Proposition 4. Integrating these 

equations in respect to the states I and individuals j we obtain the following equation for the 

mean value (aggregate) of consumption 

𝔼𝑐𝑡 =  1 − 𝛽 ∙  𝔼𝑎𝑡 + 𝔼ℎ𝑡 −   1 − 𝛽 𝜑𝑡 ∙ ∆ℎ𝑡+1         (19) 

It is convenient to write down the consumption equation in the form that relates mean 

values of consumptions in periods t and t+1. This can be done by writing (19) for the period t+1, 

using mean asset accumulation equation 𝔼𝑎𝑡+1 = 𝑅𝑡+1(𝔼𝑎𝑡 + 𝑤𝑡 − 𝔼𝑐𝑡) to substitute 𝔼𝑎𝑡+1 in 

it and expressing 𝔼𝑎𝑡  from (19) to substitute 𝔼𝑎𝑡  in it. After some rearrangement we arrive at 

𝔼𝑐𝑡+1 = 𝛽𝑅𝑡+1 ∙ 𝔼𝑐𝑡 +  (1 − 𝛽) 𝑅𝑡+1 𝜑𝑡 ∙ ∆ℎ𝑡+1 −  𝜑𝑡+1 ∙ ∆ℎ𝑡+2            (20) 

This equation deserves short comment. It can be interpreted as generalized Euler equation 

that incorporates precautionary savings motive. Relation 𝔼𝑐𝑡+1 = 𝛽𝑅𝑡+1 ∙ 𝔼𝑐𝑡  is the standard 

Euler equation for an economy without uncertainty. Second term on the right of (20) represents 

distortion of the standard form due to uncertainty about future income. We see that the impact of 

uncertainty on consumption depends positively on human wealth differential between two states 

and precautionary saving function 𝜑𝑡 .  

Equation for state-average precautionary savings function 𝜑𝑡   was derived earlier and is 

given by (10). Using expression for constant Ω𝑡  it simplifies to 
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𝜑𝑡 = 𝛽 ∙ 𝜑𝑡+1 +
1

𝑅𝑡+1
2

(1 − 𝛽

𝛽

) 1 − 𝑝𝐺  1 − 𝑝𝐵 (𝑝𝐺 + 𝑝𝐵)

2 − 𝑝𝐺 − 𝑝𝐵
          (21) 

Human wealth dynamics can be extracted from the definition of ℎ𝐼,𝑡  (5). Using this 

definition one can relate current human wealth to it next period values 

ℎ𝐼,𝑡 = 𝑤𝐼,𝑡 +
1

𝑅𝑡+1
∙  𝑝𝐼 ∙ ℎ𝐼,𝑡+1 +  1 − 𝑝𝐼 ∙ ℎ𝐼∗,𝑡+1   for I=G,B 

From this it is easy to obtain an equation for human wealth differential between states, 

∆ℎ𝑡 = ℎ𝐺,𝑡 − ℎ𝐵,𝑡 , the term that is present in consumption equation (19) 

∆ℎ𝑡 = ∆𝑤𝑡 +
1

𝑅𝑡+1
∙  𝑝𝐺 + 𝑝𝐵 − 1 ∙ ∆ℎ𝑡+1          (22) 

where ∆𝑤𝑡 = 𝑤𝐺,𝑡 − 𝑤𝐵,𝑡  is wage differential between two states. 

We assume the Cobb-Douglas production function 𝑦𝑡 = 𝑙𝑡
1−𝜇

∙ 𝑘𝑡
𝜇

 with inelastic labor 

supply 𝑙𝑡  that equals 𝛼𝐺  (the fraction of population that is employed). This implies standard 

relations for production, interest rate and market-clearing wage 

𝑦𝑡 = 𝛼𝐺
1−𝛾

∙ 𝑘𝑡
𝛾

           (23) 

𝜇 ∙  
𝛼𝐺

𝑘𝑡
 

1−𝛾

+ 1 − 𝛿 = 𝑅𝑡           (24) 

 1 − 𝛾 ∙  
𝛼𝐺

𝑘𝑡
 
−𝛾

= 𝑤𝐺,𝑡           (25) 

𝑤𝐵,𝑡 = 0 

Using last two equations wage differential is 

∆𝑤𝑡 =  1 − 𝛾 ∙  
𝛼𝐺

𝑘𝑡
 
−𝛾

 

Substituting this wage differential in (22) 

∆ℎ𝑡 =
1

𝑅𝑡+1
∙  𝑝𝐺 + 𝑝𝐵 − 1 ∙ ∆ℎ𝑡+1 +  1 − 𝜇 ∙  

𝛼𝐺

𝑘𝑡
 
−𝛾

          (26) 

Finally we have the following capital accumulation equation 

𝑘𝑡+1 = 𝛼𝐺
1−𝛾

∙ 𝑘𝑡
𝛾

+  1 − 𝛿 ∙ 𝑘𝑡 − 𝔼𝑐𝑡           (27) 

There are four dynamic equations. Aggregate consumption, 𝔼𝑐𝑡 , dynamics is given by 

(20); dynamic equation for precautionary savings function, 𝜑𝑡 , is represented by (21); (22) 

governs the dynamics of human wealth differential, ∆ℎ𝑡 ; finally, equation for capital stock 𝑘𝑡  

dynamics is (27). Together with relation between capital stock and interest rate (24) and 

transversality condition these equations determine equilibrium path for this economy.  

We now turn to the steady state of the upper bound economy and show that it is unique. 

In the steady state all endogenous variables take constant values that we denote by subscript ss.  

Begin with equation for consumption (20). In the steady state it becomes 
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 𝔼𝑐𝑠𝑠 =
𝑅𝑠𝑠 − 1

1 − 𝛽𝑅𝑠𝑠
 (1 − 𝛽) ∙ 𝜑𝑠𝑠 ∙ ∆ℎ𝑠𝑠           (29) 

Firstly, this relation reveals that equilibrium interest rate should be lower than 1/𝛽, the 

level of interest rate in the certainty case. Secondly, it shows that it stays very close to that level 

as long as human wealth differential is small. Both results are intuitive as prudent behavior 

forces individuals to save more and thus lowers equilibrium interest rate. 

The steady state level of precautionary saving function 𝜑𝑠𝑠  is obtained from (21). This 

yields 

𝜑𝑠𝑠 =
1

𝛽𝑅𝑠𝑠
2

 1 − 𝑝𝐺  1 − 𝑝𝐵  𝑝𝐺 + 𝑝𝐵 

2 − 𝑝𝐺 − 𝑝𝐵
          (30) 

Equation (26) provides the steady state level of human wealth differential 

∆ℎ𝑠𝑠 =  1 −
1

𝑅𝑠𝑠
∙  𝑝𝐺 + 𝑝𝐵 − 1  

−1

 1 − 𝛾 ∙  
𝛼𝐺

𝑘𝑠𝑠
 
−𝛾

          (31) 

Finally, equations (24) and (27) become in the steady state 

𝛾 ∙  
𝛼𝐺

𝑘𝑠𝑠
 

1−𝛾

+ 1 − 𝛿 = 𝑅𝑠𝑠           (32) 

𝑘𝑠𝑠 =
1

𝛿
(𝑦𝑠𝑠 −  𝔼𝑐𝑠𝑠)          (33)  

 

Equations (29)–(33) simultaneously determine the steady state values of 𝑅𝑠𝑠 , 𝔼𝑐𝑠𝑠 , 𝑘𝑠𝑠 , 

∆ℎ𝑠𝑠 , 𝜑𝑠𝑠 . It can be shown that this steady state exists and is unique. The easy way to verify this 

is to note that equation (32) defines the steady state capital stock as decreasing function of the 

steady state interest rate. This relation can be expressed as follows 

𝑘𝑠𝑠
 1  𝑅𝑠𝑠 =

𝛼𝐺

𝛿1/(1−𝛾)
 

𝛾

1 +
(𝑅𝑠𝑠 − 1)

𝛿

 

1
1−𝛾 

          (34) 

 

On the other hand, equations (29)-(31) and (33) yield the following relation between 

capital stock and interest rate 

𝑘𝑠𝑠
 2  𝑅𝑠𝑠 =

𝛼𝐺

𝛿
1

1−𝛾

 1 − 𝐴 ∙
𝑅𝑠𝑠 − 1

1 − 𝛽𝑅𝑠𝑠
∙

1

𝑅𝑠𝑠
∙  1 −

1

𝑅𝑠𝑠
∙  𝑝𝐺 + 𝑝𝐵 − 1  

−1

 

1
1−𝛾 

         (35) 

where 𝐴 ≡
1−𝛾

𝛼𝐺
 

1−𝛽

𝛽

 1−𝑝𝐺  1−𝑝𝐵  𝑝𝐺+𝑝𝐵 

2−𝑝𝐺−𝑝𝐵
    

Functions 𝑘𝑠𝑠
(1)

(𝑅𝑠𝑠) and 𝑘𝑠𝑠
(2)

(𝑅𝑠𝑠) from (34) and (35) are plotted in the Fig.2. Their 

unique intersection is close to 1/𝛽 from below and determines the equilibrium interest rate 
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It can be shown that the equilibrium has a saddle-point structure. Behavior of the upper 

and lower bound economies is very similar. As was pointed earlier dynamic equations for lower 

bound economies for average consumption and capital stock coincides with the standard Ramsey 

model. Dynamics of the upper bound economy is a little trickier because it contains two 

additional dimensions, ∆ℎ𝑡 , and 𝜑𝑡 . Nevertheless a stable arm converging to the steady state can 

be constructed. Steady state for the upper bound is slightly shifted relative to the lower bound 

economy due to precautionary savings. Stable arms for both economies  can be viewed as a 

channel for the path of the original economy (presuming it exists). This is summarized in Fig.3. 

Since equilibrium paths of the original economy are of the type distribution there must be an 

infinite number of paths that converges to the steady state C that lie in the channel formed by 

saddle paths of lower and upper bounds economies. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Steady state in the upper bound economy 
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Evolution of Higher Moments   

We now focus on the implications of idiosyncratic income shocks for wealth inequality. 

There are various measures of inequality used by economists. In the context of our exposition the 

most relevant is coefficient of variation (the ratio of standard deviation to mean value).  

