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Abstract

Nested Petri nets (NP-nets) is an extension of the Petri nets formalism within the “nets-within-nets”
approach, when tokens in a marking are themselves Petri nets which have autonomous behavior and
synchronize with the system net. The formalism of NP-nets allows modeling multi-level multi-agent
systems with a dynamic structure in a natural way. In this paper we define branching processes and
unfoldings for conservative NP-nets, i.e., NP-nets with a persistent set of agents. We show that NP-
nets unfoldings satisfy the fundamental property of unfoldings, and thus can be used for verification of
conservative NP-nets in line with classical unfolding methods.

1 Introduction
Nested Petri nets (NP-nets) [20, 22] is an extension of high-level Petri nets according to the
“nets-within-nets” approach. Nets-within-nets have been extensively studied in the Petri net
literature, as an approach for modeling active objects, mobility and dynamics in distributed
systems [2, 12, 18, 28].

NP-nets are a convenient formalism for modeling systems of dynamic interacting agents:
each agent is represented by a net token, and the agents are distributed in a system net. Levels
in NP-nets are coordinated via synchronized transitions (simultaneous firing of transitions in
adjacent levels of the model). Because of the loosely-coupled multilevel structure, NP-nets can
be used for the effective modeling of mutli-agent systems (see [4, 10, 23, 21, 3] for examples).

Unlike other nets-within-nets formalisms (such as Elementary Object Systems or Hypernets
[24, 17]), the behavior of an NP-net is defined according to the value semantics, whereby each net
token represents an independent object. Due to this, NP-nets inherit useful properties (such as
locality and monotonicity) of classical Petri nets, e.g., NP-nets allow for a conservative extension
to the Linear Logic calculus of Girard [8]. Boundedness and liveness (under some restrictions)
can be deduced for NP-nets in a compositional way, i.e., from boundedness, respectively liveness,
of nested net components [4]. Note also that NP-nets are strictly more expressive than Petri
nets, but are not Turing-complete [20].

In this paper we consider conservative NP-nets, in which agents (net tokens) cannot be
created or destroyed, but can be moved from one location to another and can change their
inner states. Even with those restrictions, NP-nets can be employed for modeling interesting
systems. In our case, we are keeping track of the individual net tokens, during the unfolding
process, which is the prime reason for us considering only conservative NP-nets at this point.

Multi-agent systems are usually highly concurrent. A crucial problem in verification of
highly concurrent systems is a large number of interleavings — possible sequencings of events in
the system. This leads to what is usually referred to as a state space explosion problem, when
a set of all reachable states in a transition system grows vastly upon adding a small component
to the system.
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To tackle this problem, various methods based on non-interleaving semantics have been
proposed and studied. One of the most popular methods is based on generating complete finite
prefixes of unfoldings. The unfoldings theory was originally developed by Winskel, Nielsen,
and Plotkin [27]. McMillan [25] was the first to use unfoldings for verification. He introduced
the concept of complete finite prefixes of unfoldings and demonstrated the applicability of this
approach to the verification of asynchronous circuits.

The original McMillan’s algorithm was used to solve the executability problem, i.e., to
check whether a given transition can fire in the net. This algorithm also can be used for
checking whether a net is deadlock-free and for solving some other problems. Later, numerous
improvements to the algorithm have been proposed ([7, 26, 11] to name a few); and the approach
has been applied to other models of computation, such as process algebras [19] and high-level
Petri nets [15].

The general method for truncating unfoldings, which abstracts from the information one
wants to preserve in the finite prefix of the unfolding, was proposed in [16, 14]. This method is
based on the notion of a cutting context, and can be transferred to our definition of branching
processes and unfoldings of conservative NP-nets.

The paper is organized as follows. In the Section 2 we present the basic notions of Petri
nets, branching processes and unfoldings. In Section 3 we define nested Petri nets (NP-nets)
and examine a particular class of NP-nets – conservative NP-nets. In Section 4, we study
a compositional construction on an NP-net: specifically, an NP-net in which each individual
component has been unfolded. In Section 5 we present the main contribution of our paper: the
definition of a branching process of a conservative NP-net. Lastly, we discuss the applicability
of our construction to the verification algorithms based on the canonical prefixes of unfoldings.

