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Abstract

Let X be a metric space with metric d, c(X) denote the family of all nonempty compact subsets of X

and, given F,G ∈ c(X), let e(F,G) = supx∈F infy∈G d(x, y) be the Hausdorff excess of F over G. The
excess variation of a multifunction F : [a, b] → c(X), which generalizes the ordinary variation V of single-
valued functions, is defined by V+(F, [a, b]) = supπ

∑m
i=1 e(F (ti−1),F (ti )) where the supremum is taken

over all partitions π = {ti}mi=0 of the interval [a, b]. The main result of the paper is the following selection
theorem: If F : [a, b] → c(X), V+(F, [a, b]) < ∞, t0 ∈ [a, b] and x0 ∈ F(t0), then there exists a single-
valued function f : [a, b] → X of bounded variation such that f (t) ∈ F(t) for all t ∈ [a, b], f (t0) = x0,
V (f, [a, t0)) � V+(F, [a, t0)) and V (f, [t0, b]) � V+(F, [t0, b]). We exhibit examples showing that the
conclusions in this theorem are sharp, and that it produces new selections of bounded variation as compared
with [V.V. Chistyakov, Selections of bounded variation, J. Appl. Anal. 10 (1) (2004) 1–82]. In contrast to
this, a multifunction F satisfying e(F (s),F (t)) � C(t − s) for some constant C � 0 and all s, t ∈ [a, b]
with s � t (Lipschitz continuity with respect to e(·,·)) admits a Lipschitz selection with a Lipschitz constant
not exceeding C if t0 = a and may have only discontinuous selections of bounded variation if a < t0 � b.
The same situation holds for continuous selections of F : [a, b] → c(X) when it is excess continuous in the
sense that e(F (s),F (t)) → 0 as s → t − 0 for all t ∈ (a, b] and e(F (t),F (s)) → 0 as s → t + 0 for all
t ∈ [a, b) simultaneously.
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1. The main result

We begin by reviewing certain preliminary definitions and facts needed for our results.
Throughout the paper X will denote a metric space with metric d .

A function f :T → X on a nonempty set T ⊂ R is said to be of bounded variation if its total
Jordan variation V (f,T ) given by

V (f,T ) ≡ Vd(f,T ) = sup
π

m∑
i=1

d
(
f (ti), f (ti−1)

) (
V (f,∅) = 0

)

is finite, the supremum being taken over all partitions π = {ti}mi=0 of the set T , i.e., m ∈ N and
{ti}mi=0 ⊂ T such that ti−1 � ti for all i ∈ {1, . . . ,m}. The two well-known properties of the
variation V (e.g., [5]) are the additivity in the second argument: V (f,T ) = V (f, (−∞, t]∩T )+
V (f, [t,∞) ∩ T ) for all t ∈ T , and the sequential lower semicontinuity in the first argument:
if a sequence of functions {fn}∞n=1 mapping T into X converges pointwise on T to a function
f :T → X (i.e., limn→∞ d(fn(t), f (t)) = 0 for all t ∈ T ), then V (f,T ) � lim infn→∞ V (fn,T ).

Given two nonempty sets F,G ⊂ X, the Hausdorff excess of F over G is defined by (see,
e.g., [2, Chapter II]):

e(F,G) ≡ ed(F,G) = sup
x∈F

dist(x,G), where dist(x,G) = inf
y∈G

d(x, y).

The following properties of the excess function e(·,·) are well known: if F , G and H are non-
empty subsets of X, then (i) e(F,G) = 0 if and only if F ⊂ G where G is the closure of G in X;
(ii) e(F,G) � e(F,H) + e(H,G); (iii) the value e(F,G) is finite if F and G are bounded and,
in particular, closed and bounded, or compact.

Another, more intuitive, definition of e(F,G) can be given as follows. If Bε(x) = {y ∈ X:
d(y, x) < ε} is the open ball of radius ε > 0 centered at x ∈ X and Oε(G) = {x ∈ X: dist(x,G) <

ε} = ⋃
x∈G Bε(x) is the open ε-neighbourhood of G, then e(F,G) = inf{ε > 0: F ⊂ Oε(G)}.

The Hausdorff distance between nonempty sets F and G from X is defined as follows (e.g.,
[2, Chapter II]):

D(F,G) = max
{
e(F,G), e(G,F )

} = inf
{
ε > 0: F ⊂ Oε(G) and G ⊂ Oε(F )

}
.

The function D(·,·) is a metric, called the Hausdorff metric, on the family of all nonempty closed
bounded subsets of X and, in particular, on the family c(X) of all nonempty compact subsets
of X.

By a multifunction from T into X we mean a rule F assigning to each point t from T a
nonempty subset F(t) ⊂ X. We will mostly be interested in multifunctions of the form F :T →
c(X). Such a multifunction is said to be of bounded variation (with respect to D) if its total
Jordan variation is finite:

VD(F,T ) = sup
π

m∑
i=1

D
(
F(ti),F (ti−1)

)
< ∞.

