Selections of bounded variation under the excess restrictions ${ }^{\text {st }}$

Vyacheslav V. Chistyakov ${ }^{\text {a,* }}$, Dušan Repovš ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, State University Higher School of Economics, Bol'shaya Pechërskaya street 25, Nizhny Novgorod 603600, Russia
${ }^{\text {b }}$ Institute of Mathematics, Physics and Mechanics, University of Ljubljana, PO Box 2964, Ljubljana 1001, Slovenia

Received 6 June 2006
Available online 17 October 2006
Submitted by Steven G. Krantz

Abstract

Let X be a metric space with metric $d, \mathrm{c}(X)$ denote the family of all nonempty compact subsets of X and, given $F, G \in \mathrm{c}(X)$, let $\mathrm{e}(F, G)=\sup _{x \in F} \inf _{y \in G} d(x, y)$ be the Hausdorff excess of F over G. The excess variation of a multifunction $F:[a, b] \rightarrow \mathrm{c}(X)$, which generalizes the ordinary variation V of singlevalued functions, is defined by $V_{+}(F,[a, b])=\sup _{\pi} \sum_{i=1}^{m} \mathrm{e}\left(F\left(t_{i-1}\right), F\left(t_{i}\right)\right)$ where the supremum is taken over all partitions $\pi=\left\{t_{i}\right\}_{i=0}^{m}$ of the interval $[a, b]$. The main result of the paper is the following selection theorem: If $F:[a, b] \rightarrow \mathrm{c}(X), V_{+}(F,[a, b])<\infty, t_{0} \in[a, b]$ and $x_{0} \in F\left(t_{0}\right)$, then there exists a singlevalued function $f:[a, b] \rightarrow X$ of bounded variation such that $f(t) \in F(t)$ for all $t \in[a, b], f\left(t_{0}\right)=x_{0}$, $V\left(f,\left[a, t_{0}\right)\right) \leqslant V_{+}\left(F,\left[a, t_{0}\right)\right)$ and $V\left(f,\left[t_{0}, b\right]\right) \leqslant V_{+}\left(F,\left[t_{0}, b\right]\right)$. We exhibit examples showing that the conclusions in this theorem are sharp, and that it produces new selections of bounded variation as compared with [V.V. Chistyakov, Selections of bounded variation, J. Appl. Anal. 10 (1) (2004) 1-82]. In contrast to this, a multifunction F satisfying $\mathrm{e}(F(s), F(t)) \leqslant C(t-s)$ for some constant $C \geqslant 0$ and all $s, t \in[a, b]$ with $s \leqslant t$ (Lipschitz continuity with respect to e($\cdot, \cdot)$) admits a Lipschitz selection with a Lipschitz constant not exceeding C if $t_{0}=a$ and may have only discontinuous selections of bounded variation if $a<t_{0} \leqslant b$. The same situation holds for continuous selections of $F:[a, b] \rightarrow \mathrm{c}(X)$ when it is excess continuous in the sense that $\mathrm{e}(F(s), F(t)) \rightarrow 0$ as $s \rightarrow t-0$ for all $t \in(a, b]$ and $\mathrm{e}(F(t), F(s)) \rightarrow 0$ as $s \rightarrow t+0$ for all $t \in[a, b)$ simultaneously. © 2006 Elsevier Inc. All rights reserved.

[^0]Keywords: Hausdorff excess; Metric space; Compact set; Multifunction; Selection; Bounded variation; Lipschitz continuity; Pointwise convergence

1. The main result

We begin by reviewing certain preliminary definitions and facts needed for our results. Throughout the paper X will denote a metric space with metric d.

A function $f: T \rightarrow X$ on a nonempty set $T \subset \mathbb{R}$ is said to be of bounded variation if its total Jordan variation $V(f, T)$ given by

$$
V(f, T) \equiv V_{d}(f, T)=\sup _{\pi} \sum_{i=1}^{m} d\left(f\left(t_{i}\right), f\left(t_{i-1}\right)\right) \quad(V(f, \emptyset)=0)
$$

is finite, the supremum being taken over all partitions $\pi=\left\{t_{i}\right\}_{i=0}^{m}$ of the set T, i.e., $m \in \mathbb{N}$ and $\left\{t_{i}\right\}_{i=0}^{m} \subset T$ such that $t_{i-1} \leqslant t_{i}$ for all $i \in\{1, \ldots, m\}$. The two well-known properties of the variation V (e.g., [5]) are the additivity in the second argument: $V(f, T)=V(f,(-\infty, t] \cap T)+$ $V(f,[t, \infty) \cap T)$ for all $t \in T$, and the sequential lower semicontinuity in the first argument: if a sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ mapping T into X converges pointwise on T to a function $f: T \rightarrow X$ (i.e., $\lim _{n \rightarrow \infty} d\left(f_{n}(t), f(t)\right)=0$ for all $\left.t \in T\right)$, then $V(f, T) \leqslant \liminf _{n \rightarrow \infty} V\left(f_{n}, T\right)$.

Given two nonempty sets $F, G \subset X$, the Hausdorff excess of F over G is defined by (see, e.g., [2, Chapter II]):

$$
\mathrm{e}(F, G) \equiv \mathrm{e}_{d}(F, G)=\sup _{x \in F} \operatorname{dist}(x, G), \quad \text { where } \operatorname{dist}(x, G)=\inf _{y \in G} d(x, y)
$$

The following properties of the excess function $\mathrm{e}(\cdot, \cdot)$ are well known: if F, G and H are nonempty subsets of X, then (i) $\mathrm{e}(F, G)=0$ if and only if $F \subset \bar{G}$ where \bar{G} is the closure of G in X; (ii) $\mathrm{e}(F, G) \leqslant \mathrm{e}(F, H)+\mathrm{e}(H, G)$; (iii) the value $\mathrm{e}(F, G)$ is finite if F and G are bounded and, in particular, closed and bounded, or compact.

Another, more intuitive, definition of $\mathrm{e}(F, G)$ can be given as follows. If $B_{\varepsilon}(x)=\{y \in X$: $d(y, x)<\varepsilon\}$ is the open ball of radius $\varepsilon>0$ centered at $x \in X$ and $\mathcal{O}_{\varepsilon}(G)=\{x \in X: \operatorname{dist}(x, G)<$ $\varepsilon\}=\bigcup_{x \in G} B_{\varepsilon}(x)$ is the open ε-neighbourhood of G, then $\mathrm{e}(F, G)=\inf \left\{\varepsilon>0: F \subset \mathcal{O}_{\varepsilon}(G)\right\}$.

The Hausdorff distance between nonempty sets F and G from X is defined as follows (e.g., [2, Chapter II]):

$$
D(F, G)=\max \{\mathrm{e}(F, G), \mathrm{e}(G, F)\}=\inf \left\{\varepsilon>0: F \subset \mathcal{O}_{\varepsilon}(G) \text { and } G \subset \mathcal{O}_{\varepsilon}(F)\right\}
$$

The function $D(\cdot, \cdot)$ is a metric, called the Hausdorff metric, on the family of all nonempty closed bounded subsets of X and, in particular, on the family $\mathrm{c}(X)$ of all nonempty compact subsets of X.

By a multifunction from T into X we mean a rule F assigning to each point t from T a nonempty subset $F(t) \subset X$. We will mostly be interested in multifunctions of the form $F: T \rightarrow$ $\mathrm{c}(X)$. Such a multifunction is said to be of bounded variation (with respect to D) if its total Jordan variation is finite:

$$
V_{D}(F, T)=\sup _{\pi} \sum_{i=1}^{m} D\left(F\left(t_{i}\right), F\left(t_{i-1}\right)\right)<\infty .
$$

A (single-valued) function $f: T \rightarrow X$ is said to be a selection of F on T provided $f(t) \in F(t)$ for all $t \in T$.