2 Preliminaries

Multisets. Let S be a finite set. A multiset m over a set S is a function m : S Ñ Nat, where
Nat is the set of natural numbers (including zero), in other words, a multiset may contain
several copies of the same element.

For two multisets m,m1 we write m Ď m1 iff @s P S : mpsq ď m1psq (the inclusion relation).
The sum and the union of two multisets m and m1 are defined as usual: @s P S : pm`m1qpsq “
mpsq `m1psq, pmYm1qpsq “ maxpmpsq,m1psqq.

P/T-nets. Let P and T be two finite disjoint sets of places and transitions and let F Ď

pP ˆ T q Y pT ˆ P q be a flow relation. Then N “ pP, T, F q is called a P/T-net.
A marking in a P/T-net N “ pP, T, F q is a multiset over the set of places P . ByMpNq we

denote a set of all markings in N . A marked P/T-net pN,M0q is a P/T-net together with its
initial marking M0.

Pictorially, P -elements are represented by circles, T -elements by boxes, and the flow relation
F by directed arcs. Places may carry tokens represented by filled circles. A current marking m
is designated by putting mppq tokens into each place p P P .

For a transition t P T , an arc px, tq is called an input arc, and an arc pt, xq — an output arc.
For each node x P P Y T , we define the pre-set as ‚x “ ty | py, xq P F u and the post-set as
x‚ “ ty | px, yq P F u.

We say that a transition t in P/T-net N “ pP, T, F q is enabled at a marking M if ‚t ĎM .
An enabled transition may fire, yielding a new marking M 1 “M ´ ‚t` t‚ (denoted M t

ÝÑM 1).
A marking M is called reachable if there exists a (possibly empty) sequence of firings M0

t1
ÝÑ
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M1
t2
ÝÑ M2 ÝÑ ¨ ¨ ¨ ÝÑ M from the initial marking to M . By RMpNq we denote the set of all

reachable markings in N .
A marking M is called safe iff for all places p P P we have Mppq ď 1. A marked P/T-net

N is called safe iff every reachable marking M P RMpNq is safe. A reachability graph of a
P/T-net pN,M0q presents detailed information about the net behavior. It is a labeled directed
graph, where vertices are reachable markings in pN,M0q, and an arc labeled by a transition t
leads from a vertex v, corresponding to a markingM , to a vertex v1, corresponding to a marking
M 1 iff M t

ÝÑM 1 in N .

Branching processes and unfoldings of P/T-nets. Unfoldings are used to define non-
sequential (true concurrent) semantics of P/T-nets, and complete prefixes of unfoldings are used
for verification. Here we give necessary basic notions and definitions, connected with unfoldings.
Further details can be found in [6, 5].

Let N “ pP, T, F q be a P/T-net. The following relations are defined on the set P Y T of
nodes in N :
1. the causality relation, denoted as ă, is the transitive closure of F , and ď is the reflexive

closure of ă; if x ă y, we say that y causally depends on x.

2. the conflict relation, denoted as #: for nodes x, y P P Y T , x#y :“ Dt, t1 P T.t ‰ t1 ^ ‚tX
‚
t1 ‰ H^ t ď x^ t1 ď y;

3. the concurrency relation, denoted as co : two nodes are concurrent if they are not in
conflict and neither of them causally depends on the other.

For a set B of nodes we write co pBq iff all nodes in B are pairwise concurrent.
An occurrence net is a safe P/T-net ON “ pB,E,Gq s.t.

1. ON is acyclic;

2. @p P B : |‚p| ď 1;

3. @x P BYE the set ty | y ă xu is finite, i.e., each node in ON has a finite set of predecessors;

4. @x P B Y E :  px#xq, i.e., no node is in self-conflict.
In occurrence nets, elements from B are usually called conditions and elements from E are
called events.

A configuration C in an occurrence net ON “ pB,E,Gq is a non-conflicting subset of nodes,
which is downwards-closed under ă, i.e., @x, y P C :  px#yq, and px ă yq^y P C implies x P C.
For each x P B YE we define a local configuration of x to be rxs “ ty | y P B YE, y ă xu. The
definition of a local configuration can be straightforwardly generalized to any non-conflicting
set of nodes X Ď B Y E, namely rXs “ ty | y P B Y E, x P X, y ă xu.