A (single-valued) function f :T → X is said to be a selection of F on T provided f (t) ∈ F(t)

for all t ∈ T .
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The following theorem on the existence of selections of bounded variation is given in [6,
Theorem 5.1] (the previous special cases of this theorem are contained in [1,4,5,10,11]):

Theorem A. If F :T → c(X), VD(F,T ) < ∞, t0 ∈ T and x0 ∈ F(t0), then there exists a selec-
tion f of F of bounded variation on T such that f (t0) = x0 and V (f,T ) � VD(F,T ). Moreover,
if F is continuous with respect to D, then in addition a selection f of F may be chosen to be
continuous on T .

The aim of this paper is to remove the assumption VD(F,T ) < ∞ from Theorem A and
replace it by a weaker one, Ve(F,T ) < ∞ (for more precise condition see below), which, as
we will show, still preserves the existence of selections of F of bounded variation. In order to
achieve this, we introduce the following definition.

The excess variation to the right V+(F,T ) of a multifunction F :T → c(X) is

V+(F,T ) = sup
π

m∑
i=1

e
(
F(ti−1),F (ti)

) (
V+(F,∅) = 0

)
, (1)

where the supremum is taken over all partitions π = {ti}mi=0 of T . Analogously, the excess vari-
ation to the left of F is given by

V−(F,T ) = sup
π

m∑
i=1

e
(
F(ti),F (ti−1)

) (
V−(F,∅) = 0

)
.

Note that both V+ and V− are generalizations of the ordinary variation V = Vd for single-valued
functions f . Also, the value VD(F,T ) is finite if and only if both values V+(F,T ) and V−(F,T )

are finite.
To simplify the matters and make the ideas involved more clear in the rest of the paper (except

Theorem B on p. 878 and Theorem C on p. 883) we assume that T = [a, b〉, with a ∈ R and a < b,
is either the closed interval [a, b] with b ∈ R or the half-closed interval [a, b) with b ∈ R ∪ {∞}.
A similar convention applies to the interval T = 〈a, b]. In their full generality our results are
valid for any nonempty set T ⊂ R with infT ∈ T or supT ∈ T corresponding to [a, b〉 or 〈a, b]
under consideration, respectively (cf. [6, Section 5]).

Our main result, an extension of Theorem A to be proved in Section 2, is as follows.

Theorem 1. Suppose that F :T → c(X), t0 ∈ T and x0 ∈ F(t0). We have:

(a) if T = [a, b〉 and V+(F,T ) < ∞, then there exists a selection of bounded variation f of F

on T such that f (t0) = x0,

V
(
f, [a, t0)

)
� V+

(
F, [a, t0)

)
, V

(
f, [t0, b〉) � V+

(
F, [t0, b〉), and

V
(
f, [a, b〉) − lim

s→t0−0
d
(
f (s), x0

)
� V+

(
F, [a, t0)

) + V+
(
F, [t0, b〉) � V+

(
F, [a, b〉);

(b) if T = 〈a, b] and V−(F,T ) < ∞, then there exists a selection of bounded variation f of F

on T such that f (t0) = x0,

V
(
f, 〈a, t0]

)
� V−

(
F, 〈a, t0]

)
, V

(
f, (t0, b]) � V−

(
F, (t0, b]), and

V
(
f, 〈a, b]) − lim

s→t0+0
d
(
f (s), x0

)
� V−

(
F, 〈a, t0]

) + V−
(
F, (t0, b]) � V−

(
F, 〈a, b]).
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The case when the multifunction F additionally admits continuous selections of bounded
variation is treated in Section 4 (Theorem 3).

In order to see how Theorem 1 implies Theorem A, assume that T = 〈a, b〉 is an in-
terval, which is either open, closed, half-closed, bounded or not, t0 ∈ T , V−(F, 〈a, t0]) and
V+(F, [t0, b〉) are finite (this is the case when VD(F,T ) < ∞) and x0 ∈ F(t0). Applying The-
orem 1 we find a selection f− of F on 〈a, t0] such that f−(t0) = x0 and V (f−, 〈a, t0]) �
V−(F, 〈a, t0]) and a selection f+ of F on [t0, b〉 such that f+(t0) = x0 and V (f+, [t0, b〉) �
V+(F, [t0, b〉). Defining f : 〈a, b〉 → X by f (t) = f−(t) if t ∈ 〈a, t0] and f (t) = f+(t) if
t ∈ [t0, b〉 we obtain a desired selection of F satisfying f (t0) = x0 and, by virtue of the addi-
tivity property of V in the second variable,

V
(
f, 〈a, b〉) = V

(
f−, 〈a, t0]

) + V
(
f+, [t0, b〉) � V−

(
F, 〈a, t0]

) + V+
(
F, [t0, b〉),

which is estimated by VD(F, 〈a, t0])+VD(F, [t0, b〉) = VD(F, 〈a, b〉) if the last quantity is finite.
These arguments also apply to obtain Lipschitz and continuous selections of bounded variation
of F on 〈a, b〉 (see Section 4).

For more motivation, historical comments and possible applications of the results of this paper
we refer to [1,4–6,10].

The paper is organized as follows. In Section 2 we study properties of the excess variation V+
and prove Theorem 1. In Section 3 we present an example of a multifunction, for which The-
orem 1 is applicable while Theorem A is not, and show that the conclusions of Theorem 1 are
sharp. Section 4 is devoted to the existence and non-existence of Lipschitz and continuous selec-
tions of bounded variation.