The derivation of dynamic equation that governs unconditional square assets 𝔼 𝑎𝑡
2  in the 

upper bound economy follows directly from Proposition 1 and equations of preceding 

subsection. We obtain 

𝔼 𝑎𝑡+1
2  = 𝜆𝑡

2 ∙ 𝔼 𝑎𝑡
2 + 2 ∙ 𝜆𝑡 ∙ 𝔼 𝜇𝐼,𝑡 ∙ 𝔼𝐼(𝑎𝑡) + 𝔼 𝜇𝐼,𝑡

2            (36) 

          

where 𝜆𝑡 = 𝛽𝑅𝑡   𝔼 𝜇𝐼,𝑡 ∙ 𝔼𝐼(𝑎𝑡) =  𝛼𝐼 ∙ 𝜇𝐼,𝑡 ∙ 𝔼𝐼𝑎𝑡 =  𝛼𝐼 ∙  𝑅𝑡+1 ∙  𝑤𝐼,𝑡 − (1 − 𝛽) ∙𝐼=𝐺,𝐵𝐼=𝐺,𝐵

ℎ𝐼,𝑡− 1−𝛽)𝜑𝑡∙∆ℎ𝑡+1∙𝔼𝐼𝑎𝑡 and  

𝔼 𝜇𝐼,𝑡
2  =  𝛼𝐼 ∙  𝜇𝐼,𝑡 

2
=  𝛼𝐼 ∙  𝑅𝑡+1 ∙  𝑤𝐼,𝑡 − (1 − 𝛽) ∙ ℎ𝐼,𝑡 −  (1 − 𝛽)𝜑𝑡 ∙ ∆ℎ𝑡+1  

2

𝐼=𝐺,𝐵𝐼=𝐺,𝐵

 

To gain some insight recall that in any economy characterized by the dichotomy of 

moments mean values of variables form a closed system of dynamic equations and determine the 

paths for 𝜆𝑡  , 𝜇𝐼,𝑡 ,  𝔼𝐼 𝑎𝑡 , 𝔼𝑎𝑡 . Given these paths and initial condition equation (36) determines 

Fig. 3. Boundary economies 
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dynamics of 𝔼 𝑎𝑡
2 . Economy in aggregates follows the saddle path and converges to the steady 

state. So if aggregates are settled in the steady state, (36) becomes 

𝔼 𝑎𝑡+1
2  = 𝜆𝑠𝑠

2 ∙ 𝔼 𝑎𝑡
2 + 2 ∙ 𝜆𝑠𝑠 ∙ 𝔼  𝜇𝐼,𝑠𝑠 ∙ 𝔼𝐼 𝑎𝑠𝑠  + 𝔼 𝜇𝐼,𝑠𝑠

2             37  

Equation (37) shows that even when first moments are already settled in the steady state, 

second and higher moments need not to be so. Recall that 𝜆𝑠𝑠 = 𝑅𝑠𝑠/𝛽 and 𝑅𝑠𝑠 <
1

𝛽
.  Thus 

𝜆𝑠𝑠 < 1 and (37) ultimately converges to the stationary level 

𝔼𝑎𝑠𝑠
2 =

1

1 − 𝜆𝑠𝑠
2

 2 ∙ 𝜆𝑠𝑠 ∙ 𝔼  𝜇𝐼,𝑠𝑠 ∙ 𝔼𝐼 𝑎𝑠𝑠  + 𝔼 𝜇𝐼,𝑠𝑠
2    

 

As 𝜎𝑠𝑠
2 (𝑎) = 𝔼𝑎𝑠𝑠

2 −  𝔼𝑎𝑠𝑠 
2, stationary dispersion is 

𝜎𝑠𝑠
2  𝑎 =

2 ∙ 𝜆𝑠𝑠 ∙ 𝔼  𝜇𝐼,𝑠𝑠 ∙ 𝔼𝐼 𝑎𝑠𝑠  + 𝔼 𝜇𝐼,𝑠𝑠
2  

1 − 𝜆𝑠𝑠
2

−  𝔼𝑎𝑠𝑠 
2         (38) 

Using (38) one obtains the stationary coefficient of variation. 

Equation (38) also shows that equilibrium asset distribution can be characterized by high 

inequality if equilibrium 𝜆𝑠𝑠  is close to unity This exercise demonstrates that asset structure 

becomes purely endogenous. Evolution of higher moments can be described by the chain rule. 

Once first n-1 moments are determined, there is a dynamic equation that determines the 

evolution of n-s moment given n-1 moments. In Appendix I we derive explicitly dynamic 

equations that govern evolution of density functions. In view of this it is possible not only 

recover higher moments separately but get the whole picture of distribution dynamics. In 

Appendix I after the proof of Proposition 2 we provide an illustrative numerical example how 

density distribution functions evolves.  

IV. Calibration and Results 

One natural way to apply analytical framework developed above and calibrate the model 

consists in interpreting good and bad states as referring to employed-unemployed status. Two-

state Markov chain might be a relevant approximation for transition between employed and 

unemployed since data suggests there is substantial difference in probabilities of keeping a job 

and finding one.   

There are five constants to be calibrated: probabilities 𝑝𝐺  and 𝑝𝐵, utility factors 

 𝜃 and 𝛽, capital share 𝛾, depreciation rate 𝛿. At quarter frequency we set:  𝛽 = 0.99, 𝛾 = 0.36,

𝛿 = 0.025. These values are close to commonly used in simulation experiments. We choose 

𝑝𝐵 = 0.6 so that average duration of an unemployment spell, 𝑝𝐵/(1 − 𝑝𝐵), equals 1.5 quarters 

which corresponds to US data. We set 𝑝𝐺 = 0.98 to match the unemployment rate, 
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(1 − 𝑝𝐺)/(2 − 𝑝𝐺 − 𝑝𝐵), of 5%. It is commonly accepted that realistic values for coefficient of 

risk aversion are somewhere between 1 and 5. We set 𝜃 = 1 for the benchmark case and then 

explore how higher risk averseness affects the results. 

In the previous subsection we analyzed two boundary economies whose stable arms form 

the channel for original economy. Consumption rules for lower bound (15)–(16) and upper 

bound (17)–(18) are constructed to provide the simplest possible dynamic systems. Indeed, lower 

bound economy so chosen coincides with the standard neo-classical model and upper bound 

economy contains just two additional dimensions. For the purpose of analytical simplicity we 

also used logarithmic utility. 

However for the purpose of simulation experiments we can construct much more refined 

bounds by choosing from the class of constant prudence economies introduced by (11).   

All that is required for an economy to present a lower bound asset accumulation economy 

is that precautionary savings in it are less than average precautionary savings in the original 

economy (given same price paths). Recall that precautionary savings motive is captured by the 

second term in (9). Thus we need to choose 𝑎𝐼,𝑡
∗  so that 

 𝜑𝐼,𝑡 ∙
 ∆ℎ𝐼,𝑡+1 

2

𝑎𝑡
𝑗

+ ℎ𝐼,𝑡

𝑑𝐹𝐼( 𝑎𝑡
𝑗
) > 𝜑𝐼,𝑡 ∙

 ∆ℎ𝐼,𝑡+1 
2

𝑎𝐼,𝑡
∗ + ℎ𝐼,𝑡

     𝑓𝑜𝑟 𝐼 = 𝐺, 𝐵         (39) 

If we set 𝑎𝐼,𝑡
∗ = 𝔼𝐼𝑎𝑡  then (39) is clearly satisfied. Put simply average precautionary 

savings are higher than precautionary savings of “representative” agent with average asset 

holdings. There is one caveat however. As Fig.1 illustrates, optimal consumption rule diverts 

from the second order approximation as individual wealth approaches zero. Thus there is a 

fraction of population in the original economy with wealth close to zero whose extra savings 

(compared to certainty case) are less than 𝜑𝐼,𝑡 ∙
 ∆ℎ𝐼,𝑡+1 

2

𝔼𝐼𝑎𝑡+ℎ𝐼,𝑡
. However this fraction with lowest 

possible assets is miserable and it is highly improbable that it changes the inequality sign. To 

rule out completely such possibility we generously set  𝑎𝐼,𝑡
∗ = 2𝔼𝐼𝑎𝑡  for lower bound estimation. 

On the opposite, if we choose 𝑎𝐼,𝑡
∗ = 0 we produce an economy with relatively high 

average precautionary saving. All individuals in such economy behave with much prudence as if 

they had zero assets. Again Fig.1 shows that there are some individuals with negative assets 

whose extra savings are greater than 𝜑𝐼,𝑡 ∙
 ∆ℎ𝐼,𝑡+1 

2

ℎ𝐼,𝑡
. The fraction of such individuals is likely to 

be very small and it is highly improbable that they can make average saving in the original 

economy greater than 𝜑𝐼,𝑡 ∙
 ∆ℎ𝐼,𝑡+1 

2

ℎ𝐼,𝑡
. To rule out such possibility completely we set 𝑎𝐼,𝑡

∗ = −𝔼𝐼𝑎𝑡   

for the upper bound economy. 
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Note that with this new setting lower and upper bound economies become more 

complicated objects compared to (15)–(16) and (17)–(18). Now there are two precautionary 

saving functions 𝜑𝐼,𝑡  one for each state instead of just one state-average 𝜑𝑡 , two conditional 

means 𝔼𝐼𝑎𝑡  instead of one 𝔼𝑎𝑡 , three human wealth functions ℎ𝐼,𝑡, ∆ℎ𝑡+1 instead of one ∆ℎ𝑡+1 

and finally propensity to consume term 𝛺𝑡  is no longer constant with 𝜃 > 1. Thus, number of 

equations that characterizes these economies is increased by five. This is the price one has to pay 

to reach higher level of precision than by using simpler bounds of the previous section. 

How this setting translates into steady state values of  interest rate, capital stock, 

processes for consumption, asset accumulation and asset inequality?  

The key finding is that the steady states for aggregates in the boundary economies are 

extremely close to each other. The difference between steady state values for capital stock in two 

economies is 0,05% (0,02% for average consumption). This means that the original economy can 

be pinned down with astonishing precision. If we apply simpler bounds presented in (15)–(16) 

and (17)–(18) the difference between capital stocks widens to 1.5% (0,54% between average 

consumptions). Thus even in this case we gain very good approximation.  

Further we report basic equilibrium relations in one of the two refined boundary 

economies. Since they form extremely narrow channel there is no observable difference between 

the two. 

We find that equilibrium interest rate is lower but very close to 1/𝛽 , the steady state 

value for an economy without uncertainty. The difference between the two is 0.00005 quarterly. 

This corresponds to 𝜆 = 0.99996, compared to unity in certainty case. Thus idiosyncratic 

uncertainty implied by this model leads to 0.2% shift of capital stock and 0.07% shift of average 

consumption from the certainty case. This shows that effects of these shocks are considerably 

smaller than effects of aggregate productivity shocks in the standard RBC models.  

Individual consumption clearly depends on employment status. Equilibrium consumption 

strategies for both states are as follows 

𝑐𝐺
𝑗

= 0.01 ∙  𝑎𝑡
𝑗

+ 64.2 − 0.002           (40) 

𝑐𝐵
𝑗

= 0.01 ∙  𝑎𝑡
𝑗

+ 62.7 − 0.003          (41) 

In the certainty case individual consumption would be 

𝑐𝑗 = 0.01 ∙  𝑎𝑡
𝑗

+ 64.1  

Figures in parentheses represent human wealth in corresponding state measured in 

quarterly output. Figures on the right of (40), (41) capture precautionary savings in both states. 

We see that uncertainty about future income increases savings of employed by 0.2% of output 

and by 0.3% of unemployed. These figures might give impression that precautionary savings are 



24 

 

minor. However they should be put in perspective. Recall that implied income uncertainty is 

very small as well: employed faces a 2% chance that his human wealth falls by 2% in the next 

period. Thus, in relative terms prudent behavior is not negligible as will become clear in further 

example with increased income uncertainty. 