We define the set of branching processes of a given marked P/T-net N “ pP, T, F,M0q using
the so-called canonical representation.

The set C of canonical names for N is defined recursively to be the smallest set s.t. if
x P P Y T and A is a finite subset of C, then pA, xq P C.

A C-Petri net is an occurrence net pB,E,Gq such that:
• B Y E Ď C;
• @pA, xq P B Y E, ‚pA, xq “ A.

The initial marking of a C-Petri net is a subset of nodes tpH, xq | pH, xq P Bu. For each C-Petri
net CN , the morphism h maps the nodes of CN to the nodes of N : hppA, xqq “ x. If hpyq “ z,
we say that y is labeled by z.

Let S be a (finite or infinite) set of C-Petri nets. The union of S is defined component-wise,
i.e.,

Ť

S “ p
Ť

pP,T,F,MqPS P,
Ť

pP,T,F,MqPS T,
Ť

pP,T,F,MqPS F,
Ť

pP,T,F,MqPSMq.

21



Branching processes of conservative nested Petri nets Frumin, Lomazova

The set of branching processes of a marked P/T-net N “ pP, T, F,M0q is defined as the
smallest set satisfying the following conditions:
1. The occurrence net pI,H,Hq, where I “ tpH, pq | p PM0u (consisting of conditions I and

having no events), is a branching process.

2. Let B1 be a branching process and M be a reachable marking of B1, and M 1 Ď M , such
that hpM 1q “ ‚t for some t in T . Let B2 be a net obtained by adding an event pM 1, tq and
conditions tptpM 1, tqu, pq | p P t‚u to B1. Then B2 is a branching process.

3. Let BB be a (finite, or infinite) set of branching processes. The union
Ť

BB is a branching
process.

An example of a P/T-net and its branching process is shown in Figs. 1 and 2. The P/T-net
PN1 has the initial marking tp1u and is shown in Fig. 1. One of its possible branching processes
is shown in Fig. 2, in which the labeling function h is indicated by labels on nodes.

p1

p2

p3

p4

p5

p6t1

t2

t3

t4

t5

t6

Figure 1: Petri net PN1
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p4
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p1t1

t2

t3

t4

t5

t6

t6

Figure 2: Branching process of PN1

A branching process B1 “ ppP1, E1, F1q, h1q is called a prefix of a branching process B2 “

ppP2, E2, F2q, h2q (denoted B1 Ď B2) iff P1 Ď P2 and E1 Ď E2.
The maximal branching process of a net N w.r.t the prefix relation Ď is called the unfolding

of N and is denoted by UpNq.
The fundamental property of P/T-nets unfoldings [5] states that the behavior of the un-

folding is equivalent to the behavior of the original net. Formally it can be formulated as
follows.

Fundamental property of P/T-nets unfoldings. Let M be a reachable marking in a
P/T- net N , and let MU be a reachable marking in UpNq s.t. hpMU q “M . Then

1. if there is a step MU
tU
ÝÑ M 1

U of UpNq, then there is a step M
t
ÝÑ M 1 of N , such that

hptU q “ t^ hpM 1
U q “M 1;

2. if there is a step M
t
ÝÑ M 1 of N , then there is a step MU

tU
ÝÑ M 1

U in UpNq, such that
hptU q “ t^ hpM 1

U q “M 1.

In other words, the fundamental property of unfoldings states that the reachability graph of
the unfolding is isomorphic to the reachability graph of the P/T-net. This property is critical
for the use of unfoldings in semantic study and verification. Unfoldings were defined and studied
for different classes of Petri nets, namely for high-level Petri nets [15], contextual nets [1], time
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Petri nets [9], Hypernets [24] (to name a few). All these constructions has similar properties,
which act as a “sanity check”.

Further in the paper we define an unfolding operation for nested Petri nets, which posses a
similar fundamental property.

3 Nested Petri Nets
In this paper we deal with nested Petri nets (NP-nets) — in particular, a proper subclass of
NP-nets called strictly conservative NP-nets. The basic definition of nested Petri nets can be
found in [20, 23]. Here we give a reduced definition, sufficient for defining conservative NP-nets.