2. Proof of the main result

Since assertions (a) and (b) in Theorem 1 are completely similar, we concentrate on (a). In
the proof of this theorem we will need Lemmas 1 and 2 and Theorem B presented below in this
section.

In the next two lemmas we gather several properties of the excess variation V+ (the properties
of the excess variation V− are similar).

Lemma 1. Let F : [a, b〉 → c(X) and V+(F, [a, b〉) < ∞. We have:

(a) V+(F, [a, b〉) = 0 if and only if F(s) ⊂ F(t) for all s, t ∈ [a, b〉, s � t .
(b) If s, t ∈ [a, b〉, s � t , then V+(F, [a, s]) + V+(F, [s, t]) = V+(F, [a, t]).
(c) lims→t−0 V+(F, [a, s]) = V+(F, [a, t)) for each t ∈ (a, b〉.

Proof. (a) This is a consequence of the definition of V+ and property (i) of the excess func-
tion e(·,·) from Section 1 on closed or compact subsets of X.

(b) First, note that if a new point is inserted into a given partition π = {ti}mi=0 of T , the sum
under the supremum sign in (1) will not decrease: in fact, suppose s ∈ T and tk−1 < s < tk for
some k ∈ {1, . . . ,m}, then applying property (ii) of e(·,·) from Section 1, we get

e
(
F(tk−1),F (tk)

)
� e

(
F(tk−1),F (s)

) + e
(
F(s),F (tk)

)
, (2)

and the assertion for the sums follows. This observation implies that in order to calculate the
value V+(F,T ) from (1), instead of all partitions of T we may consider only those that contain
an a priori fixed finite number of points from T .
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So, let a = t0 < t1 < · · · < tm−1 < tm = s be a partition of [a, s] and s = tm < tm+1 < · · · <

tn−1 < tn = t be a partition of [s, t]. We have:

m∑
i=1

e
(
F(ti−1),F (ti)

) +
n∑

j=m+1

e
(
F(tj−1),F (tj )

)
� V+

(
F, [a, t]).

Taking the supremum over all partitions of [a, s] and [s, t], we arrive at the inequality
V+(F, [a, s]) + V+(F, [s, t]) � V+(F, [a, t]).

Now, let a = t0 < t1 < · · · < tm−1 < tm = b be a partition of [a, t] and assume that tk−1 �
s � tk for some k ∈ {1, . . . ,m}. By virtue of (2), we find

m∑
i=1

e
(
F(ti−1),F (ti)

)
� V+

(
F, [a, s]) + V+

(
F, [s, t]),

and it remains to take the supremum over all partitions of [a, t].
(c) The definition of V+ implies that, given ε > 0, there exists a partition a = τ0 < τ1 < · · · <

τm < t of [a, t) (depending on ε) such that

V+
(
F, [a, t)

) − ε �
m∑

i=1

e
(
F(τi−1),F (τi)

)
� V+

(
F, [a, τm]).

It follows that for any τm � s < t we get:

V+
(
F, [a, t)

) − ε � V+
(
F, [a, τm]) � V+

(
F, [a, s]) � V+

(
F, [a, t)

)
,

which proves (c) and completes the proof of our lemma. �
Lemma 2. Let F : [a, b〉 → c(X) and V+(F, [a, b〉) < ∞. Define the V+-variation function
v : [a, b〉 → [0,∞) by v(t) = V+(F, [a, t]) for t ∈ [a, b〉. Then

lim
s→t−0

e
(
F(s),F (t)

) = v(t) − v(t − 0) for all t ∈ (a, b〉 (3)

and

lim
s→t+0

e
(
F(t),F (s)

) = v(t + 0) − v(t) for all t ∈ [a, b), (4)

where v(t − 0) and v(t + 0) are the left and right limits of v at t , respectively.

Proof. After the property of Lemma 1(b) has been proved, this lemma might be considered as a
consequence of [5, Lemma 4.2]. However, in that reference functions under consideration were
assumed to take their values in a metric space where the distance function is symmetric. In our
case the excess function e(·,·) is not symmetric (for e(F,G) = e(G,F ) in general), and so, we
have to take care of that. For the reader’s convenience we reproduce the proof from the above
reference in a somewhat shortened form.

By virtue of Lemma 1(b), the function v is nondecreasing and, hence, regulated, i.e., it has
the left limit v(t − 0) at all points t ∈ (a, b〉 and the right limit v(t + 0) at all points t ∈ [a, b).
The existence of the limits at the left-hand sides of (3) and (4) can be proved in exactly the same
way as in [5, Lemma 4.1] by using the Cauchy criterion if we take into account property (ii) of
the excess function from Section 1.
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Proof of (3). By Lemma 1(b), for t ∈ (a, b〉 and s ∈ [a, t) we have:

e
(
F(s),F (t)

)
� V+

(
F, [s, t]) = v(t) − v(s),

and so, as s → t − 0, lims→t−0 e(F (s),F (t)) � v(t) − v(t − 0). To prove the reverse inequality,
by the definition of V+(F, [a, t]) for any ε > 0 we choose a partition {ti}mi=0 ∪ {t} of [a, t] with
tm < t such that

V+
(
F, [a, t]) �

m∑
i=1

e
(
F(ti−1),F (ti)

) + e
(
F(tm),F (t)

) + ε.