Consumption is extremely smooth. When individual becomes unemployed he reduces his 

consumption by just 1.6% . A slight decrease is due mainly to reduction in human wealth. Since 

current labor income falls sharply for unemployed and consumption is stable, assets are melting 

in bad times. Specifically, we find that assets evolve 

𝑎𝑡+1
𝑗

= 0.99996 ∙ 𝑎𝑡
𝑗

+ 0.03  for employed 

𝑎𝑡+1
𝑗

= 0.99996 ∙ 𝑎𝑡
𝑗
− 0.63  for unemployed 

Thus, individual asset holding are continuously changing whereas average assets for two 

states and whole economy do not.   

One of the most intriguing results concerns equilibrium measure of inequality. We find 

that even small labor income uncertainty builds into large variations of assets and income. 

Coefficient of asset variation, 𝜎𝑎/𝔼𝐴, is as high as 4.2. Interestingly this value corresponds 

nicely to what one finds in US data.  

Now we show how shifts in parameters affect the results. First let us look at the effects of 

growing uncertainty.  

In the following example probability 𝑝𝐵  is increased to 0.94. This translates in that 

average duration of bad times goes to 16 quarters and difference in human wealth between the 

states goes to 17%  from just 1.5 quarters and 2% in the benchmark case. We report  

 

𝜆 = 0.9991 

𝑅 = 1/𝛽 − 0.001 

𝜎𝑎/𝔼𝐴 = 4.7 

𝑐𝐺
𝑗

= 0.01 ∙  𝑎𝑡
𝑗

+ 71.4 − 0.08 

𝑐𝐵
𝑗

= 0.01 ∙  𝑎𝑡
𝑗

+ 61.5 − 0.09 

 

We see that increased income uncertainty lowers interest rate. Steady state shifts much 

further than in the benchmark case. Capital stock moves by 4,2% and average consumption by 

1,5% from certainty case. Measure of asset inequality stays virtually unaffected. However,  

precautionary savings grow substantially: each period individual in both states saves additional 

8% and 9%  of output compared to the certainty case.     
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In order to analyze the impact of risk averseness we set 𝜃 = 5 with other parameter 

values as in the benchmark case. We report the following results 

𝜆 = 0.99991 

𝑅 = 1/𝛽 − 0.0001 

𝜎𝑎/𝔼𝐴 = 2.9 

𝑐𝐺
𝑗

= 0.01 ∙  𝑎𝑡
𝑗

+ 68.9 − 0.0066 

𝑐𝐺
𝑗

= 0.01 ∙  𝑎𝑡
𝑗

+ 67.4 − 0.0073 

This shows that measure of risk averseness has strong effect on equilibrium asset 

deviation. Growing risk averseness also increases precautionary savings. 

V. Conclusion 

The purpose of this paper was to characterize rigorously the dynamics of  economies with 

idiosyncratic income shocks. To this end we developed an approach that helps to fulfill the 

general equilibrium analysis of such economies. The main finding is that it is possible to 

construct an analytically tractable economy, so called constant prudence economy, that replicates 

the behavior of original economy with great precision. We believe that this approach can prove 

helpful in other settings that include idiosyncratic shocks of different nature.   
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Appendix I 

Proposition 1 

Let 𝑻𝑰 𝒂𝑰,𝒕
𝒋

, 𝒛  for I=G,B be analytic functions in 𝑎𝐼,𝑡
𝑗

 defined on the domain 𝑨. An economy is 

characterized by a dichotomy of means and higher moments only if transition functions 𝑻𝑰 are 

linear  in 𝑎𝐼,𝑡
𝑗

  and take the form: 

𝑻𝑰 𝒂𝑰,𝒕
𝒋

, 𝒛 = 𝝀𝒕(𝒛) ∙ 𝒂𝑰,𝒕
𝒋

+ 𝝁𝑰,𝒕(𝒛) 

 

 

Proof 

To simplify the notation let 𝑎′ denote the next period value of a. Then an individual agent 

that holds a in the current period will hold in the next period 𝑎′ = 𝑇𝐺(𝑎, 𝒛) if she is currently at 

the good state and 𝑎′ = 𝑇𝐵(𝑎, 𝒛) if she is at the bad state. 

Consider the two delta-function type distributions of a: 

𝑓𝐺
 1 

(𝑎) = 𝛿 𝑎 − 𝑎0 , 𝑓𝐵
 1 

(𝑎) = 𝛿(𝑎 − 𝑎0)  and 𝑓𝐺
 2 

(𝑎) = 𝛿 𝑎 − (𝑎0 + ∆) , 𝑓𝐵
 2 

(𝑎) =

𝛿(𝑎 − (𝑎0 −
𝛼𝐺

𝛼𝐵
∙ ∆)) where 𝛼𝐺 , 𝛼𝐵 are the fraction of population in good and bad state. Note that 

both distributions are constructed to produce the same unconditional mean 𝑎0. Using the 

transition functions for two states it is easy to verify that next period mean values of a produced 

by two distributions are: 

𝔼𝑎′ 1 = 𝛼𝐺 ∙ 𝑇𝐺 𝑎0, 𝒛 + 𝛼𝐵 ∙ 𝑇𝐵(𝑎0, 𝒛)   (1) 

𝔼𝑎′ 2 = 𝛼𝐺 ∙ 𝑇𝐺 𝑎0 + ∆, 𝒛 + 𝛼𝐵 ∙ 𝑇𝐵(𝑎0 −
𝛼𝐺

𝛼𝐵
∙ ∆, 𝒛)  (2) 

By assumption of the dichotomy next period mean does not depend on the characteristics 

of current distribution other than its current mean value. As both distributions has same mean, 

next period means are equal to each other: 𝔼𝑎′ 1 = 𝔼𝑎′ 2 . Subtracting (1) from (2) and 

rearranging yields the following equation: 

𝑇𝐺 𝑎0, 𝒛 − 𝑇𝐺 𝑎0 + ∆, 𝒛 =
𝛼𝐵

𝛼𝐺
∙  𝑇𝐵  𝑎0 −

𝛼𝐺

𝛼𝐵
∙ ∆, 𝒛 − 𝑇𝐵(𝑎0, 𝒛)  

This equation must hold for any 𝑎0 and ∆ provided that arguments belong to the domain. 

Dividing both sides by ∆ and rewriting the equation: 

𝑇𝐺 𝑎0 + ∆, 𝒛 − 𝑇𝐺 𝑎0, 𝒛 

∆
=

𝑇𝐵  𝑎0 −
𝛼𝐺

𝛼𝐵
∙ ∆, 𝒛 − 𝑇𝐵(𝑎0, 𝑧)

 −
𝛼𝐺

𝛼𝐵
∙ ∆ 

    (3) 
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Letting ∆ go to zero we see  that two sides of this equation represent partial derivatives of 

transition functions in respect to a. We can rewrite it in the form 

𝜕𝑇𝐺(𝑎, 𝒛)

𝜕𝑎
=

𝜕𝑇𝐵(𝑎, 𝒛)

𝜕𝑎
  (4) 

 

This holds for any a in the domain. Thus, transition functions can be related 

𝑇𝐺 𝑎, 𝒛 = 𝑇𝐵 𝑎, 𝒛 + 𝑐(𝒛) 

Use this relation to substitute 𝑇𝐵 in the equation (3) and rewrite it as: 

𝑇𝐺 𝑎0, 𝒛 − 𝑇𝐺 𝑎0 + ∆, 𝒛 =
𝛼𝐵

𝛼𝐺
∙  𝑇𝐺  𝑎0 −

𝛼𝐺

𝛼𝐵
∙ ∆, 𝒛 − 𝑇𝐺(𝑎0, 𝒛)     (5) 

Since transition functions are analytic in a they can be represented by convergent Taylor 

series for small enough  ∆: 

𝑇𝐺 𝑎0 + ∆, 𝒛 = 𝑇𝐺 𝑎0 , 𝒛 +  𝐶𝑛 ∙ ∆𝑛

∞

𝑛=1

   (6) 

𝑇𝐺  𝑎0 −
𝛼𝐺

𝛼𝐵
∙ ∆, 𝒛 = 𝑇𝐺 𝑎0, 𝒛 +  𝐶𝑛 ∙  −

𝛼𝐺

𝛼𝐵
∙ ∆ 

𝑛

   (7)

∞

𝑛=1

 

where 𝐶𝑛 =
1

𝑛!
∙ 𝑇𝐺

 𝑛 
(𝑎0, 𝒛) 

Substituting (6) and (7) into (5) and isolating the first term in the series yields: 

 

−𝐶1 ∙ ∆ −  𝐶𝑛 ∙ ∆𝑛

∞

𝑛=2

= −𝐶1 ∙ ∆ +
𝛼𝐵

𝛼𝐺
∙  𝐶𝑛 ∙  −

𝛼𝐺

𝛼𝐵
∙ ∆ 

𝑛
∞

𝑛=2

 

or  

 𝐶𝑛 ∙  1 −  −
𝛼𝐺

𝛼𝐵
 
𝑛−1

 ∞
𝑛=2 ∙ ∆𝑛= 0. 

The last equation must hold for any (small enough) ∆. This is true only if 𝐶𝑛 = 0 for 

𝑛 = 2, . . , ∞. Recalling that 𝐶𝑛 =
1

𝑛!
∙ 𝑇𝐺

 𝑛 
(𝑎0 , 𝒛) and that the value 𝑎0 was picked arbitrary from 

the domain we conclude that 𝑇𝐺
 𝑛  𝑎, 𝒛 = 0 for 𝑛 = 2, . . , ∞ for any a. 

Thus, 𝑇𝐺 𝑎, 𝒛  is linear in respect to a: 𝑇𝐺 𝑎, 𝒛 = 𝜆 𝑧 ∙ 𝑎 + 𝜇𝐺(𝒛).  Since it was shown 

that both transition functions differ by  𝑐(𝒛), 𝑇𝐵 𝑎, 𝒛 = 𝜆 𝑧 ∙ 𝑎 + 𝜇𝐵 𝒛 . 
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Proposition 2  

If the law of motion for individual state variable satisfies a linear form 𝒂𝒕+𝟏
𝒋

= 𝝀𝒕 ∙ 𝒂𝑰,𝒕
𝒋

+ 𝝁𝑰,𝒕  

then: 

Mean  𝔼(𝒂𝒕)   follows: 

𝔼(𝒂𝒕+𝟏)  = 𝝀𝒕 ∙ 𝔼(𝒂𝒕) + 𝔼(𝝁𝑰,𝒕) 

where 𝔼(𝜇𝐼,𝑡) = 𝛼𝐺𝜇𝐺,𝑡 + 𝛼𝐵𝜇𝐵,𝑡  

Mean square 𝔼 𝒂𝒕+𝟏
𝟐     follows: 

𝔼 𝒂𝒕+𝟏
𝟐  = 𝝀𝒕

𝟐 ∙ 𝔼 𝒂𝒕
𝟐 + 𝟐 ∙ 𝝀𝒕 ∙ 𝔼 𝝁𝑰,𝒕 ∙ 𝔼𝑰(𝒂𝒕) + 𝔼 𝝁𝑰,𝒕

𝟐   

where 𝔼 𝜇𝐼,𝑡 ∙ 𝔼𝐼(𝑎𝑡) = 𝛼𝐺 ∙ 𝜇𝐺,𝑡 ∙ 𝔼𝐺(𝑎𝑡) + 𝛼𝐵 ∙ 𝜇𝐵,𝑡 ∙ 𝔼𝐵(𝑎𝑡) and 

𝔼 𝜇𝐼,𝑡
2  = 𝛼𝐺 ∙ 𝜇𝐺,𝑡

2 + 𝛼𝐵 ∙ 𝜇𝐵,𝑡
2  

Higher moments are related by the chain rule of the form: 

𝔼 𝒂𝒕+𝟏
𝒏  = 𝝀𝒕

𝒏 ∙ 𝔼 𝒂𝒕
𝒏 + 𝑭𝒏(𝔼𝑰 𝒂𝒕

𝒏−𝒊 , 𝝁𝑰,𝒕, 𝝀𝒕) 

where 𝐹𝑛(𝔼𝐼 𝑎𝑡
𝑛−𝑖 , 𝜇𝐵,𝑡 , 𝜆𝑡) represents a function of moments less than n. 