In nested Petri nets (NP-nets), tokens may be Petri nets themselves. An NP-net consists
of a system net and element nets. We call these nets the NP-net components. Marked element
nets are net tokens. Net tokens, as well as usual black dot tokens, may reside in places of the
system net. Some transitions in NP-net components may be labeled with synchronization labels.
Unlabeled transitions in NP-net components may fire autonomously, according to the usual
rules for Petri nets. Labeled transitions in the system net should synchronize with transitions
(labeled by the same label) in net tokens involved in this transition firing.

In strictly conservative NP-nets, net tokens cannot evolve or disappear. They can “move”
from one place in a system net to another and “change” their marking, i.e., inner state. In
the basic NP-net formalism new net tokens may be created, copied and removed as usual Petri
net tokens. It should be noted that although this restriction is rather strong, many interesting
multi-agent systems can be modeled with conservative NP-nets.

Here we consider safe and typed NP-nets, i.e., each place in a system net can contain no
more than one token: either a black dot token, or a net token of a specific type.

p1 q1

p2 q2

p3 q3

p4 q4

t1 t2

Res

LLock1 x
x

L Lock2x
x

RRelease1

x
x

R Release2

x
x

a1

a2

a3

L

Lock

SomeWork

RRelease

Figure 3: NP-net NP1

Figure 3 provides an example of a nested Petri net NP1. On the left one can see a system net.
The token residing in the place Res is a net token. Its structure and initial marking is shown
on the right side of the figure. The net token represents some sort of resource (for example,
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a networking or a computational one), capable of performing some internal work (actions).
Two threads are trying to access the same resource, but the locking mechanism is preventing
them from accessing it simultaneously. The system net synchronizes with the element nets via
transitions Lock1, Lock2 and Release1,Release2.

Definition 1 (Nested Petri nets). Let Type be a set of types, Var — a set of typed (over
Type) variables, and Lab — a set of labels. A (typed) nested Petri net (NP-net) NP is a tuple
pSN, pEN1, . . . ,ENkq, υ, λ,W q, where

• SN “ pPSN, TSN, FSNq is a P/T net called a system net;

• for i “ 1, k, ENi “ pPENi
, TENi

, FENi
q is a P/T net called an element net, where all sets

of places and transitions in the system and element nets are pairwise disjoint; we suppose,
each element net is assigned a type from Type;

• υ : PSN Ñ TypeY t‚u is a place-typing function;

• λ : TNP Ñ Lab is a partial transition labeling function, where TNP “ TSN Y TEN1 Y ¨ ¨ ¨ Y

TENk
; we write that λptq “ K when λ is undefined at t.

• W : FSN Ñ Var Y t‚u is an arc labeling function s.t. for an arc r adjacent to a place p
the type of W prq coincides with the type of p.

A marked element net is called a net token.

In what follows for a given NP-net by Anet “ tpEN,mq | Di “ 1, . . . , k : EN “ ENi,m P

MpENiqu we denote the set of all (possible) net tokens, and by A “ Anet Y t‚u the set of all
net tokens extended with a black dot token.

Now we come to defining NP-net behavior.
A marking M in an NP-net NP is a function mapping each p P PSN to some (possibly empty)

multiset Mppq over A. Thus a marking in an NP-net is defined as a marking of its system net.
By abuse of notation, a set of all markings of an NP-net NP will be denoted by MpNPq. We
say that a net token pEN,mq resides in p (under marking M), if Mppq “ tpEN,mqu.

Let t be a transition in SN, ‚t “ tp1, . . . , piu, t‚ “ tq1, . . . , qju be sets of its pre- and post-
elements. Then W ptq “ tW pp1, tq, . . . ,W ppi, tq,W pt, q1q, . . . ,W pt, qjqu will denote a set of all
variables in arc labels adjacent to t. A binding of t is a function b assigning a value bpvq (of the
corresponding type) from A to each variable v occurring in W ptq.

A transition t in SN is enabled in a marking M w.r.t. a binding b iff @p P ‚t : W pp, tqpbq Ď
Mppq, i. e. each input place p adjacent to t contains a value of input arc label W pp, tq.