If s ∈ [tm, t), noting that e(F (tm),F (t)) � e(F (tm),F (s)) + e(F (s),F (t)), we get:

V+
(
F, [a, t]) � V+

(
F, [a, s]) + e

(
F(s),F (t)

) + ε,

which implies v(t) − v(s) � e(F (s),F (t)) + ε, and it remains to pass to the limit as s → t − 0
and take into account the arbitrariness of ε > 0. �
Proof of (4). Given t ∈ [a, b) and s ∈ (t, b), we have:

e
(
F(t),F (s)

)
� V+

(
F, [t, s]) = v(s) − v(t),

and so, lims→t+0 e(F (t),F (s)) � v(t + 0) − v(t). The reverse inequality will follow if we show
that for any ε > 0 there exists t0 = t0(ε) ∈ (t, b) such that

v(s) − v(t) � e
(
F(t),F (s)

) + ε for all t < s � t0, (5)

then let s go to t + 0 and note that ε > 0 is arbitrary. To prove (5), we note that V+(F, [t, b〉) �
V+(F, [a, b〉) < ∞, and so, there exists a partition {t} ∪ {ti}mi=0 (depending on ε) of [t, b〉 with
t < t0 such that

V+
(
F, [t, tm]) � V+

(
F, [t, b〉) � e

(
F(t),F (t0)

) +
m∑

i=1

e
(
F(ti−1),F (ti)

) + ε.

If t < s � t0, we have e(F (t),F (t0)) � e(F (t),F (s)) + e(F (s),F (t0)), and so,

V+
(
F, [t, tm]) � e

(
F(t),F (s)

) + V+
(
F, [s, tm]) + ε,

implying, by Lemma 1(b),

V+
(
F, [a, s]) − V+

(
F, [a, t]) = V+

(
F, [t, tm]) − V+

(
F, [s, tm]) � e

(
F(t),F (s)

) + ε,

which is precisely (5) according to the definition of v. �
In order to formulate Theorem B, we recall the notion of the modulus of variation of a function

f :T → X due to Chanturiya [3] (see also [9, Section 11.3]): this is the sequence of the form
{ν(k, f,T )}∞k=1 where ν(k, f,T ) = sup

∑k
i=1 d(f (bi), f (ai)) and the supremum is taken over

all collections a1, . . . , ak , b1, . . . , bk of 2k numbers from T such that a1 � b1 � a2 � b2 � · · · �
ak � bk . The following theorem is a pointwise selection principle in terms of the modulus of
variation [7, Theorem 1]:

Theorem B. Suppose that a sequence of functions {fn}∞n=1 mapping T into X is such that
(a) limk→∞(lim supn→∞ ν(k, fn, T )/k) = 0, and (b) the closure of the set {fn(t)}∞n=1 in X is
compact for each t ∈ T . Then there exists a subsequence of {fn}∞n=1, which converges pointwise
on T to a function f :T → X satisfying limk→∞ ν(k, f,T )/k = 0.
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Now we are in a position to prove our main result. In the proof we employ several ideas from
[1,5] and [6, Section 5].

Proof of Theorem 1(a). For the sake of clarity we divide the proof into four steps. In the first
two steps we prove the theorem for T = [a, b] and t0 = a, in the third step—for T = [a, b) and
t0 = a, and in the fourth step—for T = [a, b〉 and t0 ∈ [a, b〉 with t0 > a.

Step 1. Suppose that T = [a, b] and t0 = a, so that x0 ∈ F(a) by the assumption. Since the
V+-variation function v : [a, b] → [0,∞) from Lemma 2 is regulated, the set of its discontinuities
is at most countable. Putting

Tv =
{
t ∈ (a, b]: v(t − 0) ≡ lim

s→t−0
v(s) = v(t)

}

and

TF =
{
t ∈ (a, b]: lim

s→t−0
e
(
F(s),F (t)

) = 0
}
,

we have, by virtue of Lemma 2, TF = Tv , and so, the set [a, b] \ TF = [a, b] \ Tv is at most
countable. We set

S = {a, b} ∪ (
Q ∩ [a, b]) ∪ ([a, b] \ TF

)
,

where Q is the set of all rational numbers, and note that S is dense in [a, b] and at most countable.
We enumerate the points in S arbitrarily and, with no loss of generality, suppose that S is count-
able, say, S = {ti}∞i=0 with t0 = a. Then for any n ∈ N the set πn = {ti}n−1

i=0 ∪ {b} is a partition of
[a, b]. Ordering the points in πn in strictly ascending order and denoting them by πn = {tni }ni=0,
we find

a = tn0 < tn1 < · · · < tnn−1 < tnn = b, and (6)

∀t ∈ S ∃n0 = n0(t) ∈ N such that t ∈ πn for all n � n0. (7)

We now construct an approximating sequence for the desired selection. Given n ∈ N, we first
define elements xn

i ∈ F(tni ) for i ∈ {0,1, . . . , n} inductively as follows:

(i) we set xn
0 = x0, and

(ii) if i ∈ {1, . . . , n} and xn
i−1 ∈ F(tni−1) is already chosen, we pick xn

i ∈ F(tni ) such that
d(xn

i−1, x
n
i ) = dist(xn

i−1,F (tni )).