The following theorem on the existence of selections of bounded variation is given in [6, Theorem 5.1] (the previous special cases of this theorem are contained in [1,4,5,10,11]):

Theorem A. If $F: T \rightarrow \mathrm{c}(X), V_{D}(F, T)<\infty, t_{0} \in T$ and $x_{0} \in F\left(t_{0}\right)$, then there exists a selection f of F of bounded variation on T such that $f\left(t_{0}\right)=x_{0}$ and $V(f, T) \leqslant V_{D}(F, T)$. Moreover, if F is continuous with respect to D, then in addition a selection f of F may be chosen to be continuous on T.

The aim of this paper is to remove the assumption $V_{D}(F, T)<\infty$ from Theorem A and replace it by a weaker one, $V_{\mathrm{e}}(F, T)<\infty$ (for more precise condition see below), which, as we will show, still preserves the existence of selections of F of bounded variation. In order to achieve this, we introduce the following definition.

The excess variation to the right $V_{+}(F, T)$ of a multifunction $F: T \rightarrow \mathrm{c}(X)$ is

$$
\begin{equation*}
V_{+}(F, T)=\sup _{\pi} \sum_{i=1}^{m} \mathrm{e}\left(F\left(t_{i-1}\right), F\left(t_{i}\right)\right) \quad\left(V_{+}(F, \emptyset)=0\right) \tag{1}
\end{equation*}
$$

where the supremum is taken over all partitions $\pi=\left\{t_{i}\right\}_{i=0}^{m}$ of T. Analogously, the excess variation to the left of F is given by

$$
V_{-}(F, T)=\sup _{\pi} \sum_{i=1}^{m} \mathrm{e}\left(F\left(t_{i}\right), F\left(t_{i-1}\right)\right) \quad\left(V_{-}(F, \emptyset)=0\right)
$$

Note that both V_{+}and V_{-}are generalizations of the ordinary variation $V=V_{d}$ for single-valued functions f. Also, the value $V_{D}(F, T)$ is finite if and only if both values $V_{+}(F, T)$ and $V_{-}(F, T)$ are finite.

To simplify the matters and make the ideas involved more clear in the rest of the paper (except Theorem B on p. 878 and Theorem C on p. 883) we assume that $T=[a, b\rangle$, with $a \in \mathbb{R}$ and $a<b$, is either the closed interval $[a, b]$ with $b \in \mathbb{R}$ or the half-closed interval $[a, b)$ with $b \in \mathbb{R} \cup\{\infty\}$. A similar convention applies to the interval $T=\langle a, b]$. In their full generality our results are valid for any nonempty set $T \subset \mathbb{R}$ with $\inf T \in T$ or $\sup T \in T$ corresponding to $[a, b\rangle$ or $\langle a, b]$ under consideration, respectively (cf. [6, Section 5]).

Our main result, an extension of Theorem A to be proved in Section 2, is as follows.
Theorem 1. Suppose that $F: T \rightarrow \mathrm{c}(X), t_{0} \in T$ and $x_{0} \in F\left(t_{0}\right)$. We have:
(a) if $T=[a, b\rangle$ and $V_{+}(F, T)<\infty$, then there exists a selection of bounded variation f of F on T such that $f\left(t_{0}\right)=x_{0}$,

$$
\begin{aligned}
& V\left(f,\left[a, t_{0}\right)\right) \leqslant V_{+}\left(F,\left[a, t_{0}\right)\right), \quad V\left(f,\left[t_{0}, b\right\rangle\right) \leqslant V_{+}\left(F,\left[t_{0}, b\right\rangle\right), \quad \text { and } \\
& V(f,[a, b\rangle)-\lim _{s \rightarrow t_{0}-0} d\left(f(s), x_{0}\right) \leqslant V_{+}\left(F,\left[a, t_{0}\right)\right)+V_{+}\left(F,\left[t_{0}, b\right\rangle\right) \leqslant V_{+}(F,[a, b\rangle) ;
\end{aligned}
$$

(b) if $T=\langle a, b]$ and $V_{-}(F, T)<\infty$, then there exists a selection of bounded variation f of F on T such that $f\left(t_{0}\right)=x_{0}$,

$$
\begin{aligned}
& V\left(f,\left\langle a, t_{0}\right]\right) \leqslant V_{-}\left(F,\left\langle a, t_{0}\right]\right), \quad V\left(f,\left(t_{0}, b\right]\right) \leqslant V_{-}\left(F,\left(t_{0}, b\right]\right), \quad \text { and } \\
& V(f,\langle a, b])-\lim _{s \rightarrow t_{0}+0} d\left(f(s), x_{0}\right) \leqslant V_{-}\left(F,\left\langle a, t_{0}\right]\right)+V_{-}\left(F,\left(t_{0}, b\right]\right) \leqslant V_{-}(F,\langle a, b]) .
\end{aligned}
$$

The case when the multifunction F additionally admits continuous selections of bounded variation is treated in Section 4 (Theorem 3).

In order to see how Theorem 1 implies Theorem A, assume that $T=\langle a, b\rangle$ is an interval, which is either open, closed, half-closed, bounded or not, $t_{0} \in T, V_{-}\left(F,\left\langle a, t_{0}\right]\right)$ and $V_{+}\left(F,\left[t_{0}, b\right\rangle\right)$ are finite (this is the case when $\left.V_{D}(F, T)<\infty\right)$ and $x_{0} \in F\left(t_{0}\right)$. Applying Theorem 1 we find a selection f_{-}of F on $\left\langle a, t_{0}\right]$ such that $f_{-}\left(t_{0}\right)=x_{0}$ and $V\left(f_{-},\left\langle a, t_{0}\right]\right) \leqslant$ $V_{-}\left(F,\left\langle a, t_{0}\right]\right)$ and a selection f_{+}of F on $\left[t_{0}, b\right\rangle$ such that $f_{+}\left(t_{0}\right)=x_{0}$ and $V\left(f_{+},\left[t_{0}, b\right\rangle\right) \leqslant$ $V_{+}\left(F,\left[t_{0}, b\right\rangle\right)$. Defining $f:\langle a, b\rangle \rightarrow X$ by $f(t)=f_{-}(t)$ if $t \in\left\langle a, t_{0}\right]$ and $f(t)=f_{+}(t)$ if $t \in\left[t_{0}, b\right\rangle$ we obtain a desired selection of F satisfying $f\left(t_{0}\right)=x_{0}$ and, by virtue of the additivity property of V in the second variable,

$$
V(f,\langle a, b\rangle)=V\left(f_{-},\left\langle a, t_{0}\right]\right)+V\left(f_{+},\left[t_{0}, b\right\rangle\right) \leqslant V_{-}\left(F,\left\langle a, t_{0}\right]\right)+V_{+}\left(F,\left[t_{0}, b\right\rangle\right)
$$

which is estimated by $V_{D}\left(F,\left\langle a, t_{0}\right]\right)+V_{D}\left(F,\left[t_{0}, b\right\rangle\right)=V_{D}(F,\langle a, b\rangle)$ if the last quantity is finite. These arguments also apply to obtain Lipschitz and continuous selections of bounded variation of F on $\langle a, b\rangle$ (see Section 4).

For more motivation, historical comments and possible applications of the results of this paper we refer to [1,4-6,10].

The paper is organized as follows. In Section 2 we study properties of the excess variation V_{+} and prove Theorem 1. In Section 3 we present an example of a multifunction, for which Theorem 1 is applicable while Theorem A is not, and show that the conclusions of Theorem 1 are sharp. Section 4 is devoted to the existence and non-existence of Lipschitz and continuous selections of bounded variation.

2. Proof of the main result

Since assertions (a) and (b) in Theorem 1 are completely similar, we concentrate on (a). In the proof of this theorem we will need Lemmas 1 and 2 and Theorem B presented below in this section.

In the next two lemmas we gather several properties of the excess variation V_{+}(the properties of the excess variation V_{-}are similar).