The enabled transition fires yielding a new marking M 1, write M Ñ M 1, such that for all
places p, M 1ppq “ pMppqzW pp, tqpbqq YW pt, pqpbq.

For net tokens from Anet, which serve as values for input arc variables from W ptq, we say,
that they are involved in the firing of t. (They are removed from input places and brought to
output places of t).

There are three kinds of steps in an NP-net NP.
An element-autonomous step. Let t be a transition without synchronization labels in a net

token. Then an autonomous step is a firing of t according to the usual rules for P/T-nets. An
autonomous step in a net token does not change the residence of this net token.

A system-autonomous step is the firing of an unlabeled transition t P TSN in the system net
according to the firing rule for high-level Petri nets (e.g., colored Petri nets [13]), as described
above.

A synchronization step. Let t be a transition labeled λ in the system net SN, let t be enabled
in a marking M w.r.t. a binding b and let α1, . . . , αk P Anet be net tokens involved in this firing
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of t. Then t can fire provided that in each αi (1 ď i ď k) a transition labeled by the same
synchronization label λ is also enabled. The synchronization step goes then in two stages: first,
firing of transitions in all net tokens involved in the firing of t and then, firing of t in the system
net w.r.t. binding b.

An NP-net NP is called safe iff in every reachable marking in NP there are not more than
one token in each place in the system net, and not more that one token in each net token place.
Hereinafter we consider only safe NP-nets.

Now we give a definition of (strictly) conservative NP-nets, as well as some related defini-
tions. We then define an unfolding operation for a simple class of strictly conservative nets.

Definition 2. A safe NP-net N “ pSN, pEN1, . . . ,ENkq, υ, λ,W q is called strictly conservative
iff
1. For each t P TSN and for each p P ‚t, D!p1 P t‚ .W pp, tq “W pt, p1q or W pp, tq “ ‚
2. For each t P TSN and for each p P t‚, D!p1 P ‚t .W pp1, tq “W pt, pq or W pp, tq “ ‚

The definition of strict conservativeness ensures that no net token emerges or disappears
after a transition firing in the system net.

Note that in [4] NP-nets are called conservative, iff tokens cannot disappear after a transition
firing, but can be copied; hence, the number of net tokens in such conservative NP-nets can
be unlimited. Here we consider a more restrictive subclass of NP-nets with a stable set of net
tokens (tokens cannot be copied). Hereinafter we consider only strictly conservative NP-nets,
and call them just conservative nets for short.

In conservative nets, instead of considering net tokens (marked element nets residing in
places of the system net), we consider identified net tokens: triples xI,ENj , µy, where I is a
unique identifier of the token, ENj is a structure of the token (i.e., an element net from the
set tEN1, . . .ENku), and µ is a marking of ENj . Then every net token in the system net has a
unique identifier attached to it; thus, tokens with the same marking can be distinguished.

Further we use NTok to denote a set of identified net tokens for a given net. Sometimes,
by abuse of notation, for a net token ηk “ xik,ENk, µky in a place x of a marking M , we write
Mpxq “ ηk meaning Mpxq “ tpENk, µkqu. By τpηiq we denote a type of a net token pENi, µiq,
and by Pηi (Tηi) we denote the set of places (transitions) of the net token, i.e., PENi

(TENi
).

In the rest of the paper we will use the term net token to mean identified net token.
Given a system net SN, a set of net tokens NTok, and a function M mapping places of SN

to identifiers of NTok, it is easy to restore the set of element nets (which is just a set of types
from NTok), and a marking M (which can be easily restored from M). Thus, we speak about
net tokens in a marking as separate entities, and, in order to define an NP-net, we sometimes
list identified net tokens.

For a marking M in an NP-net NP we define marking projections onto the components of
NP:

1. The projection of M onto a system net SN, denoted as MæSN, is a marking of the flat
P/T-net SN obtained by replacing all the net tokens in M by black dot tokens, i.e.,
MæSNppq “ |Mppq|.

2. The projection of M onto a net token ηk “ xidk,ENk, µky, denoted as Mæηk , is just µk.

4 Component-Wise Unfoldings
Because in the conservative NP-nets net tokens can be neither created, nor destroyed, it is
natural to consider separate unfoldings of the NP-net components. The compositionality of
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unfoldings can be interesting and helpful for verification. Such unfolding should, of course,
possesses some analogue of the the fundamental property of P/T-nets unfoldings.