 

Proof 

To obtain these equations in the case of continuous probability distributions we first 

derive an evolution equation for density functions for both states. Consider a small neighborhood 

of  𝑎0: (𝑎0 − 𝜀, 𝑎0 + 𝜀). Then 𝑓𝐺,𝑡+1(𝑎0) is probability density of population at the point 𝑎0 in 

the good state in period t+1 and 𝑓𝐺,𝑡+1(𝑎0) ∙ 2𝜀 is the fraction of population in the neighborhood 

of 𝑎0 of the population in the good state in period t+1. There are two ways an individual agent 

finds himself in this fraction. Firstly she could arrive from the good state in the previous period if 

her assets were in the domain  (
𝑎0−𝜇𝐺

𝜆
−

𝜀

𝜆
,
𝑎0−𝜇𝐺

𝜆
+

𝜀

𝜆
). The mass of such agents was 𝑓𝐺,𝑡(

𝑎0−𝜇𝐺

𝜆
) ∙

2
𝜀

𝜆
 in period t. Since only part 𝑝𝐺  of that mass retained the state there is mass  𝑝𝐺 ∙ 𝑓𝐺,𝑡(

𝑎0−𝜇𝐺

𝜆
) ∙

2
𝜀

𝜆
 of individuals who are in the good state in t+1 in the given domain and retained their state 

from the previous period. Alternatively she could arrive to the given neighborhood in the good 

state in t+1 from the bad state in period t if her assets in t lied in the domain (
𝑎0−𝜇𝐵

𝜆
−

𝜀

𝜆
,
𝑎0−𝜇𝐵

𝜆
+

𝜀

𝜆
). Since probability of changing states from B to G is 1 − 𝑝𝐵 and 

𝛼𝐺

𝛼𝐵
 is the ratio of population 

sizes in both states, there is mass 
𝛼𝐺

𝛼𝐵
∙ (1 − 𝑝𝐵) ∙ 𝑓𝐵,𝑡(

𝑎0−𝜇𝐵

𝜆
) ∙ 2

𝜀

𝜆
 of individuals who are in the 

good state in t+1 in the given domain and who switched the state from B to G. Collecting the 

terms one has the following mass conservation equation 
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 𝑓𝐺,𝑡+1 𝑎0 ∙ 2𝜀 = 𝑝𝐺 ∙ 𝑓𝐺,𝑡  
𝑎0−𝜇𝐺

𝜆
 ∙ 2

𝜀

𝜆
+

𝛼𝐺

𝛼𝐵
∙ (1 − 𝑝𝐵) ∙ 𝑓𝐵,𝑡(

𝑎0−𝜇𝐵

𝜆
) ∙ 2

𝜀

𝜆
 

Dividing by 2𝜀, noting that 
𝛼𝐺

𝛼𝐵
=

1−𝑝𝐺

1−𝑝𝐵
 and recalling that 𝑎0 was chosen arbitrary 

𝑓𝐺,𝑡+1 𝑎 = 𝑝𝐺 ∙
𝑓𝐺,𝑡  

𝑎 − 𝜇𝐺,𝑡

𝜆𝑡
 

𝜆𝑡
+  1 − 𝑝𝐺 ∙

𝑓𝐵,𝑡  
𝑎 − 𝜇𝐵,𝑡

𝜆𝑡
 

𝜆𝑡
          (1) 

Evolution equation for conditional density function for bad state is derived in complete 

analogy 

𝑓𝐵,𝑡+1 𝑎 = 𝑝𝐵 ∙
𝑓𝐵,𝑡  

𝑎 − 𝜇𝐵,𝑡

𝜆𝑡
 

𝜆𝑡
+  1 − 𝑝𝐵 ∙

𝑓𝐺,𝑡  
𝑎 − 𝜇𝐺,𝑡

𝜆,𝑡
 

𝜆𝑡
         (2) 

Using evolution equation for density functions one can obtain evolution equations for the 

moments. Convenient way to proceed is to move from density functions to moment generating 

function representation.  

By definition 

𝑚𝐼,𝑡(𝑥) ≡  𝑓𝐼,𝑡(𝑎)𝑒𝑥𝑎𝑑𝑎

∞

−∞

 

Multiplying equations (1) and (2) by 𝑒𝑥𝑎 , integrating them in respect to a and using 

replacement of variables in order to carry through the integration of the right hand side of  (1) 

and (2) yield   

𝑚𝐺,𝑡+1 𝑥 = 𝑝𝐺 ∙ 𝑒𝜇𝐺,𝑡 ∙𝑥 ∙ 𝑚𝐺,𝑡 𝜆𝑡𝑥 +  1 − 𝑝𝐺 ∙ 𝑒𝜇𝐵,𝑡 ∙𝑥 ∙ 𝑚𝐵,𝑡 𝜆𝑡𝑥         (3) 

𝑚𝐵,𝑡+1 𝑥 = 𝑝𝐵 ∙ 𝑒𝜇𝐵,𝑡 ∙𝑥 ∙ 𝑚𝐵,𝑡 𝜆𝑡𝑥 +  1 − 𝑝𝐵 ∙ 𝑒𝜇𝐺,𝑡 ∙𝑥 ∙ 𝑚𝐺,𝑡 𝜆𝑡𝑥         (4) 

Denoting by a dote derivative in respect to x and differentiating equations (3) and (4) 

𝑚 𝐺,𝑡+1 𝑥 = 𝑝𝐺 ∙  𝜇𝐺,𝑡 ∙ 𝑚𝐺,𝑡 𝜆𝑡𝑥 + 𝑚 𝐺,𝑡 𝜆𝑡𝑥  ∙ 𝑒
𝜇𝐺,𝑡 ∙𝑥 + (1 − 𝑝𝐺)

∙  𝜇𝐵,𝑡 ∙ 𝑚𝐵,𝑡 𝜆𝑡𝑥 + 𝑚 𝐵,𝑡 𝜆𝑡𝑥  ∙ 𝑒
𝜇𝐵,𝑡 ∙𝑥           (5) 

𝑚 𝐵,𝑡+1 𝑥 = 𝑝𝐵 ∙  𝜇𝐵,𝑡 ∙ 𝑚𝐵,𝑡 𝜆𝑡𝑥 + 𝑚 𝐵,𝑡 𝜆𝑡𝑥  ∙ 𝑒
𝜇𝐵,𝑡 ∙𝑥 + (1 − 𝑝𝐵)

∙  𝜇𝐺,𝑡 ∙ 𝑚𝐺,𝑡 𝜆𝑡𝑥 + 𝑚 𝐺,𝑡 𝜆𝑡𝑥  ∙ 𝑒
𝜇𝐺,𝑡 ∙𝑥          (6) 

By properties of moment generating functions 

𝑚𝐼,𝑡 0 =1 

𝑚 𝐼,𝑡 0 = 𝔼𝐼(𝑎𝑡) , where 𝔼𝐼(𝑎𝑡) denotes conditional mean of a in states I=G,B in period t. 

Using these facts in equations (5) and (6) one obtains 

𝔼𝐺(𝑎𝑡+1)  = 𝑝𝐺 ∙  𝜇𝐺,𝑡 + 𝜆𝑡 ∙ 𝔼𝐺(𝑎𝑡)  + (1 − 𝑝𝐺) ∙  𝜇𝐵,𝑡 + 𝜆𝑡 ∙ 𝔼𝐵(𝑎𝑡)   

𝔼𝐵(𝑎𝑡+1)  = 𝑝𝐵 ∙  𝜇𝐵,𝑡 + 𝜆𝑡 ∙ 𝔼𝐵(𝑎𝑡)  + (1 − 𝑝𝐵) ∙  𝜇𝐺,𝑡 + 𝜆𝑡 ∙ 𝔼𝐺(𝑎𝑡)   

Evolution equation for unconditional mean follows from these equations using relation 

𝔼(𝑎𝑡)  = 𝛼𝐺𝔼𝐺(𝑎𝑡)  + 𝛼𝐵𝔼𝐵(𝑎𝑡)  and definition of 𝛼𝐺  and 𝛼𝐵. It takes the form 
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𝔼(𝒂𝒕+𝟏)  = 𝝀𝒕 ∙ 𝔼(𝒂𝒕) + 𝔼(𝝁𝑰,𝒕) 

where 𝔼(𝜇𝐼,𝑡) = 𝛼𝐺𝜇𝐺,𝑡 + 𝛼𝐵𝜇𝐵,𝑡  

 

To derive equations for conditional mean squares 𝔼𝐼(𝑎𝑡
2)  differentiate equations (5) and 

(6) in respect to x and use the following properties of moment producing functions: 𝑚𝐼,𝑡 0 = 1, 

𝑚 𝐼,𝑡 0 = 𝔼𝐼(𝑎𝑡) ,𝑚 𝐼,𝑡 0 = 𝔼𝐼(𝑎𝑡
2). This gives 

  