Lemma 1. Let $F:[a, b\rangle \rightarrow \mathrm{c}(X)$ and $V_{+}(F,[a, b\rangle)<\infty$. We have:
(a) $V_{+}(F,[a, b\rangle)=0$ if and only if $F(s) \subset F(t)$ for all $s, t \in[a, b\rangle, s \leqslant t$.
(b) If $s, t \in[a, b\rangle, s \leqslant t$, then $V_{+}(F,[a, s])+V_{+}(F,[s, t])=V_{+}(F,[a, t])$.
(c) $\lim _{s \rightarrow t-0} V_{+}(F,[a, s])=V_{+}(F,[a, t))$ for each $t \in(a, b\rangle$.

Proof. (a) This is a consequence of the definition of V_{+}and property (i) of the excess function e (\cdot, \cdot) from Section 1 on closed or compact subsets of X.
(b) First, note that if a new point is inserted into a given partition $\pi=\left\{t_{i}\right\}_{i=0}^{m}$ of T, the sum under the supremum sign in (1) will not decrease: in fact, suppose $s \in T$ and $t_{k-1}<s<t_{k}$ for some $k \in\{1, \ldots, m\}$, then applying property (ii) of $\mathrm{e}(\cdot, \cdot)$ from Section 1, we get

$$
\begin{equation*}
\mathrm{e}\left(F\left(t_{k-1}\right), F\left(t_{k}\right)\right) \leqslant \mathrm{e}\left(F\left(t_{k-1}\right), F(s)\right)+\mathrm{e}\left(F(s), F\left(t_{k}\right)\right) \tag{2}
\end{equation*}
$$

and the assertion for the sums follows. This observation implies that in order to calculate the value $V_{+}(F, T)$ from (1), instead of all partitions of T we may consider only those that contain an a priori fixed finite number of points from T.

So, let $a=t_{0}<t_{1}<\cdots<t_{m-1}<t_{m}=s$ be a partition of [a, s] and $s=t_{m}<t_{m+1}<\cdots<$ $t_{n-1}<t_{n}=t$ be a partition of $[s, t]$. We have:

$$
\sum_{i=1}^{m} \mathrm{e}\left(F\left(t_{i-1}\right), F\left(t_{i}\right)\right)+\sum_{j=m+1}^{n} \mathrm{e}\left(F\left(t_{j-1}\right), F\left(t_{j}\right)\right) \leqslant V_{+}(F,[a, t])
$$

Taking the supremum over all partitions of $[a, s]$ and $[s, t]$, we arrive at the inequality $V_{+}(F,[a, s])+V_{+}(F,[s, t]) \leqslant V_{+}(F,[a, t])$.

Now, let $a=t_{0}<t_{1}<\cdots<t_{m-1}<t_{m}=b$ be a partition of [a, t] and assume that $t_{k-1} \leqslant$ $s \leqslant t_{k}$ for some $k \in\{1, \ldots, m\}$. By virtue of (2), we find

$$
\sum_{i=1}^{m} \mathrm{e}\left(F\left(t_{i-1}\right), F\left(t_{i}\right)\right) \leqslant V_{+}(F,[a, s])+V_{+}(F,[s, t])
$$

and it remains to take the supremum over all partitions of $[a, t]$.
(c) The definition of V_{+}implies that, given $\varepsilon>0$, there exists a partition $a=\tau_{0}<\tau_{1}<\cdots<$ $\tau_{m}<t$ of $[a, t)$ (depending on ε) such that

$$
V_{+}(F,[a, t))-\varepsilon \leqslant \sum_{i=1}^{m} \mathrm{e}\left(F\left(\tau_{i-1}\right), F\left(\tau_{i}\right)\right) \leqslant V_{+}\left(F,\left[a, \tau_{m}\right]\right) .
$$

It follows that for any $\tau_{m} \leqslant s<t$ we get:

$$
V_{+}(F,[a, t))-\varepsilon \leqslant V_{+}\left(F,\left[a, \tau_{m}\right]\right) \leqslant V_{+}(F,[a, s]) \leqslant V_{+}(F,[a, t))
$$

which proves (c) and completes the proof of our lemma.

Lemma 2. Let $F:[a, b\rangle \rightarrow \mathrm{c}(X)$ and $V_{+}(F,[a, b\rangle)<\infty$. Define the V_{+}-variation function $v:[a, b\rangle \rightarrow[0, \infty)$ by $v(t)=V_{+}(F,[a, t])$ for $t \in[a, b\rangle$. Then

$$
\begin{equation*}
\lim _{s \rightarrow t-0} \mathrm{e}(F(s), F(t))=v(t)-v(t-0) \quad \text { for all } t \in(a, b\rangle \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{s \rightarrow t+0} \mathrm{e}(F(t), F(s))=v(t+0)-v(t) \quad \text { for all } t \in[a, b) \tag{4}
\end{equation*}
$$

where $v(t-0)$ and $v(t+0)$ are the left and right limits of v at t, respectively.
Proof. After the property of Lemma 1(b) has been proved, this lemma might be considered as a consequence of [5, Lemma 4.2]. However, in that reference functions under consideration were assumed to take their values in a metric space where the distance function is symmetric. In our case the excess function $\mathrm{e}(\cdot, \cdot)$ is not symmetric (for $\mathrm{e}(F, G) \neq \mathrm{e}(G, F)$ in general), and so, we have to take care of that. For the reader's convenience we reproduce the proof from the above reference in a somewhat shortened form.

By virtue of Lemma $1(\mathrm{~b})$, the function v is nondecreasing and, hence, regulated, i.e., it has the left limit $v(t-0)$ at all points $t \in(a, b\rangle$ and the right limit $v(t+0)$ at all points $t \in[a, b)$. The existence of the limits at the left-hand sides of (3) and (4) can be proved in exactly the same way as in [5, Lemma 4.1] by using the Cauchy criterion if we take into account property (ii) of the excess function from Section 1.

Proof of (3). By Lemma 1(b), for $t \in(a, b\rangle$ and $s \in[a, t)$ we have:

$$
\mathrm{e}(F(s), F(t)) \leqslant V_{+}(F,[s, t])=v(t)-v(s)
$$

and so, as $s \rightarrow t-0, \lim _{s \rightarrow t-0} \mathrm{e}(F(s), F(t)) \leqslant v(t)-v(t-0)$. To prove the reverse inequality, by the definition of $V_{+}(F,[a, t])$ for any $\varepsilon>0$ we choose a partition $\left\{t_{i}\right\}_{i=0}^{m} \cup\{t\}$ of $[a, t]$ with $t_{m}<t$ such that

$$
V_{+}(F,[a, t]) \leqslant \sum_{i=1}^{m} \mathrm{e}\left(F\left(t_{i-1}\right), F\left(t_{i}\right)\right)+\mathrm{e}\left(F\left(t_{m}\right), F(t)\right)+\varepsilon .
$$

If $s \in\left[t_{m}, t\right)$, noting that $\mathrm{e}\left(F\left(t_{m}\right), F(t)\right) \leqslant \mathrm{e}\left(F\left(t_{m}\right), F(s)\right)+\mathrm{e}(F(s), F(t))$, we get:

$$
V_{+}(F,[a, t]) \leqslant V_{+}(F,[a, s])+\mathrm{e}(F(s), F(t))+\varepsilon,
$$

which implies $v(t)-v(s) \leqslant \mathrm{e}(F(s), F(t))+\varepsilon$, and it remains to pass to the limit as $s \rightarrow t-0$ and take into account the arbitrariness of $\varepsilon>0$.

