
R e m a r k .  Our results cover those of [4, 7], which can be obtained by setting p l ( x )  = bz ~ , qo(x)  = ax  ~ . 

and p o ( z )  = c x  ~ ,  where c~, fl, 7, a, b, and c are real constants. 
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W e a k  S o l u t i o n s  t o  B u r g e r s - T y p e  E q u a t i o n s  w i t h  N o n s m o o t h  D a t a  

v .  v .  C h i s t y a k o v  

We give a simple proof of the existence and uniqueness of the solution u E C((0, T) x IR) to the Cauchy 
problem 

(O, - a~)u + a , f ( u )  = o in 2)1((o, T)  • R) ,  u(O, .) = u0(') C LI(R) n L~(R), 

for the case in which the function f :  R ---* R is only assumed to be continuous. 

w I n t r o d u c t i o n .  We are chiefly interested in the uniqueness of weak solutions to the following 
Cauchy problem for a quasilinear parabolic Burgers-type equation: 

( a t - O ~ ) u ( t , z ) + a . f ( u ( t , x ) ) = o ,  ( t , z ) e ( O , T ) x R ,  T > 0 ,  (1) 

x) = �9 e R, (2) 

when the problem data f :  R ~ R and u0 : R ~ R are nonsmooth functions (here 0t,  0~, and 0~ stand 
for the first- and second-order partial derivatives with respect to t and z). Our main observation is 
that the regularization of the difference between two solutions to the original equation satisfies a linear 
parabolic equation with two spatial variables and that the maximum principle estimate of a solution to the 
latter equation does not use any information about the coefficients of the first derivatives of the solution 
(these coefficients are given by the derivative of the regularization of f in the intermediate point between 
the regularizations of the two solutions). 

Translated from Malemalicheskie Zametki, Vol. 58, No. 3, pp. 471-476, September, 1995. 
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The classical Burgers equation has the form 

(O, - a~)u + o,,(u~/2) = 0; 

it was thoroughly studied in [1]. Equations of the form (1) naturally arise as "parabolic approximations" 
in studying generalized (discontinuous) global solutions for quasilinear hyperbolic conservation laws [2-4]. 
Let us also point out that the Burgers equation and its generalizations were s tud ied  in various directions 
in [5-71. 

Throughout the paper we use the standard designations of function spaces. 

w T h e o r e m .  Let T > O, let f :  R --* R be continuous, and let uo e L I ( R ) R L r 1 7 6  Then problem 
0), (2) has ~ unicue (weak) solution 

u = u(t,  x) �9 C((0,  T) x 2 )  

with the following properties: 
(i) u, c%u �9 L~or ((0 , T ) x R )  ; u is bounded and uniformly continuous on (5, T ) •  for any ~ �9 (0, T); 

(ii) (Or -O~)u + O~f(u) = 0 in ~'((0,  T) x R),  that is, 

L T  s (U(Ot ..~ O2)~b .. ~ f(u)O,,r dxdt = O VCE C~~ T) x R ) ;  (3) 

(iii) lira sup f f  (u(t, z) - uo(x)) dz] = 0. 
riO a,bE~ Ja I 

Moreover, i f  u, v �9 C((0, ~ )  • R) are weak solutions to proble~ 0 ) ,  (2) on (0, o,) • R that satisf:, 
(i) and (ii) with T = ~ and assume the initial v ~ e s  ~'0, ,0 �9 L~(R) n L ~ ( R )  in the s~n~e of  (iii), then 

a,bEl~ Ja a,bEN Ja 

for any t > 0. 

The proof is in two parts. 

w Ex i s t ence .  For smooth initial data, the solution to problem (1), (2) is t he  x-derivative of the 
solution v = v(t, z) to the problem 

(& - o~)~, + f (o=v)  = o in (o, T) • R, (5) 

f v(0, x) = v0Cx) := ~0(~) d~ on R. (6) 

In our case v0 is bounded and Lipschitz continuous on R with Lipschitz constant  [[u011L--(R) ; thus [8], 
there exists a unique bounded continuous function v = v(t, z) on [0, T] x R such tha t  Otv, O~:v, O~.v E 
LL((0,  T) • R), v and 0~, are bounded and unifor~y continuous on (6, T) • R for any e �9 (0, T), 
and v satisfies Eq. (5) almost everywhere on (0, T) • R and assumes the initial values (6) in the sense of 
c([0,  T]; L~176 

lira supt ,0  ,,eR Iv(t' z) - v0(z)[ = 0 

(note that since f in (5) depends only on p = O,v, the restriction imposed in [8] on  the growth of f(p) 
with respect to p can be removed). 

Let us verify that the function u := O~,v satisfies (i)-(iii). Obviously, u �9 C ( ( 0 ,  T) • 2 )  and (i) is 
satisfied. If r �9 C~r T) • R) ,  then we multiply Eq. (5) by &:r integrate i t  over (0, T) • R,  use 
integration by parts to transpose one derivative from O~v to 0 , r  and take account  of the identity 

/oT/O, 
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thus obtaining (ii) with u = ~,v .  Finally, the inequality 

t' [ O,v( t , z )dx-  Uo(x)dx <_[v(t,b)-vo(b)[+lv(t,a)-vo(a)], 

valid fora ,b  6 1R, shows that u = azv also satisfies (iii)o The existence of a weak solution to prob- 
lem (1), (2) is thereby proved. 

w U n i q u e n e s s .  Let u,  v e C((0, T) x R) be two solutions to problem (1), (2) that satisfy (i) and 
(ii) with T = cx~ and assume the initial values u0, v0 e L I ( R ) n  L ~ ( R ) ,  respective!y, in the sense of (iii). 
Let us choose an arbitrary T > 0 and consider a function ~0 E C ~ ( R )  (a smoothing kernel) such that 

~ > 0 ,  supp~v C ( - 1 ,  1), and f~(x)dx=l. 