For each n ∈ N we define a function fn : [a, b] → X by setting

fn(t) =
{

xn
i if t = tni and i ∈ {0,1, . . . , n},

xn
i−1 if t ∈ (tni−1, t

n
i ) and i ∈ {1, . . . , n}. (8)

Observe that fn(a) = fn(t
n
0 ) = xn

0 = x0 for all n ∈ N.
Step 2. Now we show that the sequence {fn}∞n=1 satisfies the assumptions of Theorem B.

Condition (a) in that theorem is a consequence of the additivity of V , definitions (8) and (ii), the
excess and V+:

ν
(
k,fn, [a, b]) � V

(
fn, [a, b]) =

n∑
V

(
fn,

[
tni−1, t

n
i

]) =
n∑

d
(
xn
i−1, x

n
i

)

i=1 i=1
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=
n∑

i=1

dist
(
xn
i−1,F

(
tni

))
�

n∑
i=1

e
(
F

(
tni−1

)
,F

(
tni

))

� V+
(
F, [a, b]) for all k,n ∈ N, (9)

which implies

lim sup
n→∞

ν
(
k,fn, [a, b]) � V+

(
F, [a, b]) for all k ∈ N.

Let us verify condition (b) of Theorem B. We consider two possibilities: (I) t ∈ S, and (II) t ∈
[a, b] \ S.

(I) Suppose that t ∈ S. By virtue of (7), there exists n0 = n0(t) ∈ N such that t ∈ πn for all
n � n0, and so, for each n � n0 there exists i = i(n, t) ∈ {0,1, . . . , n} such that t = tni . It follows
from (8), (i) and (ii) that

fn(t) = fn

(
tni

) = xn
i ∈ F

(
tni

) = F(t) for all n � n0, (10)

and it suffices to take into account the compactness of F(t).
(II) Let t ∈ [a, b] \ S. Then t ∈ (a, b) ∩ TF is irrational and, in particular, by the definition

of TF we have:

e
(
F(s),F (t)

) → 0 as (a, b) � s → t − 0. (11)

Due to the density of S in [a, b], there exists a sequence of points {sk}∞k=1 ⊂ S ∩ (a, t) such that
sk → t as k → ∞. Since sk ∈ S for each k ∈ N, we can find, by (7), a number n(k) ∈ N (depend-
ing also on t) such that sk ∈ πn(k) and, therefore, sk = t

n(k)
j (k) for some j (k) ∈ {0,1, . . . , n(k) − 1}.

Again, thanks to property (7), we may assume with no loss of generality that the sequence
{n(k)}∞k=1 is strictly increasing. Since sk < t , it follows from (6) that there exists a unique number
i(k) ∈ {j (k), . . . , n(k) − 1} such that

sk = t
n(k)
j (k) � t

n(k)
i(k) < t < t

n(k)
i(k)+1 for all k ∈ N. (12)

Now this and the property that sk → t as k → ∞ give:

t
n(k)
i(k) → t as k → ∞. (13)

By the second line of definition (8) and (12), we have

fn(k)(t) = x
n(k)
i(k) ∈ F

(
t
n(k)
i(k)

)
for all k ∈ N.

For each k ∈ N pick an element xk
t ∈ F(t) such that

d
(
x

n(k)
i(k) , xk

t

) = dist
(
x

n(k)
i(k) ,F (t)

)
.

Then (11) and (13) imply

d
(
fn(k)(t), x

k
t

)
� e

(
F

(
t
n(k)
i(k)

)
,F (t)

) → 0 as k → ∞.

Since the set F(t) is compact and {xk
t }∞k=1 ⊂ F(t), there exists a subsequence of {xk

t }∞k=1, again
denoted by {xk

t }∞k=1, and an element xt ∈ F(t) such that d(xk
t , xt ) → 0 as k → ∞, and so,

d
(
fn(k)(t), xt

)
� d

(
fn(k)(t), x

k
t

) + d
(
xk
t , xt

) → 0 as k → ∞. (14)

This proves that the closure of the sequence {fn(t)}∞n=1 in X is compact for all t ∈ [a, b].
By Theorem B, there exists a subsequence of {fn}∞n=1, which we again denote by {fn(k)}∞k=1,

and a function f : [a, b] → X such that d(fn(k)(t), f (t)) → 0 as k → ∞ for all t ∈ [a, b].
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Clearly, f (a) = x0. The inclusion f (t) ∈ F(t) for all t ∈ [a, b] is a consequence of the closed-
ness of F(t), (10) and (14). Finally, the lower semicontinuity of the Jordan variation V and
inequality (9) ensure that

V
(
f, [a, b]) � lim inf

k→∞ V
(
fn(k), [a, b]) � V+

(
F, [a, b]). (15)

Thus, our theorem is proved for T = [a, b] and t0 = a.
Step 3. Assume now that T = [a, b) with b ∈ R ∪ {∞} and t0 = a. Choose an increasing se-

quence {tn}∞n=1 ⊂ [a, b) such that tn → b as n → ∞. Since V+(F, [a, t1]) � V+(F, [a, b)) < ∞,
applying steps 1–2 we get a function f0 : [a, t1] → X such that f0(t) ∈ F(t) for all t ∈ [a, t1],
f0(a) = x0 and V (f0, [a, t1]) � V+(F, [a, t1]). Inductively, if n ∈ N and a selection fn−1 of F

on [tn−1, tn] is already chosen, we note that V+(F, [tn, tn+1]) � V+(F, [a, b)) < ∞ and apply
again steps 1–2 to obtain a selection fn of F on [tn, tn+1] such that fn(tn) = fn−1(tn) and
V (fn, [tn, tn+1]) � V+(F, [tn, tn+1]). Given t ∈ [a, b), so that t ∈ [tn−1, tn] for some n ∈ N, we
set f (t) = fn−1(t). Then the function f : [a, b) → X is a selection of F on [a, b), f (t0) =
f0(a) = x0 and, by virtue of Lemma 1(b) and (c) we have:

V
(
f, [a, b)

) = lim
k→∞V

(
f, [a, tk]

) = lim
k→∞

k∑
n=1

V
(
fn−1, [tn−1, tn]

)

� lim
k→∞

k∑
n=1

V+
(
F, [tn−1, tn]

) = lim
k→∞V+

(
F, [a, tk]

) = V+
(
F, [a, b)

)
.

Step 4. Now suppose that T = [a, b〉 and t0 ∈ (a, b〉. Noting that V+(F, [a, t0)) and
V+(F, [t0, b〉) do not exceed V+(F, [a, b〉) and x0 ∈ F(t0), we apply steps 1–3 twice: to F

on [t0, b〉 in order to find a selection f1 of F on [t0, b〉 such that f1(t0) = x0 and V (f1, [t0, b〉) �
V+(F, [t0, b〉), and to F on [a, t0) with arbitrary y0 ∈ F(a) to obtain a selection f2 of F on [a, t0)

such that f2(a) = y0 and V (f2, [a, t0)) � V+(F, [a, t0)). We set f (t) = f2(t) for t ∈ [a, t0) and
f (t) = f1(t) if t ∈ [t0, b〉. Clearly, f is a selection of F of bounded variation on [a, b〉 with the
desired properties and such that (cf. the jump relations for functions of bounded variation in [5,
Theorem 4.6(a)])

V
(
f, [a, b〉) = V

(
f, [a, t0]

) + V
(
f, [t0, b〉)

= V
(
f2, [a, t0)

) + lim
s→t0−0

d
(
f (s), f (t0)

) + V
(
f1, [t0, b〉)

� V+
(
F, [a, t0)

) + lim
s→t0−0

d
(
f (s), x0

) + V+
(
F, [t0, b〉)

� V+
(
F, [a, b〉) + lim

s→t0−0
d
(
f (s), x0

)
< ∞,

where the existence of the limit follows from the fact that f = f2 on [a, t0) is of bounded varia-
tion and the Cauchy criterion: if a � s1 � s2 < t0, we have:∣∣d(

f2(s1), x0
) − d

(
f2(s2), x0

)∣∣
� d

(
f2(s1), f2(s2)

)
� V

(
f2, [s1, s2]

)
= V

(
f2, [a, s2]

) − V
(
f2, [a, s1]

) → V
(
f2, [a, t0)

) − V
(
f2, [a, t0)

) = 0

as s1, s2 → t0 − 0.
This completes the proof of Theorem 1. �
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3. Examples

Example 3.1. In this section we present an example of a multifunction F such that V+(F, [a, b])
is finite, and so Theorem 1 applies, giving selections of bounded variation of F , whereas
V−(F, [a, b]) is infinite, and Theorem A is thus inapplicable.

Let X = �1(N) be the Banach space of all summable sequences x : N → R, written as x =
{xi}∞i=1, equipped with the norm ‖x‖ = ∑∞

i=1 |xi |, and let the unit vector un = {xi}∞i=1 in X be
defined as usual by xi = 0 if i = n and xn = 1. Given k ∈ N ∪ {∞}, we set Fk = {0} ∪ {cnun}kn=1,
where {cn}∞n=1 is a decreasing sequence of positive numbers such that

cn → 0 as n → ∞ and
∞∑

n=1

cn = ∞ (16)

(e.g., cn = 1/n). Clearly, Fk ∈ c(X) for all k ∈ N, and the first condition in (16) implies F∞ ∈
c(X) as well. We define a multifunction F : [0,1] → c(X) as follows:

F(t) = Fk if
k − 1

k
� t <

k

k + 1
for k ∈ N and F(1) = F∞.

Since Fk ⊂ Fk+1 ⊂ F∞ for all k ∈ N, then condition 0 � s � t � 1 implies F(s) ⊂ F(t), and
so, by Lemma 1(a), V+(F, [0,1]) = 0. In order to show that V−(F, [0,1]) = ∞, we first observe
that if k ∈ N, then

e(Fk+1,Fk) = sup
x∈Fk+1

inf
y∈Fk

‖x − y‖ = ck+1 + inf
1�n�k

cn = ck+1 + ck

and

e(F∞,Fk) = sup
n�k+1

(
cn + inf

1�i�k
ci

)
= sup

n�k+1
cn + inf

1�i�k
ci = ck+1 + ck.

Now for an arbitrary m ∈ N and for the partition πm of [0,1] of the form πm = {(k − 1)/k}mk=1 ∪
{1} we have:

V−
(
F, [0,1]) �

m−1∑
k=1

e
(

F

(
k

k + 1

)
,F

(
k − 1

k

))
+ e

(
F(1),F

(
m − 1

m

))

=
m−1∑
k=1

e(Fk+1,Fk) + e(F∞,Fm)

= −c1 + cm+1 + 2
m∑

k=1

ck → ∞ as m → ∞.