Proof of (4). Given $t \in[a, b)$ and $s \in(t, b)$, we have:

$$
\mathrm{e}(F(t), F(s)) \leqslant V_{+}(F,[t, s])=v(s)-v(t)
$$

and so, $\lim _{s \rightarrow t+0} \mathrm{e}(F(t), F(s)) \leqslant v(t+0)-v(t)$. The reverse inequality will follow if we show that for any $\varepsilon>0$ there exists $t_{0}=t_{0}(\varepsilon) \in(t, b)$ such that

$$
\begin{equation*}
v(s)-v(t) \leqslant \mathrm{e}(F(t), F(s))+\varepsilon \quad \text { for all } t<s \leqslant t_{0}, \tag{5}
\end{equation*}
$$

then let s go to $t+0$ and note that $\varepsilon>0$ is arbitrary. To prove (5), we note that $V_{+}(F,[t, b\rangle) \leqslant$ $V_{+}(F,[a, b\rangle)<\infty$, and so, there exists a partition $\{t\} \cup\left\{t_{i}\right\}_{i=0}^{m}$ (depending on ε) of $[t, b\rangle$ with $t<t_{0}$ such that

$$
V_{+}\left(F,\left[t, t_{m}\right]\right) \leqslant V_{+}(F,[t, b\rangle) \leqslant \mathrm{e}\left(F(t), F\left(t_{0}\right)\right)+\sum_{i=1}^{m} \mathrm{e}\left(F\left(t_{i-1}\right), F\left(t_{i}\right)\right)+\varepsilon
$$

If $t<s \leqslant t_{0}$, we have $\mathrm{e}\left(F(t), F\left(t_{0}\right)\right) \leqslant \mathrm{e}(F(t), F(s))+\mathrm{e}\left(F(s), F\left(t_{0}\right)\right)$, and so,

$$
V_{+}\left(F,\left[t, t_{m}\right]\right) \leqslant \mathrm{e}(F(t), F(s))+V_{+}\left(F,\left[s, t_{m}\right]\right)+\varepsilon
$$

implying, by Lemma 1(b),

$$
V_{+}(F,[a, s])-V_{+}(F,[a, t])=V_{+}\left(F,\left[t, t_{m}\right]\right)-V_{+}\left(F,\left[s, t_{m}\right]\right) \leqslant \mathrm{e}(F(t), F(s))+\varepsilon,
$$

which is precisely (5) according to the definition of v.
In order to formulate Theorem B, we recall the notion of the modulus of variation of a function $f: T \rightarrow X$ due to Chanturiya [3] (see also [9, Section 11.3]): this is the sequence of the form $\{\nu(k, f, T)\}_{k=1}^{\infty}$ where $v(k, f, T)=\sup \sum_{i=1}^{k} d\left(f\left(b_{i}\right), f\left(a_{i}\right)\right)$ and the supremum is taken over all collections $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$ of $2 k$ numbers from T such that $a_{1} \leqslant b_{1} \leqslant a_{2} \leqslant b_{2} \leqslant \cdots \leqslant$ $a_{k} \leqslant b_{k}$. The following theorem is a pointwise selection principle in terms of the modulus of variation [7, Theorem 1]:

Theorem B. Suppose that a sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ mapping T into X is such that (a) $\lim _{k \rightarrow \infty}\left(\limsup _{n \rightarrow \infty} v\left(k, f_{n}, T\right) / k\right)=0$, and (b) the closure of the set $\left\{f_{n}(t)\right\}_{n=1}^{\infty}$ in X is compact for each $t \in T$. Then there exists a subsequence of $\left\{f_{n}\right\}_{n=1}^{\infty}$, which converges pointwise on T to a function $f: T \rightarrow X$ satisfying $\lim _{k \rightarrow \infty} \nu(k, f, T) / k=0$.

Now we are in a position to prove our main result. In the proof we employ several ideas from $[1,5]$ and [6, Section 5].

Proof of Theorem 1(a). For the sake of clarity we divide the proof into four steps. In the first two steps we prove the theorem for $T=[a, b]$ and $t_{0}=a$, in the third step-for $T=[a, b)$ and $t_{0}=a$, and in the fourth step-for $T=[a, b\rangle$ and $t_{0} \in[a, b\rangle$ with $t_{0}>a$.

Step 1. Suppose that $T=[a, b]$ and $t_{0}=a$, so that $x_{0} \in F(a)$ by the assumption. Since the V_{+}-variation function $v:[a, b] \rightarrow[0, \infty)$ from Lemma 2 is regulated, the set of its discontinuities is at most countable. Putting

$$
T_{v}=\left\{t \in(a, b]: v(t-0) \equiv \lim _{s \rightarrow t-0} v(s)=v(t)\right\}
$$

and

$$
T_{F}=\left\{t \in(a, b]: \lim _{s \rightarrow t-0} \mathrm{e}(F(s), F(t))=0\right\}
$$

we have, by virtue of Lemma $2, T_{F}=T_{v}$, and so, the set $[a, b] \backslash T_{F}=[a, b] \backslash T_{v}$ is at most countable. We set

$$
S=\{a, b\} \cup(\mathbb{Q} \cap[a, b]) \cup\left([a, b] \backslash T_{F}\right),
$$

where \mathbb{Q} is the set of all rational numbers, and note that S is dense in $[a, b]$ and at most countable. We enumerate the points in S arbitrarily and, with no loss of generality, suppose that S is countable, say, $S=\left\{t_{i}\right\}_{i=0}^{\infty}$ with $t_{0}=a$. Then for any $n \in \mathbb{N}$ the set $\pi_{n}=\left\{t_{i}\right\}_{i=0}^{n-1} \cup\{b\}$ is a partition of [$a, b]$. Ordering the points in π_{n} in strictly ascending order and denoting them by $\pi_{n}=\left\{t_{i}^{n}\right\}_{i=0}^{n}$, we find

$$
\begin{align*}
& a=t_{0}^{n}<t_{1}^{n}<\cdots<t_{n-1}^{n}<t_{n}^{n}=b, \quad \text { and } \tag{6}\\
& \forall t \in S \exists n_{0}=n_{0}(t) \in \mathbb{N} \quad \text { such that } \quad t \in \pi_{n} \quad \text { for all } n \geqslant n_{0} . \tag{7}
\end{align*}
$$

We now construct an approximating sequence for the desired selection. Given $n \in \mathbb{N}$, we first define elements $x_{i}^{n} \in F\left(t_{i}^{n}\right)$ for $i \in\{0,1, \ldots, n\}$ inductively as follows:
(i) we set $x_{0}^{n}=x_{0}$, and
(ii) if $i \in\{1, \ldots, n\}$ and $x_{i-1}^{n} \in F\left(t_{i-1}^{n}\right)$ is already chosen, we pick $x_{i}^{n} \in F\left(t_{i}^{n}\right)$ such that $d\left(x_{i-1}^{n}, x_{i}^{n}\right)=\operatorname{dist}\left(x_{i-1}^{n}, F\left(t_{i}^{n}\right)\right)$.

For each $n \in \mathbb{N}$ we define a function $f_{n}:[a, b] \rightarrow X$ by setting

$$
f_{n}(t)= \begin{cases}x_{i}^{n} & \text { if } t=t_{i}^{n} \text { and } i \in\{0,1, \ldots, n\}, \tag{8}\\ x_{i-1}^{n} & \text { if } t \in\left(t_{i-1}^{n}, t_{i}^{n}\right) \text { and } i \in\{1, \ldots, n\}\end{cases}
$$

Observe that $f_{n}(a)=f_{n}\left(t_{0}^{n}\right)=x_{0}^{n}=x_{0}$ for all $n \in \mathbb{N}$.
Step 2. Now we show that the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ satisfies the assumptions of Theorem B. Condition (a) in that theorem is a consequence of the additivity of V, definitions (8) and (ii), the excess and V_{+}:

$$
v\left(k, f_{n},[a, b]\right) \leqslant V\left(f_{n},[a, b]\right)=\sum_{i=1}^{n} V\left(f_{n},\left[t_{i-1}^{n}, t_{i}^{n}\right]\right)=\sum_{i=1}^{n} d\left(x_{i-1}^{n}, x_{i}^{n}\right)
$$

$$
\begin{align*}
& =\sum_{i=1}^{n} \operatorname{dist}\left(x_{i-1}^{n}, F\left(t_{i}^{n}\right)\right) \leqslant \sum_{i=1}^{n} \mathrm{e}\left(F\left(t_{i-1}^{n}\right), F\left(t_{i}^{n}\right)\right) \\
& \leqslant V_{+}(F,[a, b]) \quad \text { for all } k, n \in \mathbb{N}, \tag{9}
\end{align*}
$$

which implies

$$
\limsup _{n \rightarrow \infty} v\left(k, f_{n},[a, b]\right) \leqslant V_{+}(F,[a, b]) \quad \text { for all } k \in \mathbb{N} .
$$