~o~(z) := ~ \ ~ / '  

Set 

> o, = e R, (~o ~ ~o)(t, =) := ~o(t)~o(=), t, = e R. 

Next, we fix a 8 E (0, T/2) and, assuming that 8 E (0, 6), define the following functions on [6, T - 6] x R: 

(convolutions of functions of two variables). We set f"  := f * ~ , ,  z E R (the convolution of functions of 
one variable). Since convolution commutes with the differentiation operator, it follows t h a t  

0~(~ ' )  = ( 0 ~ ) "  = ( 0 ~ )  �9 ( ~ ,  | ~,). 

Set 
r  ~) := ( ~  | ~ , ) ( t  - ~, = - ~), t e [ 6 , T - 6 1 ,  r , = , ~ e  R. 

Then r E Co ((0, T) x R) for fixed (t, =); by substituting this function into Eq. (3) with t replaced by r 
and z by ~, we find that  u ~ satisfies the equation 

(a ,  - a,2)u �9 + a . f ( u ) "  = o 

Consider the function 

Ut(t, a, b) := ut( t ,  z) dw, 

We have 

thus, by (7), 

a . v . ( t ,  a, b) = - ~ ' ( ~ ,  a) ,  

0bU'( t ,  a, b) = ue(t, b), 

everywhere on (5, T - 6] x R. 

t e [6, T - 61, (a,  b) e R 2. 

~ u ' ( t ,  ~, b) = - a . = ' ( t ,  ~), 

o~u'( t ,  a, b) -- i)~u'(t, b); 

b b 

-- cg~ue(t, b) -- Omu'(t, a) -- f (u) ' (~,  b) + fCu)*Ct, a) 

:O~bU~(t,a,b)+O~U'(t,a,b)+ [Se(u~(t,b)) - f(u)~(t,b)] 

- s ' ( o , v , ( t ,  ~, b)) + [S(~)'(t, ~) - s '(~'(t ,  ~))] + f (-oov~(t, a, b)). 

(7) 
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Consequently, U ~ satisfies the following problem: 

(Oqt -- 0 2 -- O~)U ~ q- fe (oqbUe)  - f ~ ( - O a U  ~) = F : ( t ,  a)  - F : ( t ,  b)  

everywhere on (~, T - 6] x Ra x Rb, 

/: U~(g, a, b) = u~(6, x)dx ,  (a, b) e R 2 = ira x R, ,  

where 
F~( t ,x )  : = f ( u ) ~ ( ~ , x ) - f ' ( u e ( ~ , x ) ) ,  ( t , z )  E [~f, T -  6] x R. 

Let us carry out a similar argument for v and introduce similar notation. Then for the difference 

-- 

we obtain the parabolic equation 

(0, - 0=2 - O~)W" - B"(t ,  a)O.W" + B"(t ,  b)ObW" = F"(t ,  a, b) 

where 

everywhere on (6, T - 6] x a 2 , (8) 

~0 
1 

B~(t, z) := (f~)'(Oue(t, a) -I- (i - O)v~(t, z)) dO, (t, z) E [5, T - ~] x R, 

Fe(t,  a, b) := F,~(t, a) - F:( t ,  a) + F,~(t, b) - F,~(t, b). 

By continuity, for t = 6 the function W e satisfies the initial conditions 

]'Vr a, b) = (u '(6,  x) - v'(6, x)) dx, (a, b) E R 2. (9) 

By the maximum principle [9, w Theorem 10], the solution W" to problem (8), (9) satisfies the est imate 

I < sup sup IF ' ( t ,a ,b ) l  
( a , b )  e R  ~ (t,a,b)E[B,T-6]• 2 

for (5, a, b) E [6, T - 6] x R 2 , whence it follows that 

a,bER Je  

+ + 
a,bER Ja =,bERI J,, 

+ 2T sup (IF:(t, =)[ + =)]). (10) 
(t,=)e[6,T-6]x~" 

Since u and v are uniformly continuous on [6, T] x R,  the properties of convolution [10, Lemma 2.18] 
imply that  the fourth term on the right-hand side.in Eq. (10) tends to 0 as e -* +0 ,  and hence in the 
limit as e ~ +0 inequality (10) yields 

j(~(u(~,, z) -- v(t, z)) dxl < sup=,bEa J = f b ( u ( 6 ' z ) - u ~  

dx 
a,bER Ja I a,bER J= 

for t E [6, T - 6], a ,  b E R. In view of (iii), by passing to the limit in the latter inequality as 6 ---* +0 ,  
we obtain (4) for t E (0, T) .  Since T > 0 is arbitrary, we conclude that (4) is x-alid for all t > 0. 

Now if u0 = v0, then, by Eq. (4) and by the continuity of u and v on (0, cr x R,  we find tha t  u = v 
everywhere on (0, oo) • R,  thus completing the proof of the theorem. [] 
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~5. O p e n  q u e s t i o n .  Is it possible to solve problem (1), (2) and prove the uniqueness of the solution 
for the case in which the state function f is discontinuous, say, if f is the Heaviside function: f ( u )  = 0 

for u < 0 and f ( u )  = 1 for u > 07 What role is played by the value f(0) in this casc? The solution 
to this problem is of interest also for hyperbolic conservation laws with discontinuous state function (sec 
also [zl]) 

The author is grateful to Yu. I. Dmitriev for his assistance. 
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