𝔼𝐺(𝑎𝑡+1
2 ) = 𝑝𝐺 ∙  𝜆𝑡

2 ∙ 𝔼𝐺(𝑎𝑡
2) + 2 ∙ 𝜆𝑡 ∙ 𝜇𝐺,𝑡 ∙ 𝔼𝐺(𝑎𝑡) +  𝜇𝐺,𝑡 

2
 + 

 1 − 𝑝𝐺 ∙  𝜆𝑡
2 ∙ 𝔼𝐵(𝑎𝑡

2) + 2 ∙ 𝜆𝑡 ∙ 𝜇𝐵,𝑡 ∙ 𝔼𝐵(𝑎𝑡) +  𝜇𝐵,𝑡 
2
  

and 

𝔼𝐵(𝑎𝑡+1
2 ) = 𝑝𝐵 ∙  𝜆𝑡

2 ∙ 𝔼𝐵(𝑎𝑡
2) + 2 ∙ 𝜆𝑡 ∙ 𝜇𝐵,𝑡 ∙ 𝔼𝐵(𝑎𝑡) +  𝜇𝐵,𝑡 

2
 + 

 1 − 𝑝𝐵 ∙  𝜆𝑡
2 ∙ 𝔼𝐺(𝑎𝑡

2) + 2 ∙ 𝜆𝑡 ∙ 𝜇𝐺,𝑡 ∙ 𝔼𝐺(𝑎𝑡) +  𝜇𝐺,𝑡 
2
  

Equation for unconditional mean square follows from these two equations using the 

relation 𝔼 𝑎𝑡
2 = 𝛼𝐺𝔼𝐺 𝑎𝑡

2 + 𝛼𝐵𝔼𝐺(𝑎𝑡
2). It can be written in the form 

𝔼 𝒂𝒕+𝟏
𝟐  = 𝝀𝒕

𝟐 ∙ 𝔼 𝒂𝒕
𝟐 + 𝟐 ∙ 𝝀𝒕 ∙ 𝔼 𝝁𝑰,𝒕 ∙ 𝔼𝑰(𝒂𝒕) + 𝔼 𝝁𝑰,𝒕

𝟐   

where 𝔼 𝜇𝐼,𝑡 ∙ 𝔼𝐼(𝑎𝑡) = 𝛼𝐺 ∙ 𝜇𝐺,𝑡 ∙ 𝔼𝐺(𝑎𝑡) + 𝛼𝐵 ∙ 𝜇𝐵,𝑡 ∙ 𝔼𝐵(𝑎𝑡) and 

𝔼 𝜇𝐼,𝑡
2  = 𝛼𝐺 ∙ 𝜇𝐺,𝑡

2 + 𝛼𝐵 ∙ 𝜇𝐵,𝑡
2  

Same method can be used to derive equations for expected values of powers of a higher 

than two. For instance, third moments can be expressed by twice differentiating equations (5) 

and (6) and using the fact 𝑚 𝐼,𝑡 0 = 𝔼𝐼(𝑎𝑡
3). This procedure leads to the chain equations for 

higher powers of a of the form 

𝔼 𝒂𝒕+𝟏
𝒏  = 𝝀𝒕

𝒏 ∙ 𝔼 𝒂𝒕
𝒏 + 𝑭𝒏(𝔼𝑰 𝒂𝒕

𝒏−𝒊 , 𝝁𝑰,𝒕, 𝝀𝒕) 

where 𝐹𝑛(𝔼𝐼 𝑎𝑡
𝑛−𝑖 , 𝜇𝐵,𝑡 , 𝜆𝑡) represents a function of moments less than n. 

 

If distribution is of discrete type than probability density can be represented by 

generalized 𝛿-functions. Assume that current period conditional distributions are given by 

𝑓𝐺 𝑎 =  𝜔𝐺
𝑖 ∙ 𝛿(𝑎 − 𝑎𝐺

𝑖 )
𝑛𝐺
𝑖=1  and 𝑓𝐵 𝑎 =  𝜔𝐵

𝑖 ∙ 𝛿(𝑎 − 𝑎𝐵
𝑖 )

𝑛𝐵
𝑖=1  with  𝜔𝐼

𝑖 = 1
𝑛𝐼
𝑖=1  (I=G,B). 

Transition equations for individual a in the two states are 𝑎𝐼
′ = 𝜆 ∙ 𝑎𝐼 + 𝜇𝐼 (I=G,B).  
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It is easy to verify that next period conditional density functions can be written as 

 

𝑓𝐺
′  𝑎 = 𝑝𝐺 ∙  𝜔𝐺

𝑖 ∙ 𝛿  𝑎 −  𝜆 ∙ 𝑎𝐺
𝑖 + 𝜇𝐺  

𝑛𝐺

𝑖=1

+ (1 − 𝑝𝐺) ∙  𝜔𝐵
𝑖 ∙ 𝛿  𝑎 −  𝜆 ∙ 𝑎𝐵

𝑖 + 𝜇𝐵  

𝑛𝐵

𝑖=1

 

and similarly 

𝑓𝐵
′  𝑎 = 𝑝𝐵 ∙  𝜔𝐵

𝑖 ∙ 𝛿  𝑎 −  𝜆 ∙ 𝑎𝐵
𝑖 + 𝜇𝐵  

𝑛𝐵

𝑖=1

+ (1 − 𝑝𝐵) ∙  𝜔𝐺
𝑖 ∙ 𝛿  𝑎 −  𝜆 ∙ 𝑎𝐺

𝑖 + 𝜇𝐺  

𝑛𝐺

𝑖=1

 

These density function evolution equations imply the above stated dynamic equations for 

expected values of a. We confine ourselves by demonstration of equation for means. This is 

obtained by multiplying equations () and () by a integrating them in respect to a. Recalling the 

property of 𝛿-functions  𝑎 ∙ 𝛿 𝑎 − 𝑎0 𝑑𝑎 = 𝑎0
∞

−∞
 we have 

𝔼𝐺 𝑎
′ = 𝑝𝐺 ∙  𝜔𝐺

𝑖 ∙  𝜆 ∙ 𝑎𝐺
𝑖 + 𝜇𝐺 + (1 − 𝑝𝐺) ∙  𝜔𝐵

𝑖 ∙  𝜆 ∙ 𝑎𝐵
𝑖 + 𝜇𝐵 

𝑛𝐵

𝑖=1

𝑛𝐺

𝑖=1

 

𝔼𝐵 𝑎
′ = 𝑝𝐵 ∙  𝜔𝐵

𝑖 ∙  𝜆 ∙ 𝑎𝐵
𝑖 + 𝜇𝐵 + (1 − 𝑝𝐵) ∙  𝜔𝐺

𝑖 ∙  𝜆 ∙ 𝑎𝐺
𝑖 + 𝜇𝐺 

𝑛𝐺

𝑖=1

𝑛𝐵

𝑖=1

 

Noting that  𝜔𝐼
𝑖 ∙

𝑛𝐼
𝑖=1 𝑎𝐼

𝑖 = 𝔼𝐼 𝑎  for I=G,B these equations become 

𝔼𝐺 𝑎
′ = 𝑝𝐺 ∙  𝔼𝐺 𝑎 + 𝜇𝐺 + (1 − 𝑝𝐺) ∙  𝔼𝐵 𝑎 + 𝜇𝐵  

𝔼𝐵 𝑎
′ = 𝑝𝐵 ∙  𝔼𝐵 𝑎 + 𝜇𝐵 + (1 − 𝑝𝐵) ∙  𝔼𝐺 𝑎 + 𝜇𝐺  

Since 𝔼(𝑎)  = 𝛼𝐺𝔼𝐺(𝑎)  + 𝛼𝐵𝔼𝐵(𝑎), combining these equations gives 

𝔼(𝒂′)  = 𝜆 ∙ 𝔼(𝒂) + 𝔼(𝝁𝑰) 

where 𝔼(𝜇𝐼) = 𝛼𝐺𝜇𝐺 + 𝛼𝐵𝜇𝐵 

 

Numerical example of density function evolution 

We set 𝑝𝐺 = 𝑝𝐵 = 0.5. Transition equations for individual state variable x are 

symmetrical 

𝑥𝑡+1 = 0.9𝑥𝑡 + 1 𝑓𝑜𝑟 𝐼 = 𝐺 

𝑥𝑡+1 = 0.9𝑥𝑡 − 1 𝑓𝑜𝑟 𝐼 = 𝐵 

Initial distribution is uniform with support  0,5  for both states. Equations (1) and (2) 

show that in this case conditional density functions for both states coincide: 𝑓𝐺,𝑡 𝑥 = 𝑓𝐵,𝑡 𝑥 ≡

𝑓(𝑡, 𝑥). The following figures present how the density function evolves in time. The limit 

distribution function is symmetrical around zero. In this example after just 12 periods density 

function looks very smooth but its microstructure reveals extremely complex fractal-like pattern. 
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Proposition 3 

Suppose  
∆𝒉𝑰,𝒕+𝟏

𝒂𝒕
𝒋
+𝒉𝑰,𝒕

  is small. Then the optimal consumption strategy for the agent j at state I at 

time t can be expressed as follows 

𝒄𝑰,𝒕
𝒋

=  𝜴𝒕 − 𝝋𝑰,𝒕 ∙  
∆𝒉𝑰,𝒕+𝟏

𝒂𝒕
𝒋

+ 𝒉𝑰,𝒕

 

𝟐

+ 𝓞  
∆𝒉𝑰,𝒕+𝟏

𝒂𝒕
𝒋

+ 𝒉𝑰,𝒕

 

𝟑

  ∙  𝒂𝒕
𝒋

+ 𝒉𝑰,𝒕            

where function 𝜴𝒕 satisfies equation 

𝜷 ∙ 𝑹𝒕+𝟏 ∙  𝑹𝒕+𝟏𝜴𝒕+𝟏 ∙
𝟏 − 𝜴𝒕

𝜴𝒕
 
−𝜽

= 𝟏          

and precautionary saving functions 𝝋𝑰,𝒕 (I=G,B) satisfy the system of two equations 
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Fig. 4. Numerical example of density function evolution 
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𝝋𝑰,𝒕 =
𝜴𝒕(𝟏−𝜴𝒕)

𝜴𝒕+𝟏
 𝒑𝑰𝝋𝑰,𝒕+𝟏 + (𝟏 − 𝒑𝑰)𝝋𝑰∗,𝒕+𝟏 +

 𝜽+𝟏 

𝟐

𝜴𝒕

(𝟏−𝜴𝒕)𝑹𝒕+𝟏
𝟐  𝒑𝑰 𝟏 − 𝒑𝑰           

 

Proof 

Take as a starting point the Euler equation for an individual agent who is at state G in 

period t : 

𝑢′ 𝑐𝐺,𝑡 = 𝛽𝑅𝑡+1 𝑝𝐺 ∙ 𝑢′ 𝑐𝐺,𝑡+1 + (1 − 𝑝𝐺) ∙ 𝑢′ 𝑐𝐺,𝑡+1      (1) 

The identity relations that defines propensity to consume at good state Ω𝐺,𝑡  and bad state 

Ω𝐵,𝑡 : 

𝑐𝐺,𝑡 = Ω𝐺,𝑡 ∙  𝑎𝑡 + ℎ𝐺,𝑡      (2) 

𝑐𝐺,𝑡+1 = Ω𝐺,𝑡+1 ∙  𝑎𝑡+1 + ℎ𝐺,𝑡+1      (3) 

𝑐𝐵,𝑡+1 = Ω𝐵,𝑡+1 ∙  𝑎𝑡+1 + ℎ𝐺,𝑡+1     (4) 

The budget constraint is 

𝑎𝑡+1 = 𝑅𝑡+1 ∙  𝑎𝑡 + 𝑤𝐺,𝑡 − 𝑐𝐺,𝑡     (5) 

Substituting (2) into (5) 

𝑎𝑡+1 = 𝑅𝑡+1  1 − Ω𝐺,𝑡  𝑎𝑡 + ℎ𝐺,𝑡 + 𝑤𝐺,𝑡 − ℎ𝐺,𝑡   (6) 

Equation for human wealth at good state is given by: 

ℎ𝐺,𝑡 = 𝑤𝐺,𝑡 +
1

𝑅𝑡+1
 𝑝 ∙ ℎ𝐺,𝑡+1 + (1 − 𝑝𝐺) ∙ ℎ𝐵,𝑡+1    (7) 