Definition 3 (Component-wise unfoldings). A component-wise unfolding of an NP-net
NP “ pSN,NTok “ tη1, . . . , ηku, υ, λ,W,M

0q is an NP-net UCpNPq “ pUCpSNq, UCpNTokq,
UCpυq, UCpλq, UCpW q, UCpM

0qq obtained by separately unfolding each of the components:
• UCpSNq is an unfolding of a system net with the initial marking M0

æSN;
• UCpNTokq is a set of net tokens in which every token is unfolded individually.
Let h : PUCpSNq Y TUCpSNq Y0ăiďk PUCpηiq Y PUCpηiq Ñ PSN Y TSN Y0ăiďk Pηi Y Pηi be a

union of all the morphisms from unfoldings to individual components. That is,

hpxq “

#

hSNpxq, if x P PUCpSNq Y TUCpSNq

hηipxq, if x P PUCpηiq Y TUCpηiq

Functions UCpW q,UCpυq, and UCpλq are defined in a straightforward manner:

• UCpW qpx, yq “W phpxq, hpyqq;
• UCpυqppq “ υphppqq;
• UCpλqptq “ λphptqq.
• UCpM0qppq “ M0phppqq if p is minimal (w.r.t. ă) in the set tp1 | hpp1q “ hppqu, or
UCpM

0qppq “ H otherwise.

Before addressing the behavioral equivalence of NP and UCpNPq, we are going to expand
the definition of h to include NP-markings:

Given a marking MU of UCpNPq, it is possible to define a corresponding marking hpMU q of
NP:

hpMU qppq “

#

hpSq, if Dp1 . hpp1q “ p ^ MU pp
1q “ S ‰ H

H, otherwise
(1)

The function defined in Eq. (1) is sound because if the first clause of the equation holds,
then such p1 is unique (because no two elements in the set tp1 | hpp1q “ xu can be concurrent
and, consequently, marked under the same marking).

Theorem 1. Let NP be a conservative NP-net. Let also M be a reachable marking in NP, and
MU be a reachable marking in UCpNPq s.t. hpMU q “M .
1. If there is a step MU

TU
ÝÝÑM 1

U in UCpNPq, then there is a step M T
ÝÑM 1 in NP, such that

hpTU q “ T and hpM 1
U q “M 1.

2. If there is a step M T
ÝÑM 1 in NP, then there is a step MU

TU
ÝÝÑM 1

U in UCpNPq, such that
hpTU q “ T and hpM 1

U q “M 1.
That is, the behavior of an NP-net NP is equivalent to the behavior of its component-wise
unfolded counterpart.

The proof is given in the appendix.

While this construction is theoretically apt, it does not give us any direct insight that can be
helpful for model checking. For example, while the unfoldings of individual components can be
used to analyze behavioral properties for each of the individual components, it is not clear how
it can help us to solve verification problems for the entire NP-net. For that reason we apply
another approach and construct the occurrence net representing the NP-net semantics directly.
The next section is devoted to formalizing the concept of a branching process of a conservative
NP-net.
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5 Branching Processes of a Conservative NP-net
In this section, we define unfoldings of conservative NP-nets into occurrence nets. We give
an inductive definition of a branching process of an NP-net, and (similarly to [5]) define the
unfolding as the maximal branching process.

First we introduce a concept of an element-indexed C-Petri net, a construction similar
to the construction of the canonical net for a P/T-net; however, each place of the element-
indexed C-net is paired with a net token (identifier). In this section we suppose that
NP “ pSN, pEN1, . . . ,ENkq, υ, λ,M0q is a conservative NP-net, where SN “ pPSN, TSN, FSNq,
ENi “ pPENi

, TENi
, FENi

q, 0 ă i ď k.

Definition 4 (Element-indexed C-Petri nets). An element-indexed C-net Θ for some element-
indexing set J is a C-net such that each place in Θ is marked with an element of J . For our
purposes, the set J will be the set of the identified net tokens.