Let us verify condition (b) of Theorem B. We consider two possibilities: (I) $t \in S$, and (II) $t \in$ $[a, b] \backslash S$.
(I) Suppose that $t \in S$. By virtue of (7), there exists $n_{0}=n_{0}(t) \in \mathbb{N}$ such that $t \in \pi_{n}$ for all $n \geqslant n_{0}$, and so, for each $n \geqslant n_{0}$ there exists $i=i(n, t) \in\{0,1, \ldots, n\}$ such that $t=t_{i}^{n}$. It follows from (8), (i) and (ii) that

$$
\begin{equation*}
f_{n}(t)=f_{n}\left(t_{i}^{n}\right)=x_{i}^{n} \in F\left(t_{i}^{n}\right)=F(t) \quad \text { for all } n \geqslant n_{0}, \tag{10}
\end{equation*}
$$

and it suffices to take into account the compactness of $F(t)$.
(II) Let $t \in[a, b] \backslash S$. Then $t \in(a, b) \cap T_{F}$ is irrational and, in particular, by the definition of T_{F} we have:

$$
\begin{equation*}
\mathrm{e}(F(s), F(t)) \rightarrow 0 \quad \text { as }(a, b) \ni s \rightarrow t-0 \tag{11}
\end{equation*}
$$

Due to the density of S in $[a, b]$, there exists a sequence of points $\left\{s_{k}\right\}_{k=1}^{\infty} \subset S \cap(a, t)$ such that $s_{k} \rightarrow t$ as $k \rightarrow \infty$. Since $s_{k} \in S$ for each $k \in \mathbb{N}$, we can find, by (7), a number $n(k) \in \mathbb{N}$ (depending also on t) such that $s_{k} \in \pi_{n(k)}$ and, therefore, $s_{k}=t_{j(k)}^{n(k)}$ for some $j(k) \in\{0,1, \ldots, n(k)-1\}$. Again, thanks to property (7), we may assume with no loss of generality that the sequence $\{n(k)\}_{k=1}^{\infty}$ is strictly increasing. Since $s_{k}<t$, it follows from (6) that there exists a unique number $i(k) \in\{j(k), \ldots, n(k)-1\}$ such that

$$
\begin{equation*}
s_{k}=t_{j(k)}^{n(k)} \leqslant t_{i(k)}^{n(k)}<t<t_{i(k)+1}^{n(k)} \quad \text { for all } k \in \mathbb{N} . \tag{12}
\end{equation*}
$$

Now this and the property that $s_{k} \rightarrow t$ as $k \rightarrow \infty$ give:

$$
\begin{equation*}
t_{i(k)}^{n(k)} \rightarrow t \quad \text { as } k \rightarrow \infty \tag{13}
\end{equation*}
$$

By the second line of definition (8) and (12), we have

$$
f_{n(k)}(t)=x_{i(k)}^{n(k)} \in F\left(t_{i(k)}^{n(k)}\right) \quad \text { for all } k \in \mathbb{N} .
$$

For each $k \in \mathbb{N}$ pick an element $x_{t}^{k} \in F(t)$ such that

$$
d\left(x_{i(k)}^{n(k)}, x_{t}^{k}\right)=\operatorname{dist}\left(x_{i(k)}^{n(k)}, F(t)\right)
$$

Then (11) and (13) imply

$$
d\left(f_{n(k)}(t), x_{t}^{k}\right) \leqslant \mathrm{e}\left(F\left(t_{i(k)}^{n(k)}\right), F(t)\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Since the set $F(t)$ is compact and $\left\{x_{t}^{k}\right\}_{k=1}^{\infty} \subset F(t)$, there exists a subsequence of $\left\{x_{t}^{k}\right\}_{k=1}^{\infty}$, again denoted by $\left\{x_{t}^{k}\right\}_{k=1}^{\infty}$, and an element $x_{t} \in F(t)$ such that $d\left(x_{t}^{k}, x_{t}\right) \rightarrow 0$ as $k \rightarrow \infty$, and so,

$$
\begin{equation*}
d\left(f_{n(k)}(t), x_{t}\right) \leqslant d\left(f_{n(k)}(t), x_{t}^{k}\right)+d\left(x_{t}^{k}, x_{t}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty . \tag{14}
\end{equation*}
$$

This proves that the closure of the sequence $\left\{f_{n}(t)\right\}_{n=1}^{\infty}$ in X is compact for all $t \in[a, b]$.
By Theorem B, there exists a subsequence of $\left\{f_{n}\right\}_{n=1}^{\infty}$, which we again denote by $\left\{f_{n(k)}\right\}_{k=1}^{\infty}$, and a function $f:[a, b] \rightarrow X$ such that $d\left(f_{n(k)}(t), f(t)\right) \rightarrow 0$ as $k \rightarrow \infty$ for all $t \in[a, b]$.

Clearly, $f(a)=x_{0}$. The inclusion $f(t) \in F(t)$ for all $t \in[a, b]$ is a consequence of the closedness of $F(t)$, (10) and (14). Finally, the lower semicontinuity of the Jordan variation V and inequality (9) ensure that

$$
\begin{equation*}
V(f,[a, b]) \leqslant \liminf _{k \rightarrow \infty} V\left(f_{n(k)},[a, b]\right) \leqslant V_{+}(F,[a, b]) . \tag{15}
\end{equation*}
$$

Thus, our theorem is proved for $T=[a, b]$ and $t_{0}=a$.
Step 3. Assume now that $T=[a, b)$ with $b \in \mathbb{R} \cup\{\infty\}$ and $t_{0}=a$. Choose an increasing sequence $\left\{t_{n}\right\}_{n=1}^{\infty} \subset[a, b)$ such that $t_{n} \rightarrow b$ as $n \rightarrow \infty$. Since $V_{+}\left(F,\left[a, t_{1}\right]\right) \leqslant V_{+}(F,[a, b))<\infty$, applying steps $1-2$ we get a function $f_{0}:\left[a, t_{1}\right] \rightarrow X$ such that $f_{0}(t) \in F(t)$ for all $t \in\left[a, t_{1}\right]$, $f_{0}(a)=x_{0}$ and $V\left(f_{0},\left[a, t_{1}\right]\right) \leqslant V_{+}\left(F,\left[a, t_{1}\right]\right)$. Inductively, if $n \in \mathbb{N}$ and a selection f_{n-1} of F on $\left[t_{n-1}, t_{n}\right]$ is already chosen, we note that $V_{+}\left(F,\left[t_{n}, t_{n+1}\right]\right) \leqslant V_{+}(F,[a, b))<\infty$ and apply again steps 1-2 to obtain a selection f_{n} of F on $\left[t_{n}, t_{n+1}\right]$ such that $f_{n}\left(t_{n}\right)=f_{n-1}\left(t_{n}\right)$ and $V\left(f_{n},\left[t_{n}, t_{n+1}\right]\right) \leqslant V_{+}\left(F,\left[t_{n}, t_{n+1}\right]\right)$. Given $t \in[a, b)$, so that $t \in\left[t_{n-1}, t_{n}\right]$ for some $n \in \mathbb{N}$, we set $f(t)=f_{n-1}(t)$. Then the function $f:[a, b) \rightarrow X$ is a selection of F on $[a, b), f\left(t_{0}\right)=$ $f_{0}(a)=x_{0}$ and, by virtue of Lemma 1(b) and (c) we have:

$$
\begin{aligned}
V(f,[a, b)) & =\lim _{k \rightarrow \infty} V\left(f,\left[a, t_{k}\right]\right)=\lim _{k \rightarrow \infty} \sum_{n=1}^{k} V\left(f_{n-1},\left[t_{n-1}, t_{n}\right]\right) \\
& \leqslant \lim _{k \rightarrow \infty} \sum_{n=1}^{k} V_{+}\left(F,\left[t_{n-1}, t_{n}\right]\right)=\lim _{k \rightarrow \infty} V_{+}\left(F,\left[a, t_{k}\right]\right)=V_{+}(F,[a, b)) .
\end{aligned}
$$