Substituting (6) into (3) and using (7) one obtains 

𝑐𝐺,𝑡+1 = 𝑅𝑡+1Ω𝐺,𝑡+1 1 − Ω𝐺,𝑡 ∙  𝑎𝑡 + ℎ𝐺,𝑡 + (1 − 𝑝𝐺)Ω𝐺,𝑡+1 ∙ ∆ℎ𝑡+1  (8) 

where ∆ℎ𝑡+1 ≡ ℎ𝐺,𝑡+1 − ℎ𝐵,𝑡+1  (9) 

Similar equation holds in respect to 𝑐𝐺,𝑡+1, and is derived in the same way as (8) 

𝑐𝐵,𝑡+1 = 𝑅𝑡+1Ω𝐵,𝑡+1 1 − Ω𝐺,𝑡 ∙  𝑎𝑡 + ℎ𝐺,𝑡 − 𝑝𝐺Ω𝐵,𝑡+1 ∙ ∆ℎ𝑡+1  (10) 

Inserting (2) (9) and (10) into (1) and dividing both sides by  𝑎𝑡 + ℎ𝐺,𝑡 
−𝜃

 : 

Ω𝐺,𝑡
−𝜃 = 𝛽𝑅𝑡+1𝑝𝐺 𝑅𝑡+1Ω𝐺,𝑡+1 1 − Ω𝐺,𝑡 + (1 − 𝑝𝐺)Ω𝐺,𝑡+1 ∙ 𝜀𝐺,𝑡 

−𝜃
+ 𝛽𝑅𝑡+1(1 −

𝑝𝐺) 𝑅𝑡+1Ω𝐵,𝑡+1 1 − Ω𝐺,𝑡 − 𝑝𝐺 ∙ Ω𝐵,𝑡+1 ∙ 𝜀𝐺,𝑡 
−𝜃

  (11) 

where  

𝜀𝐺,𝑡 ≡
∆ℎ𝑡+1

𝑎𝑡 + ℎ𝐺,𝑡
 

In complete analogy to derivation of (11) started with Euler equation (1) it can be 

repeated  for bad-state Euler equation 

𝑢′ 𝑐𝐵,𝑡 = 𝛽𝑅𝑡+1 𝑝𝐵 ∙ 𝑢′ 𝑐𝐵,𝑡+1 + (1 − 𝑝𝐵) ∙ 𝑢′ 𝑐𝐺,𝑡+1   
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This provides us with equation in respect to Ω𝐵,𝑡  analogous to (11): 

Ω𝐵,𝑡
−𝜃 = 𝛽𝑅𝑡+1 ∙ 𝑝𝐵 ∙  𝑅𝑡+1Ω𝐵,𝑡+1 1 − Ω𝐵,𝑡 − (1 − 𝑝𝐵)Ω𝐺,𝑡+1 ∙ 𝜀𝐵,𝑡 

−𝜃
+ 𝛽𝑅𝑡+1(1 −

𝑝𝐵) ∙  𝑅𝑡+1Ω𝐺,𝑡+1 1 − Ω𝐵,𝑡 + 𝑝𝐵 ∙ Ω𝐺,𝑡+1 ∙ 𝜀𝐵,𝑡 
−𝜃

   (12) 

where 𝜀𝐵,𝑡 ≡
∆ℎ𝑡+1

𝑎𝑡+ℎ𝐵,𝑡
 

𝜀𝐺,𝑡  and 𝜀𝐵,𝑡  defines perturbation terms in (11) and (12). 

  

We will now use the method of perturbations to determine approximate solution for 

propensities to consume Ω𝐺,𝑡  and Ω𝐵,𝑡 . First note that unperturbed equations (11) and (12) 

coincide. Let Ω𝑡   be the solution of unperturbed equation 

𝛀𝒕
−𝜽 = 𝜷𝑹𝒕+𝟏 𝑹𝒕+𝟏𝛀𝒕+𝟏 𝟏 − 𝛀𝒕  

−𝜽  (13) 

To find first order approximation assume: 

Ω𝐺,𝑡 = Ω𝑡 + 𝛾𝐺,𝑡 ∙ 𝜀𝐺,𝑡 + 𝒪(𝜀2)  (14) 

Ω𝐵,𝑡 = Ω𝑡 + 𝛾𝐵,𝑡 ∙ 𝜀𝐵,𝑡 + 𝒪(𝜀2)   (15) 

Using (14) and (15) and taking linear expansion of (11) and (12) in respect to 𝜀 it is easy 

to verify that 𝛾𝐺,𝑡 = 0 and 𝛾𝐵,𝑡 = 0.  Thus the first non-zero perturbation term is of second order: 

Ω𝐺,𝑡 = Ω𝑡 − 𝜑𝐺,𝑡 ∙ 𝜀𝐺,𝑡
2 + 𝒪(𝜀3)   (16) 

Ω𝐵,𝑡 = Ω𝑡 − 𝜑𝐵,𝑡 ∙ 𝜀𝐵,𝑡
2 + 𝒪(𝜀3)   (17) 

 

Now we can use the form of solution given by (16) and (17) to determine second order 

perturbation functions 𝜑𝐺,𝑡  and 𝜑𝐵,𝑡 . Use (16)  and (17) to write Taylor expansion of (11) and 

(12). After isolating terms of  order 𝜀2 we have the following equation 

1

𝛽𝑅𝑡+1
𝜃 ∙ Ω𝑡

−(𝜃+1)
𝜑𝐺,𝑡 = 𝜃𝑝𝐺 𝑅𝑡+1Ω𝑡+1 1 − Ω𝑡  

−(𝜃+1) ∙ 𝑅𝑡+1 (1 − Ω𝑡)𝜑𝐺,𝑡+1 −

Ω𝑡+1𝜑𝐺,𝑡+𝜃 1−𝑝𝐺)𝑅𝑡+1Ω𝑡+11−Ω𝑡−𝜃+1∙𝑅𝑡+1 1−Ω𝑡)𝜑𝐵,𝑡+1−Ω𝑡+1𝜑𝐺,𝑡+𝜃𝜃+12𝑝𝐺𝑅𝑡

+1Ω𝑡+11−Ω𝑡−𝜃+21−𝑝𝐺2Ω𝑡+12+𝜃𝜃+12 1−𝑝𝐺)𝑅𝑡+1Ω𝑡+11−Ω𝑡−(𝜃+2)𝑝𝐺2Ω𝑡+12    

(16) 

 

Similar equation can be obtained from (12) for the second state. It has mirror form to (16) 

with indexes G and B  interchanged. Dividing both sides of (16) by  𝜃 ∙ Ω𝑡
−(𝜃+1)

 and using (13) 
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1

𝛽𝑅𝑡+1
𝜑𝐺,𝑡 =  𝛽𝑅𝑡+1 

−
𝜃+1
𝜃

∙ 𝑅𝑡+1 𝑝𝐺(1 − Ω𝑡)𝜑𝐺,𝑡+1 − 𝑝Ω𝑡+1𝜑𝐺,𝑡 + (1 − 𝑝𝐺)(1 − Ω𝑡)𝜑𝐵,𝑡+1 − (1

− 𝑝𝐺)Ω𝑡+1𝜑𝐺,𝑡 +
 𝜃 + 1 

2
 𝛽𝑅𝑡+1 

−
𝜃+2
𝜃

Ω𝑡+1
2

Ω𝑡

 𝑝𝐺 ∙  1 − 𝑝𝐺 
2 + (1 − 𝑝𝐺) ∙ 𝑝𝐺

2  

After some arrangement it simplifies to 

𝝋𝑮,𝒕 =
𝛀𝒕(𝟏−𝛀𝒕)

𝛀𝒕+𝟏
 𝒑𝑮𝝋𝑮,𝒕+𝟏 + (𝟏 − 𝒑𝑮)𝝋𝑩,𝒕+𝟏 +

 𝜽+𝟏 

𝟐

𝛀𝒕

(𝟏−𝛀𝒕)𝑹𝒕+𝟏
𝟐  𝒑𝑮(𝟏 − 𝒑𝑮) (17) 

 

And mirror equation for 𝜑𝐵,𝑡  

 

𝝋𝑩,𝒕 =
𝛀𝒕(𝟏−𝛀𝒕)

𝛀𝒕+𝟏
 𝒑𝑩𝝋𝑩,𝒕+𝟏 + (𝟏 − 𝒑𝑩)𝝋𝑮,𝒕+𝟏 +

 𝜽+𝟏 

𝟐

𝛀𝒕

(𝟏−𝛀𝒕)𝑹𝒕+𝟏
𝟐  𝒑𝑩(𝟏 − 𝒑𝑩)  (18) 

 

For state average function 𝜑𝑡 ≡ 𝛼𝐺 𝜑𝐺,𝑡 + 𝛼𝐵 𝜑𝐵,𝑡  using (17), (18) and definition of 𝛼𝐺  

and 𝛼𝐵  one obtains 

𝝋𝒕 =
𝛀𝒕(𝟏 − 𝛀𝒕)

𝛀𝒕+𝟏
∙ 𝝋𝒕+𝟏 +

 𝜽 + 𝟏 

𝟐

𝛀𝒕

(𝟏 − 𝛀𝒕)𝑹𝒕+𝟏
𝟐

 𝟏 − 𝒑𝑮  𝟏 − 𝒑𝑩 (𝒑𝑮 + 𝒑𝑩)

𝟐 − 𝒑𝑮 − 𝒑𝑩
 

 

Proposition 4 

An economy in which individual j consumes according to the rules 

𝒄𝑮,𝒕
𝒋

= 𝜴𝒕 ∙  𝒂𝒕
𝒋

+ 𝒉𝑮,𝒕 −  𝜴𝒕𝝋𝒕 ∙ ∆𝒉𝒕+𝟏 

𝒄𝑩,𝒕
𝒋

= 𝜴𝒕 ∙  𝒂𝒕
𝒋

+ 𝒉𝑩,𝒕 −  𝜴𝒕𝝋𝒕 ∙ ∆𝒉𝒕+𝟏 

is an upper bound asset accumulation economy.   

 

An economy in which individual j consumes according to the rules 

𝒄𝑮,𝒕
𝒋

= 𝜴𝒕 ∙  𝒂𝒕
𝒋

+ 𝒉𝑮,𝒕  

𝒄𝑩,𝒕
𝒋

= 𝜴𝒕 ∙  𝒂𝒕
𝒋

+ 𝒉𝑩,𝒕  

is a lower bound asset accumulation economy. 

 

Proof 

Consider an upper bound case first. Note that consumption rules given in the proposition 

imply that individual assets change according to: 

𝑎𝑡+1 = 𝜆𝑡 ∙ 𝑎𝐼,𝑡
𝑗

+ 𝜇𝐼,𝑡  
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where 𝜆𝑡 = 𝑅𝑡+1 1 − Ω𝑡  and 𝜇𝐼,𝑡 = 𝑅𝑡+1(𝑤𝐼,𝑡 − Ω𝑡ℎ𝐼,𝑡 +  Ω𝑡𝜑𝑡 ∙ ∆ℎ𝑡+1) for I=G,B. Thus by 

the proposition 2 this economy is characterized by dichotomy of moments.  