Formally, for a fixed net NP, a set of canonical names C is defined as follows:

• If x P p
Ť

ENi
PENi

YPSN q, ηi P NTokYt‚u, and X is a finite subset of C, then pX,x, ηiq P
C;

• If x Ă p
Ť

ENi
TENi Y TSN q, and X is a finite subset of C, then pX,xq P C.

Then an indexed C-net pP, T, F,M0q is a P/T-net, such that

1. P Y T Ď C;

2. If p “ pX,x, ηq P P , then ‚p “ X;

3. If t “ pX,xq P P , then ‚t “ X;

4. pX,x, ηq PM0 iff X “ H and x P p
Ť

ENi
PENi Y PSN q.

Just like for regular C-Petri nets, there exists a function h mapping the nodes of an element-
indexed C-Petri net to the nodes of NP:

hpxq “

#

t if x “ pA, tq
p if x “ pA, p, ηiq

(2)

The union of element-indexed C-Petri nets is defined component-wise, exactly as it was done
for regular C-Petri nets.

We also define a notion of an adjacent place. According to Definition 2, for every pair
pp, tq P PSN ˆ TSN, where υppq ‰ ‚ ^ ppp, tq P FSN _ pt, pq P FSNq, there exists a unique place p1
in a system net such that W pp, tq “ W pt, p1q or W pp1, tq “ W pt, pq. Such a place p1 is said to
be adjacent to p via t (denoted by x|p, ty). For example, in Fig. 5 the place adjacent to p2 via
t1 is x~p2, t1y “ p3.

Now we are ready to define a set of element-indexed branching processes (or branching
processes for short, when there is no ambiguity) for a given conservative NP-net NP.

Definition 5 (Element-indexed branching processes for conservative nested Petri nets). The
set of element-indexed branching processes for NP is the smallest set of element-indexed C-nets
satisfying the following rules:

1. Let
C “ tpH, p, ηiq | p P PSN, ηi PM

0ppqu Y tpH, p, ηiq | ηi P NTok, p PM0
æηiu

be a set of places. The net Θ “ pC,H,Hq consisting of conditions C and having no
transitions is a branching process. Such branching process is said to be initial.
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2. Let Θ be a branching process, and B be a subset of conditions of Θ. If B satisfies the
PosEN rule’s premise (Fig. 4), then the net obtained by adding an event e and conditions
C to Θ is a branching process.

3. Let Θ be a branching process, and B be a subset of conditions of Θ. If B satisfies the
PosSN rule’s premise (Fig. 4), then the net obtained by adding an event e and conditions
C to Θ is a branching process.

4. Let Θ be a branching process, and let B and BE be subsets of conditions of Θ. If B and
BE satisfy the PosSync rule’s premise (Fig. 4), then the net obtained by adding an event
e and conditions C to Θ is a branching process. The SyncCond predicate is defined below.

5. Let BS be a (finite or infinite) set of branching processes. The union
Ť

BS is a branching
process.

In rules (2)-(4), event e is called a possible extension of Θ.

B “ tpxi, bi, ηkq | i P Iu copBq t P Tηk , λptq “ K
‚t “ tbi | i P Iu

PosEN
e “ pB, ttuq and C “

Ť

pPt‚pe, p, ηkq

B “ tpxi, bi, ηiq | i P Iu

copBq t P TSN, λptq “ K
‚t “ tbi | i P Iu

PosSN
e “ pB, ttuq and C “ tpe, x}bi, ty, ηiq | i P I, ηi ‰ ‚uY

tpe, b, ‚q | b P t‚, υpbq “ ‚u

B “ tpxi, bi, ηiq | i P Iu

copB YBEq

t P TSN, λptq ‰ K
‚t “ tbi | i P Iu SyncCondpBE , E, I,Θ, pB, tqq

PosSync
e “ pB YBE , ttu Y Eq and C “ tpe, x}bi, ty, ηiq | i P I, ηi ‰ ‚uY

tpe, b, ‚q | b P t‚, υpbq “ ‚uY

tpt1, c1i, ηiq | i P I, ηi ‰ ‚, c
1
i P Pηi , c

1
i P ti

‚
u

Figure 4: Rules for possible extensions of a branching process

The SyncCond predicate in rule (4) makes sure that all the components involved in the
synchronization step, synchronize correctly. The parameter I contains the id’s of all the net
tokens involved in the step. The set E consists of transitions ti in each of the net tokens ηi
(i P I), and every ti carries the same label as the transition t from the system net. In order
for the synchronization step to go through, each of the ti needs to have its pre-set tcj | j P Jiu
active. The places of net tokens corresponding to those in the pre-sets are contained in BE .