Step 4. Now suppose that $T=[a, b\rangle$ and $t_{0} \in(a, b\rangle$. Noting that $V_{+}\left(F,\left[a, t_{0}\right)\right)$ and $V_{+}\left(F,\left[t_{0}, b\right\rangle\right)$ do not exceed $V_{+}(F,[a, b\rangle)$ and $x_{0} \in F\left(t_{0}\right)$, we apply steps $1-3$ twice: to F on $\left[t_{0}, b\right\rangle$ in order to find a selection f_{1} of F on $\left[t_{0}, b\right\rangle$ such that $f_{1}\left(t_{0}\right)=x_{0}$ and $V\left(f_{1},\left[t_{0}, b\right\rangle\right) \leqslant$ $V_{+}\left(F,\left[t_{0}, b\right\rangle\right)$, and to F on $\left[a, t_{0}\right)$ with arbitrary $y_{0} \in F(a)$ to obtain a selection f_{2} of F on $\left[a, t_{0}\right)$ such that $f_{2}(a)=y_{0}$ and $V\left(f_{2},\left[a, t_{0}\right)\right) \leqslant V_{+}\left(F,\left[a, t_{0}\right)\right)$. We set $f(t)=f_{2}(t)$ for $t \in\left[a, t_{0}\right)$ and $f(t)=f_{1}(t)$ if $t \in\left[t_{0}, b\right\rangle$. Clearly, f is a selection of F of bounded variation on $[a, b\rangle$ with the desired properties and such that (cf. the jump relations for functions of bounded variation in [5, Theorem 4.6(a)])

$$
\begin{aligned}
V(f,[a, b\rangle) & =V\left(f,\left[a, t_{0}\right]\right)+V\left(f,\left[t_{0}, b\right\rangle\right) \\
& =V\left(f_{2},\left[a, t_{0}\right)\right)+\lim _{s \rightarrow t_{0}-0} d\left(f(s), f\left(t_{0}\right)\right)+V\left(f_{1},\left[t_{0}, b\right\rangle\right) \\
& \leqslant V_{+}\left(F,\left[a, t_{0}\right)\right)+\lim _{s \rightarrow t_{0}-0} d\left(f(s), x_{0}\right)+V_{+}\left(F,\left[t_{0}, b\right\rangle\right) \\
& \leqslant V_{+}(F,[a, b\rangle)+\lim _{s \rightarrow t_{0}-0} d\left(f(s), x_{0}\right)<\infty,
\end{aligned}
$$

where the existence of the limit follows from the fact that $f=f_{2}$ on $\left[a, t_{0}\right)$ is of bounded variation and the Cauchy criterion: if $a \leqslant s_{1} \leqslant s_{2}<t_{0}$, we have:

$$
\begin{aligned}
& \left|d\left(f_{2}\left(s_{1}\right), x_{0}\right)-d\left(f_{2}\left(s_{2}\right), x_{0}\right)\right| \\
& \quad \leqslant d\left(f_{2}\left(s_{1}\right), f_{2}\left(s_{2}\right)\right) \leqslant V\left(f_{2},\left[s_{1}, s_{2}\right]\right) \\
& \quad=V\left(f_{2},\left[a, s_{2}\right]\right)-V\left(f_{2},\left[a, s_{1}\right]\right) \rightarrow V\left(f_{2},\left[a, t_{0}\right)\right)-V\left(f_{2},\left[a, t_{0}\right)\right)=0
\end{aligned}
$$

as $s_{1}, s_{2} \rightarrow t_{0}-0$.
This completes the proof of Theorem 1.

3. Examples

Example 3.1. In this section we present an example of a multifunction F such that $V_{+}(F,[a, b])$ is finite, and so Theorem 1 applies, giving selections of bounded variation of F, whereas $V_{-}(F,[a, b])$ is infinite, and Theorem A is thus inapplicable.

Let $X=\ell^{1}(\mathbb{N})$ be the Banach space of all summable sequences $x: \mathbb{N} \rightarrow \mathbb{R}$, written as $x=$ $\left\{x_{i}\right\}_{i=1}^{\infty}$, equipped with the norm $\|x\|=\sum_{i=1}^{\infty}\left|x_{i}\right|$, and let the unit vector $u_{n}=\left\{x_{i}\right\}_{i=1}^{\infty}$ in X be defined as usual by $x_{i}=0$ if $i \neq n$ and $x_{n}=1$. Given $k \in \mathbb{N} \cup\{\infty\}$, we set $F_{k}=\{0\} \cup\left\{c_{n} u_{n}\right\}_{n=1}^{k}$, where $\left\{c_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence of positive numbers such that

$$
\begin{equation*}
c_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \quad \text { and } \quad \sum_{n=1}^{\infty} c_{n}=\infty \tag{16}
\end{equation*}
$$

(e.g., $c_{n}=1 / n$). Clearly, $F_{k} \in \mathrm{c}(X)$ for all $k \in \mathbb{N}$, and the first condition in (16) implies $F_{\infty} \in$ $\mathrm{c}(X)$ as well. We define a multifunction $F:[0,1] \rightarrow \mathrm{c}(X)$ as follows:

$$
F(t)=F_{k} \quad \text { if } \frac{k-1}{k} \leqslant t<\frac{k}{k+1} \text { for } k \in \mathbb{N} \quad \text { and } \quad F(1)=F_{\infty} .
$$

Since $F_{k} \subset F_{k+1} \subset F_{\infty}$ for all $k \in \mathbb{N}$, then condition $0 \leqslant s \leqslant t \leqslant 1$ implies $F(s) \subset F(t)$, and so, by Lemma $1\left(\right.$ a), $V_{+}(F,[0,1])=0$. In order to show that $V_{-}(F,[0,1])=\infty$, we first observe that if $k \in \mathbb{N}$, then

$$
\mathrm{e}\left(F_{k+1}, F_{k}\right)=\sup _{x \in F_{k+1}} \inf _{y \in F_{k}}\|x-y\|=c_{k+1}+\inf _{1 \leqslant n \leqslant k} c_{n}=c_{k+1}+c_{k}
$$

and

$$
\mathrm{e}\left(F_{\infty}, F_{k}\right)=\sup _{n \geqslant k+1}\left(c_{n}+\inf _{1 \leqslant i \leqslant k} c_{i}\right)=\sup _{n \geqslant k+1} c_{n}+\inf _{1 \leqslant i \leqslant k} c_{i}=c_{k+1}+c_{k}
$$

Now for an arbitrary $m \in \mathbb{N}$ and for the partition π_{m} of $[0,1]$ of the form $\pi_{m}=\{(k-1) / k\}_{k=1}^{m} \cup$ $\{1\}$ we have:

$$
\begin{aligned}
V_{-}(F,[0,1]) & \geqslant \sum_{k=1}^{m-1} \mathrm{e}\left(F\left(\frac{k}{k+1}\right), F\left(\frac{k-1}{k}\right)\right)+\mathrm{e}\left(F(1), F\left(\frac{m-1}{m}\right)\right) \\
& =\sum_{k=1}^{m-1} \mathrm{e}\left(F_{k+1}, F_{k}\right)+\mathrm{e}\left(F_{\infty}, F_{m}\right) \\
& =-c_{1}+c_{m+1}+2 \sum_{k=1}^{m} c_{k} \rightarrow \infty \quad \text { as } m \rightarrow \infty .
\end{aligned}
$$