Relation between individual optimal consumption rule and second order approximation 

given by (9) from the text is shown in Fig.1 from the text. It can be seen that there is such value 

of a at time t  and state I  that the rule ( ) prescribes zero consumption. Denote this value 

𝑎𝐼,𝑡
# . Then, by definition 

𝑎𝐼,𝑡
# + ℎ𝐼,𝑡 ≡  

𝜑𝐼,𝑡

Ω𝑡
∗  

1/2
∙ ∆ℎ𝐼,𝑡+1  (1) 

 

Consider a hypothetical economy in which individual consumption rules are given by 

𝑐𝐼,𝑡
𝑀𝑎𝑥𝑃 = 𝛺𝑡 ∙  𝑎𝑡

𝑗
+ ℎ𝐼,𝑡 − 𝜑𝐼,𝑡 ∙

 ∆ℎ𝐼,𝑡+1 
2

𝑎𝐼,𝑡
# +ℎ𝐼,𝑡

  for I=G,B  (2) 

We call this economy a maximum prudence economy (MP). Substitute (1) into (2) 

𝑐𝐼,𝑡
𝑀𝑎𝑥𝑃𝑗

= 𝛺𝑡 ∙  𝑎𝑡
𝑗

+ ℎ𝐼,𝑡 −  Ω𝑡𝜑𝐼,𝑡 ∙ ∆ℎ𝑡+1 for I=G,B  (3) 

Maximum prudence economy satisfies conditions of proposition 0 and, thus, is also 

dichotomic in moments. 

It is clear from Fig. 1 that given the same interest rate and wage paths an individual’s 

consumption in maximum prudence economy is less than that in the original economy provided 

they are at the same state and with same assets: 

𝑐𝐼,𝑡
𝑀𝑎𝑥𝑃 (𝑎𝑗 ) < 𝑐𝐼,𝑡(𝑎𝑗 )   (4)  

Next step is to compare mean assets accumulation paths in the two economies. In order to 

do so  assume the following set identities of parameters for the two economies: 

1) Identical initial distribution of assets with mean 𝑎0 

2) Identical paths for capital stock, wages, interest rates 

3) Every individual J  in the MaxPE economy with initial assets 𝑎0
𝐽
 has his twin in 

the original economy with the same initial assets 𝑎0
𝐽
 and the same sequence of states 

𝐼𝑡 𝐽  𝑡 = 1, . . , ∞   . 

 

It can be shown that asset accumulation paths for twins J in the two economies are such 

that 

𝑎𝐼,𝑡
𝑀𝑎𝑥𝑃  𝐽 > 𝑎𝐼,𝑡(𝐽)   for any J,I and 𝑡 = 1, . . , ∞   (5) 

To demonstrate this, write individual asset accumulation equations for twins J 

𝑎𝐼,𝑡+1
𝑀𝑎𝑥𝑃  𝐽 = 𝑅𝑡+1 𝑎𝐼,𝑡

𝑀𝑎𝑥𝑃  𝐽 + 𝑤𝐼,𝑡 − 𝑐𝐼,𝑡
𝑀𝑎𝑥𝑃  𝐽     (6) 

𝑎𝐼,𝑡+1 𝐽 = 𝑅𝑡+1 𝑎𝐼,𝑡 𝐽 + 𝑤𝐼,𝑡 − 𝑐𝐼,𝑡 𝐽       (7) 
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Consumption rules in the two economies are such that we can write them in the form 

𝑐𝐼,𝑡
𝑀𝑎𝑥𝑃 (𝐽) = 𝛺𝑡 ∙  𝑎𝐼,𝑡

𝑀𝑎𝑥𝑃  𝐽 + ℎ𝐼,𝑡 − ∆𝑡
𝑀𝑎𝑥𝑃    (8) 

𝑐𝐼,𝑡 𝐽 = 𝛺𝑡 ∙  𝑎𝐼,𝑡 𝐽 + ℎ𝐼,𝑡 − ∆𝑡         (9) 

where precautionary saving functions ∆𝑡
𝑀𝑎𝑥𝑃  and ∆𝑡  satisfy 

∆𝑡
𝑀𝑎𝑥𝑃 > ∆𝑡   𝑓𝑜𝑟 𝑡 = 0, . . , ∞   (10) 

The last inequality is satisfied by construction of MaxPE economy (see Fig. 1 ) 

Inserting (8) and (9) into (6) and (7) and then subtracting (7) from (6) 

𝑎𝐼,𝑡+1
𝑀𝑎𝑥𝑃  𝐽 − 𝑎𝐼,𝑡+1 𝐽 = 𝑅𝑡+1 1 − 𝛺𝑡  𝑎𝐼,𝑡

𝑀𝑎𝑥𝑃  𝐽 − 𝑎𝐼,𝑡 𝐽  + 𝑅𝑡+1(∆𝑡
𝑀𝑎𝑥𝑃 − ∆𝑡)  (11) 

Re-denoting (11) 

𝑥𝑡+1 = 𝜆𝑡𝑥𝑡 + 𝑢𝑡     (12) 

with 𝜆𝑡 > 0 and 𝑢𝑡 > 0  𝑓𝑜𝑟 𝑡 = 0, . . , ∞   (13) 

Last inequality follows from (10). 

Equation (12) can be solved backwards relative to 𝑢𝑡 . Solution is given by 

𝑥𝑡 =  𝑢𝑘−1  𝜆𝑖
𝑘−1
𝑖=0

𝑡
𝑘=1   𝑓𝑜𝑟 𝑡 = 1, . . , ∞   and 𝑥0 = 0   (14) 

It follows from (14) and (13) that 

𝑥𝑡 ≡ 𝑎𝐼,𝑡
𝑀𝑎𝑥𝑃  𝐽 − 𝑎𝐼,𝑡 𝐽 > 0  or 𝑎𝐼,𝑡

𝑀𝑎𝑥𝑃  𝐽 > 𝑎𝐼,𝑡 𝐽  𝑓𝑜𝑟 𝑡 = 1, . . , ∞  and all J   (14) 

Integrating in respect to J 

𝔼𝑎𝑡
𝑀𝑎𝑥𝑃 > 𝐸𝑎 𝑓𝑜𝑟 𝑡 = 1, . . , ∞            (15) 

 

Since MaxPE economy has dichotomy of moments, 𝔼𝑎𝑡
𝑀𝑃  dynamics does not depend on 

type distribution but only on identities 1) and 2) (same initial mean assets and price paths). Thus, 

inequality (15) holds even if initial asset distribution in the two economies differ (but have the 

same mean) and there is no twins, i.e. it holds in the absence of identity 3). 

We proved that MaxPE is an upper bound asset accumulation economy. 

 

Note that MaxPE slightly differs from the consumption rules presented in the proposition  

𝑐𝐼,𝑡
𝑗

= Ω𝑡 ∙  𝑎𝑡
𝑗

+ ℎ𝐺,𝑡 −  Ω𝑡𝜑𝑡 ∙ ∆ℎ𝑡+1  for I=G,B 

instead of (3). To see what this implies integrate them on j. This gives 

 

𝔼𝑐𝑡
𝑀𝑎𝑥𝑃 = 𝛺𝑡 ∙  𝔼𝑎𝑡

𝑀𝑎𝑥𝑃 + 𝔼ℎ𝑡 − (𝛼𝐺 𝜑𝐺,𝑡 + 𝛼𝐵 𝜑𝐵,𝑡) ∙  𝛺𝑡∆ℎ𝑡+1  (16) 

𝔼𝑐𝑡 = Ω𝑡 ∙  𝔼𝑎𝑡 + 𝔼ℎ𝑡 −  Ω𝑡𝜑𝑡 ∙ ∆ℎ𝑡+1       (17) 
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By Jensen inequality: 𝛼𝐺 𝜑𝐺,𝑡 + 𝛼𝐵 𝜑𝐵,𝑡 <  𝛼𝐺𝜑𝐺,𝑡 + 𝛼𝐵𝜑𝐵,𝑡 =  𝜑𝑡 . Using this fact 

together with economy-wide asset accumulation equations 

𝔼𝑎𝑡+1
𝑀𝑎𝑥𝑃 = 𝑅𝑡+1(𝔼𝑎𝑡

𝑀𝑎𝑥𝑃 + 𝑤𝑡 − 𝔼𝑐𝑡
𝑀𝑎𝑥𝑃 ) and 𝔼𝑎𝑡+1 = 𝑅𝑡+1(𝔼𝑎𝑡 + 𝑤𝑡 − 𝔼𝑐𝑡) it is easy 

to show that (16) and (17) imply 

𝔼𝑎𝑡 > 𝔼𝑎𝑡
𝑀𝑎𝑥𝑃  𝑓𝑜𝑟 𝑡 = 1, . . , ∞    (18) 

Finally, from (15) and (18) 

𝔼𝒂𝒕 >  𝐸𝒂𝒕 𝒇𝒐𝒓 𝒕 = 𝟏, . . , ∞     

This completes the proof for the upper bound case. 

 

The second part of the proposition concerning the lower bound economy can be proven in 

complete analogy. 

 

Proposition 5 

Assume that there is a steady state in the original economy. Then in capital-consumption 

space this steady state lies between the steady states of lower and upper bound economies 

𝒌𝒔𝒔 < 𝒌𝒔𝒔 < 𝒌𝒔𝒔 and 𝒄𝒔𝒔 < 𝒄𝒔𝒔 < 𝒄𝒔𝒔 

 

We outlined the proof of this claim in the text. The only element that lacks in this proof is 

showing that stationary level of asset holdings in the upper bound economy is increasing 

function of stationary interest rate. To see this plug (15) and (16) in the individual asset 

accumulation equation (2). This yields 

𝑎𝑡+1
𝑗

= 𝑅𝑡+1 ∙  1 − 𝛺𝑡 ∙ 𝑎𝑡
𝑗

+  𝑅𝑡+1 𝑤𝐼,𝑡 − 𝛺𝑡ℎ𝐼,𝑡 +  𝛺𝑡𝜑𝑡 ∙ ∆ℎ𝑡+1    (1) 

Integrating (1) in respect to j and I and dropping time index for stationary levels it 

becomes 

𝑎 = 𝑅 ∙  1 − 𝛺 ∙ 𝑎 +  𝑅 𝔼𝑤 − 𝛺𝔼ℎ +  𝛺𝜑 ∙ 𝔼∆ℎ     (2) 

From equation (7) in the text 

𝑅 1 − 𝛺 = 𝛽𝑅1/𝜃  (3) 

From (2) and (3) 

𝑎 =
𝑅(𝔼𝑤 − 𝛺𝔼ℎ)

1 − 𝛽𝑅1/𝜃
+

 𝛺𝜑 ∙ 𝔼∆ℎ

1 − 𝛽𝑅1/𝜃
          (4) 

Let us inspect the terms that appear on the right of (4).  

As 𝔼ℎ =
𝑅

𝑅−1
𝔼𝑤, 𝔼𝑤 − 𝛺𝔼ℎ =  

𝑅 1−𝛺 −1

𝑅−1
 𝔼𝑤 =

𝛽𝑅1/𝜃−1

𝑅−1
𝔼𝑤 and the first term 

collapses to −
𝑅

𝑅−1
𝔼𝑤. From (25) and (32) average wage is a decreasing function of interest rate 
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𝔼𝑤 =
(1−𝛾)𝛼𝐺

1−𝛾

𝛿1/(1−𝛾)  
𝛾

1+
(𝑅−1)

𝛿

 

𝛾
1−𝛾 

. From two last expressions it follows that the first term in 

(4) increases in R for R>1. 