Example 3.2. Multifunction F from Example 3.1 has two constant selections f (t) ≡ 0 and
f (t) ≡ c1u1 guaranteed by Theorem 1 and satisfying initial conditions f (0) = 0 and f (0) =
c1u1, respectively, and V (f, [0,1]) � V+(F, [0,1]) = 0. However, if we assume in Theorem 1
that x0 ∈ F(t0) with a < t0 � b, then condition V (f, [a, b]) � V+(F, [a, b]) may be violated
for any selection f of F such that f (t0) = x0. To see this, we assume in the previous example
that t0 = 1/2 and x0 = c2u2. Clearly, x0 ∈ F(t0) = F2. If f : [0,1] → X is any selection of F

such that f (1/2) = c2u2, then since f (0) ∈ F(0) = F1 = {0, c1u1}, we have either f (0) = 0 or
f (0) = c1u1, and so,

V
(
f, [0,1]) �

∥∥f (1/2) − f (0)
∥∥ � c2 > 0 = V+

(
F, [0,1]). (17)
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The first inequality in Theorem 1(a) states that V (f, [a, t0)) � V+(F, [a, t0)). In general it
cannot be replaced by the inequality V (f, [a, t0]) � V+(F, [a, t0]) if f (t0) = x0 with t0 > a; it
suffices to argue as in (17):

V
(
f, [0,1/2]) �

∥∥f (1/2) − f (0)
∥∥ � c2 > 0 = V+

(
F, [0,1/2]).

This observation also shows that the limit from the left in the third inequality of Theorem 1(a) is
indispensable.

Example 3.3. We note that the inequality V (f, [t0, b〉) � V+(F, [t0, b〉) from Theorem 1 may
fail even for [t0, b〉 = [a, b] if at least one value F(t) of F is only closed and bounded but not
compact. The corresponding example was constructed in [6, Example 5.2].

4. Lipschitz and continuous selections

Recall that a multifunction F :T → c(X) is said to be Lipschitz (with respect to the Hausdorff
metric D) if its minimal Lipschitz constant given by

LD(F,T ) = sup
{
D

(
F(t),F (s)

)
/|t − s|: s, t ∈ T , s = t

}
is finite. If f :T → X is a single-valued function, we denote its minimal Lipschitz constant by
L(f,T ) ≡ Ld(f,T ).

The following theorem on the existence of Lipschitz selections of Lipschitz multifunctions is
valid [6, Section 6] (for particular cases see [1,4,5,8,10], [11, Section Supplement 1], [12, Part C,
Theorem (7.14)], [13]):

Theorem C. If F :T → c(X), LD(F,T ) < ∞, t0 ∈ T and x0 ∈ F(t0), then there exists a
Lipschitz selection f of F on T such that f (t0) = x0, L(f,T ) � LD(F,T ) and V (f,T ) �
VD(F,T ).

Note that if in Theorem C the set T is unbounded, it may happen that VD(F,T ) is infinite; if
this is the case, the last condition in this theorem is superfluous.

In order to obtain a version of Theorem C with respect to the excess function, we introduce
the following definition which is parallel to (1).

A multifunction F :T → c(X) is said to be excess Lipschitz to the right (or Lip+, for short) if
its minimal excess Lipschitz to the right constant defined by

L+(F,T ) = sup
{
e
(
F(s),F (t)

)
/(t − s): s, t ∈ T , s < t

}
is finite. In a similar manner we define L−(F,T ) (as well as Lip−) by replacing the value
e(F (s),F (t)) in the definition of L+(F,T ) by e(F (t),F (s)). Clearly, if T is bounded, then
V+(F,T ) � L+(F,T ) · (supT − infT ), and if F = f is single-valued, then L+(f,T ) =
L−(f,T ) = L(f,T ). Multifunction F from Example 3.1 is Lip+ on [0,1].

We have the following counterpart of Theorem C:

Theorem 2. If F : T = [a, b〉 → c(X), L+(F,T ) < ∞, t0 = a and x0 ∈ F(t0), then there exists
a Lipschitz selection f of F on T such that f (t0) = x0, L(f,T ) � L+(F,T ) and V (f,T ) �
V+(F,T ). A similar assertion holds if we replace T = [a, b〉 by T = 〈a, b], L+(F,T )—by
L−(F,T ), t0 = a—by t0 = b and V+(F,T )—by V−(F,T ).
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Taking into account Theorem 1, the proof of Theorem 2 follows the same lines with obvious
modifications as those in the proof of Theorem 6.1(a) from [6], and so, it is omitted. We note
that, in contrast to Theorem C, Theorem 2 does not hold if t0 ∈ [a, b〉 and t0 > a, that is, F may
have no continuous selections at all. This can be seen from Example 3.2 (cf. (17)) rewritten as∥∥f (1/2) − f (s)

∥∥ � c2 > 0 for all 0 � s < 1/2.