Example 3.2. Multifunction F from Example 3.1 has two constant selections $f(t) \equiv 0$ and $f(t) \equiv c_{1} u_{1}$ guaranteed by Theorem 1 and satisfying initial conditions $f(0)=0$ and $f(0)=$ $c_{1} u_{1}$, respectively, and $V(f,[0,1]) \leqslant V_{+}(F,[0,1])=0$. However, if we assume in Theorem 1 that $x_{0} \in F\left(t_{0}\right)$ with $a<t_{0} \leqslant b$, then condition $V(f,[a, b]) \leqslant V_{+}(F,[a, b])$ may be violated for any selection f of F such that $f\left(t_{0}\right)=x_{0}$. To see this, we assume in the previous example that $t_{0}=1 / 2$ and $x_{0}=c_{2} u_{2}$. Clearly, $x_{0} \in F\left(t_{0}\right)=F_{2}$. If $f:[0,1] \rightarrow X$ is any selection of F such that $f(1 / 2)=c_{2} u_{2}$, then since $f(0) \in F(0)=F_{1}=\left\{0, c_{1} u_{1}\right\}$, we have either $f(0)=0$ or $f(0)=c_{1} u_{1}$, and so,

$$
\begin{equation*}
V(f,[0,1]) \geqslant\|f(1 / 2)-f(0)\| \geqslant c_{2}>0=V_{+}(F,[0,1]) \tag{17}
\end{equation*}
$$

The first inequality in Theorem 1(a) states that $V\left(f,\left[a, t_{0}\right)\right) \leqslant V_{+}\left(F,\left[a, t_{0}\right)\right)$. In general it cannot be replaced by the inequality $V\left(f,\left[a, t_{0}\right]\right) \leqslant V_{+}\left(F,\left[a, t_{0}\right]\right)$ if $f\left(t_{0}\right)=x_{0}$ with $t_{0}>a$; it suffices to argue as in (17):

$$
V(f,[0,1 / 2]) \geqslant\|f(1 / 2)-f(0)\| \geqslant c_{2}>0=V_{+}(F,[0,1 / 2])
$$

This observation also shows that the limit from the left in the third inequality of Theorem 1(a) is indispensable.

Example 3.3. We note that the inequality $V\left(f,\left[t_{0}, b\right\rangle\right) \leqslant V_{+}\left(F,\left[t_{0}, b\right\rangle\right)$ from Theorem 1 may fail even for $\left[t_{0}, b\right\rangle=[a, b]$ if at least one value $F(t)$ of F is only closed and bounded but not compact. The corresponding example was constructed in [6, Example 5.2].

4. Lipschitz and continuous selections

Recall that a multifunction $F: T \rightarrow \mathrm{c}(X)$ is said to be Lipschitz (with respect to the Hausdorff metric D) if its minimal Lipschitz constant given by

$$
L_{D}(F, T)=\sup \{D(F(t), F(s)) /|t-s|: s, t \in T, s \neq t\}
$$

is finite. If $f: T \rightarrow X$ is a single-valued function, we denote its minimal Lipschitz constant by $L(f, T) \equiv L_{d}(f, T)$.

The following theorem on the existence of Lipschitz selections of Lipschitz multifunctions is valid [6, Section 6] (for particular cases see [1,4,5,8,10], [11, Section Supplement 1], [12, Part C, Theorem (7.14)], [13]):

Theorem C. If $F: T \rightarrow \mathrm{c}(X), L_{D}(F, T)<\infty, t_{0} \in T$ and $x_{0} \in F\left(t_{0}\right)$, then there exists a Lipschitz selection f of F on T such that $f\left(t_{0}\right)=x_{0}, L(f, T) \leqslant L_{D}(F, T)$ and $V(f, T) \leqslant$ $V_{D}(F, T)$.

Note that if in Theorem C the set T is unbounded, it may happen that $V_{D}(F, T)$ is infinite; if this is the case, the last condition in this theorem is superfluous.

In order to obtain a version of Theorem C with respect to the excess function, we introduce the following definition which is parallel to (1).

A multifunction $F: T \rightarrow \mathrm{c}(X)$ is said to be excess Lipschitz to the right (or Lip $_{+}$, for short) if its minimal excess Lipschitz to the right constant defined by

$$
L_{+}(F, T)=\sup \{\mathrm{e}(F(s), F(t)) /(t-s): s, t \in T, s<t\}
$$

is finite. In a similar manner we define $L_{-}(F, T)$ (as well as Lip_) by replacing the value $\mathrm{e}(F(s), F(t))$ in the definition of $L_{+}(F, T)$ by $\mathrm{e}(F(t), F(s))$. Clearly, if T is bounded, then $V_{+}(F, T) \leqslant L_{+}(F, T) \cdot(\sup T-\inf T)$, and if $F=f$ is single-valued, then $L_{+}(f, T)=$ $L_{-}(f, T)=L(f, T)$. Multifunction F from Example 3.1 is Lip_{+}on $[0,1]$.

We have the following counterpart of Theorem C:
Theorem 2. If $F: T=[a, b\rangle \rightarrow \mathrm{c}(X), L_{+}(F, T)<\infty, t_{0}=a$ and $x_{0} \in F\left(t_{0}\right)$, then there exists a Lipschitz selection f of F on T such that $f\left(t_{0}\right)=x_{0}, L(f, T) \leqslant L_{+}(F, T)$ and $V(f, T) \leqslant$ $V_{+}(F, T)$. A similar assertion holds if we replace $T=[a, b\rangle$ by $T=\langle a, b], L_{+}(F, T)-b y$ $L_{-}(F, T), t_{0}=a-b y t_{0}=b$ and $V_{+}(F, T)-$ by $V_{-}(F, T)$.

Taking into account Theorem 1, the proof of Theorem 2 follows the same lines with obvious modifications as those in the proof of Theorem 6.1(a) from [6], and so, it is omitted. We note that, in contrast to Theorem C, Theorem 2 does not hold if $t_{0} \in[a, b\rangle$ and $t_{0}>a$, that is, F may have no continuous selections at all. This can be seen from Example 3.2 (cf. (17)) rewritten as

$$
\|f(1 / 2)-f(s)\| \geqslant c_{2}>0 \quad \text { for all } 0 \leqslant s<1 / 2
$$

In order to cope with continuous selections, we introduce the following definition of continuity for a multifunction $F:[a, b\rangle \rightarrow \mathrm{c}(X)$: it is said to be excess continuous to the right on $[a, b\rangle$ (or, briefly, C_{+}) if

$$
\begin{equation*}
\lim _{s \rightarrow t-0} \mathrm{e}(F(s), F(t))=0 \quad \text { for all } t \in(a, b\rangle \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{s \rightarrow t+0} \mathrm{e}(F(t), F(s))=0 \quad \text { for all } t \in[a, b) \tag{19}
\end{equation*}
$$

simultaneously. Note that if F is Lip_{+}on $[a, b\rangle$, then it is also C_{+}. An example of a multifunction $F:[0,1] \rightarrow \mathrm{c}(X)$, which is C_{+}, but not continuous with respect to the Hausdorff metric D, is constructed in Example 3.1: in fact, since $F(s) \subset F(t)$ for all $0 \leqslant s \leqslant t \leqslant 1$, conditions (18) and (19) are satisfied. On the other hand, given $k \in \mathbb{N}$, we have, for $t_{k}=k /(k+1)$,

$$
\lim _{s \rightarrow t_{k}-0} \mathrm{e}\left(F\left(t_{k}\right), F(s)\right)=\mathrm{e}\left(F_{k+1}, F_{k}\right)=c_{k+1}+c_{k}>0
$$

The notion of the excess continuity to the left (or C_{-}) for $F:\langle a, b] \rightarrow \mathrm{c}(X)$ is introduced similarly to (18) and (19): $\mathrm{e}(F(t), F(s)) \rightarrow 0$ as $s \rightarrow t-0$ for all $t \in(a, b]$ and $\mathrm{e}(F(s), F(t)) \rightarrow 0$ as $s \rightarrow t+0$ for all $t \in\langle a, b)$ simultaneously.

We point out that condition (18) (as well as (19)) is very weak as compared with the condition $\lim _{s \rightarrow t-0} D(F(s), F(t))=0$ and, taking into account the second definition of the excess from Section 1, it amounts to the following: for each $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that for all $s \in[t-\delta, t)$ and $x \in F(s)$ there exists $y \in F(t)$ with $d(x, y)<\varepsilon$.