Now we analyze the second term. From (31), (30), (34) in the text this term can be 

expressed as 

 𝛺𝜑 ∙ 𝔼∆ℎ

1 − 𝛽𝑅1/𝜃
= 𝑐   1 − 𝛽𝑅

1
𝜃  𝑅 − (1 − 𝑝𝐺 − 𝑝𝐵 )  1 +

(𝑅 − 1)

𝛿
 

𝛾
1−𝛾 

 

−1

 

where c is a positive constant.  It can be seen that this is an increases in R for 𝑅 ∈  1, 1/𝛽 .   

 

 

Appendix II 

Finite Horizons 

Another potential source for wealth inequality arises when individuals face finite life 

horizons. Assets different individuals are holding may vary for two main reasons 1) individual’s 

propensity to consume and to save is likely to depend on his/her age. Elder with less life 

expectancy are likely to consume more and save less or dissave 2) individual’s asset holding may 

differ with age, the longer individual is in place the more assets he/she had time to accumulate.  

Blanchard (1985) provides a useful framework for exploring the later possibility. The 

original paper concentrates on dynamic and steady state properties of the model and effects of 

government spending. Our focus is somewhat different: we are interested in the implications of 

finite horizons for equilibrium asset structure. We do so by applying density functions approach 

developed earlier to this case. In this model individuals face the same probability of death 

irrespective of how long they have been alive so that life expectancy is constant throughout life. 

With this assumption propensity to consume does not depend on individual’s age and, by 

consequence, results of Proposition 1 can be used.  

In discrete time version of the model an individual j alive at time t maximizes  

 

𝑢 𝑐𝐼,𝑡
𝑗
 +   𝛽′ 𝑖 ∙ 𝑢 𝑐𝑡+𝑖

𝑗
 

∞

𝑖=1

 

subject to the budget constraint 

𝑎𝑡+1
𝑗

= 𝑅𝑡+1
′ ∙  𝑎𝑡

𝑗
+ 𝑤𝐼,𝑡 − 𝑐𝐼,𝑡

𝑗
  

where 𝛽′ = 𝑝 ∙ 𝛽  and  𝑅𝑡+1
′ = 𝑅𝑡+1 +  1 − 𝑝 . 
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In these expressions p represents the probability of survival into the next period.  Asset 

accumulation equation differs from the standard version in that effective interest on assets, 𝑅𝑡+1
′ , 

is standard gross interest, 𝑅𝑡 , plus 1-p. This additional interest is interpreted as payment received 

by an individual from an insurance company in exchange for his assets in case of death (so that 

expected profit for company is zero). We see that probability of death, 1-p, increases the value of 

current consumption relative to the future consumption and provides additional source of income 

from asset holdings.  

The Euler equation for this problem takes the form 

𝑢′ 𝑐𝑡
𝑗
 = 𝛽′ ∙ 𝑅𝑡+1

′ ∙ 𝑢′ 𝑐𝑡+1
𝑗

  

Assume CRRA utility so that Eurler equation becomes: 

𝑐𝑡+1
𝑗

=  𝛽′ ∙ 𝑅𝑡+1
′  1/𝜃 ∙ 𝑐𝑡

𝑗
 

 

Next period consumption is linear in current t period consumption. This implies that 

propensity to consume does not depend on individual’s wealth. Specifically one can show that in 

the present case propensity to consume, Ω𝑡 , obey the following equation 

𝛽′ ∙ 𝑅𝑡+1
′ ∙  𝑅𝑡+1

′ Ω𝑡+1 ∙
1 − Ω𝑡

Ω𝑡
 
−𝜃

= 1         (41) 

This equation is identical to (7) with effective discount factor and effective interest rate. 

Using this linear relation between consumption and wealth in one obtains 

𝑎𝑡+1
𝑗

= 𝜆𝑡 ∙ 𝑎𝑡
𝑗

+ 𝜇𝑡                (42) 

where 𝜆𝑡 = 𝑅𝑡+1
′ ∙  1 − Ω𝑡  and 𝜇𝑡 = 𝑅𝑡+1

′ ∙  𝑤𝑡 − Ω𝑡 ∙ ℎ𝑡  

In last expression labor income, 𝑤𝑡 , and, by consequence, human wealth, ℎ𝑡 , is assumed 

to not vary with age. 

Human wealth is present value of expected labor income 

ℎ𝑡 =   𝑅𝑡+1
′  −𝑖

∞

𝑖=0

∙ 𝑤𝑡+𝑖           (43) 

or, equivalently: 

ℎ𝑡 = 𝑤𝑡 +
ℎ𝑡+1

𝑅𝑡+1
′            (44) 

 

Now in order to apply a two-state scheme developed earlier one can interpret these two 

states as “being alive” and “being dead”. We can think that “being alive” means that individual 

goes on with his assets in which case his assets are transformed according to (40) whereas “being 
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dead” means that he is just stripped of all his wealth and 𝑎𝑡+1
𝑗

= 0 in this case. Thus we can 

apply aggregation theorem of Section I.  

Mean value of assets follows the law of motion 

𝔼𝑎𝑡+1 = 𝑝 ∙  𝜆𝑡 ∙ 𝔼𝑎𝑡 + 𝜇𝑡           (45) 

Mean squared assets follow the law of motion: 

𝔼𝑎𝑡+1
2 = 𝑝 ∙  𝜆𝑡

2 ∙ 𝔼𝑎𝑡
2 + 2 ∙ 𝜆𝑡 ∙ 𝔼𝑎𝑡 ∙ 𝜇𝑡 +  𝜇𝑡 

2          (46) 

 

The Cobb-Douglas production function 𝑦𝑡 = 𝑙𝑡
1−𝜇

∙ 𝑘𝑡
𝜇

 with inelastic labor supply 𝑙𝑡  that 

equals 1 implies that production, interest rate and wage 

𝑦𝑡 = 𝑘𝑡
𝜇

          (47) 

𝜇 ∙  𝑘𝑡 
𝜇−1 + 1 − 𝛿 = 𝑅𝑡           (48) 

 1 − 𝜇 ∙  𝑘𝑡 
𝜇 = 𝑤𝑡          (49) 

 

The model is closed by adding a capital market equilibrium condition which takes the 

form 

𝔼𝑎𝑡 = 𝑅𝑡 ∙ 𝑘𝑡          (50) 

Six equations form a closed system for six endogenous variables. These equations and 

variables are: equation for propensity to consume term Ω𝑡  (41), equation for aggregated assets 

𝔼𝑎𝑡  (45), equation for human wealth ℎ𝑡   (44), equation for wage 𝑤𝑡  (49), equation for gross 

interest rate 𝑅𝑡  (48), capital market equilibrium condition for 𝑘𝑡  (50). Together with initial 

condition for capital stock and transversality condition these equations determine the equilibrium 

path for this economy. 

Finally, equation (46) together with initial condition for mean square assets determines 

how this variable change over time. 

The dynamic system can be characterized by saddle point structure. Stable arm converges 

to unique steady state to which we turn to. 

Determination of the steady state is straightforward. In the steady state propensity to 

consume 

Ω𝑠𝑠 = 1 −  𝑝 ∙ 𝛽 1/𝜃 ∙  𝑅𝑠𝑠 + 1 − 𝑝 (1−𝜃)/𝜃           (51) 

We have 

𝜆𝑠𝑠 = 𝑅𝑠𝑠
′ ∙  1 − Ω𝑠𝑠 =  𝑝 ∙ 𝛽 ∙  𝑅𝑠𝑠 + 1 − 𝑝  1/𝜃           (52) 

Then from (45) 

𝔼𝑎𝑠𝑠 =
𝑝 ∙ 𝜇𝑠𝑠

1 − 𝑝 ∙ 𝜆𝑠𝑠
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Using  the fact that 𝑤𝑠𝑠 =
𝑅𝑠𝑠

′

𝑅𝑠𝑠
′ −1

∙ ℎ𝑠𝑠  last expression takes form 

 

𝔼𝑎𝑠𝑠 =
𝑝 ∙ (𝜆𝑠𝑠 − 1)

1 − 𝑝 ∙ 𝜆𝑠𝑠
∙ ℎ𝑠𝑠           (53) 

Note  from (52) that there is a positive relation between 𝑅𝑠𝑠  and 𝜆𝑠𝑠 . Expressing human 

wealth and capital as functions of lambda, capital market equilibrium condition can be written 

𝜆𝑠𝑠 − 1

1 − 𝑝 ∙ 𝜆𝑠𝑠
∙ ℎ𝑠𝑠(𝜆𝑠𝑠) = 𝑅𝑠𝑠(𝜆𝑠𝑠) ∙ 𝑘𝑠𝑠 𝜆𝑠𝑠          (54) 

From this equation equilibrium value of 𝜆𝑠𝑠  is determined which is then used to solve for 

interest rate and other steady state values. 

It can be shown that equation (54) has a unique solution. This solution lies in a well 

defined interval. Note that in order for the left side of (54) to be positive 𝜆𝑠𝑠  should belong to the 

interval: (1; 1/𝑝). If the left side is associated with supply of assets and right side with demand 

for assets one can determine equilibrium as intersection of supply and demand functions.  

Now we can focus on implications for equilibrium asset structure. For this we turn to 

equation (46). The fact that steady state value of 𝜆𝑠𝑠  is less than 1/p ensures that this equation is 

stationary and 𝔼𝑎𝑡
2 converges to the steady state value 

𝔼𝑎𝑠𝑠
2 =

𝑝 ∙ (2 ∙ 𝜆𝑠𝑠 ∙ 𝔼𝑎𝑠𝑠 ∙ 𝜇𝑠𝑠 +  𝜇𝑠𝑠 
2)

1 − 𝑝 ∙ 𝜆𝑠𝑠
2

         (55) 

Thus, using relation 𝛿𝑠𝑠
2 = 𝔼𝑎𝑠𝑠

2 −  𝔼𝑎𝑠𝑠 
2 we have  

𝛿𝑠𝑠
2  𝑎 =

1
𝑝
− 1

1 − 𝑝 ∙ 𝜆𝑠𝑠
2

∙  𝔼𝑎𝑠𝑠 
2 

and coefficient of variation is 

   

𝛿𝑠𝑠

𝐴𝑠𝑠
=  

1
𝑝
− 1

1 − 𝑝 ∙ 𝜆𝑠𝑠
2
 

1/2

         (56) 

 

How does inequality of assets measured by this ratio change when life horizon increases. 

One might expect that as individuals live longer they accumulate more assets through time and 

thus inequality between old and young rises. Expression (55) shows that this need not to be so. 

When life expectancy that is given by 1/(1 − 𝑝) rises p moves closer to unity and this implies 

𝜆𝑠𝑠  goes to unity as well. Thus, nominator and denominator in (56) both go to zero and result is 

ambiguous. In fact in calibrated model inequality slightly decreases with increasing life 

expectancy.   
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