In order to cope with continuous selections, we introduce the following definition of continuity
for a multifunction F : [a, b〉 → c(X): it is said to be excess continuous to the right on [a, b〉 (or,
briefly, C+) if

lim
s→t−0

e
(
F(s),F (t)

) = 0 for all t ∈ (a, b〉 (18)

and

lim
s→t+0

e
(
F(t),F (s)

) = 0 for all t ∈ [a, b) (19)

simultaneously. Note that if F is Lip+ on [a, b〉, then it is also C+. An example of a multifunction
F : [0,1] → c(X), which is C+, but not continuous with respect to the Hausdorff metric D, is
constructed in Example 3.1: in fact, since F(s) ⊂ F(t) for all 0 � s � t � 1, conditions (18)
and (19) are satisfied. On the other hand, given k ∈ N, we have, for tk = k/(k + 1),

lim
s→tk−0

e
(
F(tk),F (s)

) = e(Fk+1,Fk) = ck+1 + ck > 0.

The notion of the excess continuity to the left (or C−) for F : 〈a, b] → c(X) is introduced sim-
ilarly to (18) and (19): e(F (t),F (s)) → 0 as s → t − 0 for all t ∈ (a, b] and e(F (s),F (t)) → 0
as s → t + 0 for all t ∈ 〈a, b) simultaneously.

We point out that condition (18) (as well as (19)) is very weak as compared with the condition
lims→t−0 D(F(s),F (t)) = 0 and, taking into account the second definition of the excess from
Section 1, it amounts to the following: for each ε > 0 there exists δ = δ(ε) > 0 such that for all
s ∈ [t − δ, t) and x ∈ F(s) there exists y ∈ F(t) with d(x, y) < ε.

Now we have the following extension of the second part of Theorem A from Section 1 (note
at once that Theorem 3 below does not hold if t0 > a as the observation following Theorem 2
shows):

Theorem 3. Let F : T = [a, b〉 → c(X) be C+, V+(F,T ) < ∞, t0 = a and x0 ∈ F(t0). Then
there exists a continuous selection of bounded variation f of F on T such that f (t0) = x0 and
V (f,T ) � V+(F,T ). A similar assertion holds if we replace T = [a, b〉 by T = 〈a, b], C+—
by C−, V+(F,T )—by V−(F,T ) and t0 = a—by t0 = b.

Proof. The idea of the proof comes from the factorization procedure for metric space valued
functions of bounded variation [4], [5, Section 3]. So, by employing a suitable “change of vari-
ables” we reduce Theorem 3 to Theorem 2.

We set � = V+(F, [a, b〉). Since F is C+, the V+-variation function v maps [a, b〉 onto [0, �〉
continuously by Lemma 2. Given s ∈ [0, �〉, we denote by v−1(s) = {t ∈ [a, b〉: v(t) = s} the in-
verse image of the singleton {s} and let μ(s) = minv−1(s), so that v(μ(s)) = s, and the function
μ : [0, �〉 → [a, b〉 is continuous and nondecreasing.

We define a multifunction G : [0, �〉 → c(X) as follows:

G(s) =
⋂
−1

F(t) for all s ∈ [0, �〉. (20)

t∈v (s)



V.V. Chistyakov, D. Repovš / J. Math. Anal. Appl. 331 (2007) 873–885 885
That G is well defined, i.e., that G(s) = ∅ (the compactness is immediate) for all values of s, can
be seen from the following: given t1, t2 ∈ v−1(s), t1 � t2, we have by Lemma 1(b) that

e
(
F(t1),F (t2)

)
� V+

(
F, [t1, t2]

) = v(t2) − v(t1) = s − s = 0,

and so, F(t1) ⊂ F(t2). It follows that G(s) = F(μ(s)) for all s ∈ [0, �〉. Also, since t ∈ v−1(v(t)),
(20) implies G(v(t)) ⊂ F(t) for all t ∈ [a, b〉. Clearly, μ(0) = a, and so, x0 ∈ F(a) = F(μ(a)) =
G(0). Moreover, G is Lip+ on [0, �〉: indeed, for s1, s2 ∈ [0, �〉 with s1 < s2 we have, by
Lemma 1(b):

e
(
G(s1),G(s2)

) = e
(
F

(
μ(s1)

)
,F

(
μ(s2)

))
� V+

(
F,

[
μ(s1),μ(s2)

])
= V+

(
F,

[
a,μ(s2)

]) − V+
(
F,

[
a,μ(s1)

])
= v

(
μ(s2)

) − v
(
μ(s1)

) = s2 − s1.

By Theorem 2, there exists a Lipschitz selection g of G on [0, �〉 such that g(0) = x0 and
L(g, [0, �〉) � L+(G, [0, �〉) � 1. The desired selection f of F is defined as the composed func-
tion f = g ◦ v. It is clear that f : [a, b〉 → X is continuous as the composition of two continuous
functions, f (a) = g(v(a)) = g(0) = x0,

f (t) = g
(
v(t)

) ∈ G
(
v(t)

) ⊂ F(t) for all t ∈ [a, b〉
and, since L(g, [0, �〉) � 1, we have V (f, [a, b〉) � V+(F, [a, b〉). �

In Example 3.1 we have v(t) = V+(F, [a, t]) ≡ 0, G : {0} → c(X) and G(0) = F(μ(0)) =
F(0) = F1, and so, we obtain as a continuous selection of F only f (t) ≡ 0 if f (0) = 0 or
f (t) ≡ c1u1 if f (0) = c1u1.
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