Now we have the following extension of the second part of Theorem A from Section 1 (note at once that Theorem 3 below does not hold if $t_{0}>a$ as the observation following Theorem 2 shows):

Theorem 3. Let $F: T=[a, b\rangle \rightarrow \mathrm{c}(X)$ be $C_{+}, V_{+}(F, T)<\infty, t_{0}=a$ and $x_{0} \in F\left(t_{0}\right)$. Then there exists a continuous selection of bounded variation f of F on T such that $f\left(t_{0}\right)=x_{0}$ and $V(f, T) \leqslant V_{+}(F, T)$. A similar assertion holds if we replace $T=[a, b\rangle$ by $T=\langle a, b], C_{+}-$ by $C_{-}, V_{+}(F, T)-$ by $V_{-}(F, T)$ and $t_{0}=a-b y t_{0}=b$.

Proof. The idea of the proof comes from the factorization procedure for metric space valued functions of bounded variation [4], [5, Section 3]. So, by employing a suitable "change of variables" we reduce Theorem 3 to Theorem 2.

We set $\ell=V_{+}(F,[a, b\rangle)$. Since F is C_{+}, the V_{+}-variation function v maps $[a, b\rangle$ onto $[0, \ell\rangle$ continuously by Lemma 2. Given $s \in[0, \ell\rangle$, we denote by $v^{-1}(s)=\{t \in[a, b\rangle: v(t)=s\}$ the inverse image of the singleton $\{s\}$ and let $\mu(s)=\min v^{-1}(s)$, so that $v(\mu(s))=s$, and the function $\mu:[0, \ell\rangle \rightarrow[a, b\rangle$ is continuous and nondecreasing.

We define a multifunction $G:[0, \ell\rangle \rightarrow \mathrm{c}(X)$ as follows:

$$
\begin{equation*}
G(s)=\bigcap_{t \in v^{-1}(s)} F(t) \quad \text { for all } s \in[0, \ell\rangle \tag{20}
\end{equation*}
$$

That G is well defined, i.e., that $G(s) \neq \emptyset$ (the compactness is immediate) for all values of s, can be seen from the following: given $t_{1}, t_{2} \in v^{-1}(s), t_{1} \leqslant t_{2}$, we have by Lemma 1(b) that

$$
\mathrm{e}\left(F\left(t_{1}\right), F\left(t_{2}\right)\right) \leqslant V_{+}\left(F,\left[t_{1}, t_{2}\right]\right)=v\left(t_{2}\right)-v\left(t_{1}\right)=s-s=0
$$

and so, $F\left(t_{1}\right) \subset F\left(t_{2}\right)$. It follows that $G(s)=F(\mu(s))$ for all $s \in[0, \ell\rangle$. Also, since $t \in v^{-1}(v(t))$, (20) implies $G(v(t)) \subset F(t)$ for all $t \in[a, b\rangle$. Clearly, $\mu(0)=a$, and so, $x_{0} \in F(a)=F(\mu(a))=$ $G(0)$. Moreover, G is Lip_{+}on $[0, \ell\rangle$: indeed, for $s_{1}, s_{2} \in[0, \ell\rangle$ with $s_{1}<s_{2}$ we have, by Lemma 1(b):

$$
\begin{aligned}
\mathrm{e}\left(G\left(s_{1}\right), G\left(s_{2}\right)\right) & =\mathrm{e}\left(F\left(\mu\left(s_{1}\right)\right), F\left(\mu\left(s_{2}\right)\right)\right) \leqslant V_{+}\left(F,\left[\mu\left(s_{1}\right), \mu\left(s_{2}\right)\right]\right) \\
& =V_{+}\left(F,\left[a, \mu\left(s_{2}\right)\right]\right)-V_{+}\left(F,\left[a, \mu\left(s_{1}\right)\right]\right) \\
& =v\left(\mu\left(s_{2}\right)\right)-v\left(\mu\left(s_{1}\right)\right)=s_{2}-s_{1} .
\end{aligned}
$$

By Theorem 2, there exists a Lipschitz selection g of G on $[0, \ell\rangle$ such that $g(0)=x_{0}$ and $L(g,[0, \ell\rangle) \leqslant L_{+}(G,[0, \ell\rangle) \leqslant 1$. The desired selection f of F is defined as the composed function $f=g \circ v$. It is clear that $f:[a, b\rangle \rightarrow X$ is continuous as the composition of two continuous functions, $f(a)=g(v(a))=g(0)=x_{0}$,

$$
f(t)=g(v(t)) \in G(v(t)) \subset F(t) \quad \text { for all } t \in[a, b\rangle
$$

and, since $L(g,[0, \ell\rangle) \leqslant 1$, we have $V(f,[a, b\rangle) \leqslant V_{+}(F,[a, b\rangle)$.
In Example 3.1 we have $v(t)=V_{+}(F,[a, t]) \equiv 0, G:\{0\} \rightarrow \mathrm{c}(X)$ and $G(0)=F(\mu(0))=$ $F(0)=F_{1}$, and so, we obtain as a continuous selection of F only $f(t) \equiv 0$ if $f(0)=0$ or $f(t) \equiv c_{1} u_{1}$ if $f(0)=c_{1} u_{1}$.

References

[1] S.A. Belov, V.V. Chistyakov, A selection principle for mappings of bounded variation, J. Math. Anal. Appl. 249 (2) (2000) 351-366;
S.A. Belov, V.V. Chistyakov, Comments on the paper "A selection principle for mappings of bounded variation", J. Math. Anal. Appl. 278 (1) (2003) 250-251.
[2] Ch. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., vol. 580, Springer, Berlin, 1977.
[3] Z.A. Chanturiya, The modulus of variation of a function and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR 214 (1) (1974) 63-66 (in Russian). English translation: Soviet Math. Dokl. 15 (1) (1974) 67-71.
[4] V.V. Chistyakov, On mappings of bounded variation, J. Dynam. Control Systems 3 (2) (1997) 261-289.
[5] V.V. Chistyakov, On the theory of multivalued mappings of bounded variation of one real variable, Mat. Sb. 189 (5) (1998) 153-176 (in Russian). English translation: Sb. Math. 189 (5-6) (1998) 797-819.
[6] V.V. Chistyakov, Selections of bounded variation, J. Appl. Anal. 10 (1) (2004) 1-82.
[7] V.V. Chistyakov, The optimal form of selection principles for functions of a real variable, J. Math. Anal. Appl. 310 (2) (2005) 609-625.
[8] J. Guričan, P. Kostyrko, On Lipschitz selections of Lipschitz multifunctions, Acta Math. Univ. Comenian. 46-47 (1985) 83-85.
[9] C. Goffman, T. Nishiura, D. Waterman, Homeomorphisms in Analysis, Math. Surveys Monogr., vol. 54, Amer. Math. Soc., Providence, RI, 1997.
[10] H. Hermes, On continuous and measurable selections and the existence of solutions of generalized differential equations, Proc. Amer. Math. Soc. 29 (3) (1971) 535-542.
[11] B.S. Mordukhovich, Approximation Methods in Problems of Optimization and Control, Nauka, Moscow, 1988 (in Russian). Second English edition to appear in Wiley-Interscience.
[12] D. Repovš, P.V. Semenov, Continuous Selections of Multivalued Mappings, Math. Appl., vol. 455, Kluwer Acad. Publ., Dordrecht, 1998.
[13] W.A. Ślȩzak, Concerning continuous selectors for multifunctions with nonconvex values, Probl. Mat. 9 (1987) 85104.

[^0]: T. This research was supported by the Slovenian Research Agency Grants P1-0292-0101-04 and BI-RU/05-07-004.

 * Corresponding author.

 E-mail addresses: czeslaw@mail.ru (V.V. Chistyakov), dusan.repovs@fmf.uni-lj.si (D. Repovš).