We say that the SyncCondpBE , E, I,Θ, pB, tqq predicate is true iff the following conditions
hold:

1. BE “
Ť

iPItpyj , cj , ηiq | j P Ji, ηi “ pidi,ENi, µiq P NTok, cj P PENi
u ^ copBEq, i.e., BE is

a set of reachable conditions that correspond to places in net tokens;
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2. E “ tti P TENi | i P I, ηi “ pidi,ENi, µiq P NToku, i.e., E is a subset of transitions in each
of the net tokens;

3. @ti P E, λptiq “ λptq

4. ‚E “
Ť

iPItcj | j P Ji, ηi P NToku

The rules in Fig. 4 can be explained informally from the operational point of view. Rules
PosEN , PosSN , and PosSync are used for generating events that correspond to element-
autonomous, system-autonomous, and synchronized firings, respectively.

p1

p2

p3

αt1

x

x y y

βt2

z z

Figure 5: NP-net NP2: System net

q1

q2

α

k1

k2

β

k3

Figure 6: NP-net NP2: Element net

pq1, N2q

pp2, N2q

pp1, N1q

pq1, N1q

pq2, N2q

pp3, N2q

pp2, N1q

pq2, N1q

αtt1, k1u

pq2, N2qk2

pq2, N1q

k2

pq1, N2q

pp3, N2qβ

tt2, k3u

pq2, N2qk2

. . .

. . .

β

tt2, k3u

Figure 7: Branching process of NP2
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For example, consider NP-net NP2 depicted in Figs. 5 and 6. A possible branching process
of NP2 is shown in Fig. 7. In Fig. 7, a transition is labeled with t, if it is of the form pA, tq, and
a place is labeled with pp,Nq if it is of the form pA, p,Nq.

Properties of element-indexed branching processes. Below we formulate some impor-
tant properties of the constructs that we have defined.

Proposition 1. Every element-indexed branching process is an occurrence net.

The proof is given in the appendix.

Let B be an element-indexed branching process of NP. Next, we define the function h̃, which
is an extension of the labeling function h from Eq. (2). The function h̃ maps the markings of B
to the markings of NP. In the case of flat P/T-nets, such an ad-hoc extension is not necessary,
as a marking of a flat P/T-net is simply a multiset over a set of places, and the value of h on a
multiset is defined in a usual manner. In the case of NP-nets, however, a marking is a function
mapping system net places to multisets of net tokens. It should be noted that in a case when
the NP-net does not contain net tokens, the definition of h̃ coincides with that of h.

h̃pMqppq “

#

t‚u if υppq “ ‚ and hpMqppq ą 0

ttq | q P Pηi , DA, pA, q, ηiq PMuu if υppq “ τpηiq and DA, pA, p, ηiq PM
(3)

The mapping is sound because for every net token ηk in every reachable marking of a
branching process, only one condition labeled with ηk can be marked. Because every branching
process is an occurrence net, the reachable conditions of a branching process correspond to the
pairwise concurrent sets. Therefore, we have to prove the following lemma:

Lemma 1. Let ηk be a net token and θ be a branching process. If pi, pj P PSN, pi ‰ pj and
pA, pi, ηkq, pB, pj , ηkq P θ, then  ppA, pi, ηkq co pB, pj , ηkqq.

The proof is given in the appendix.

It should be noted that every low-level P/T-net is a special case of an NP-net with the
empty set of element nets and no vertical synchronization. The following property is a “sanity
check” as it ensures that our branching process definition is in accord with the branching process
definition for low-level Petri nets.

Proposition 2. Let N be a P/T-net. The set of branching processes of N is isomorphic to the
set of element-indexed branching processes of N , when N is considered as an NP-net.

Proof. The only possible extension rule, that can be applied in the case of P/T-net is PosSN .
Furthermore, in this case, the PosSN rule coincides with the possible extension rule of the
low-level branching processes.

We also extend the definition of the prefix relation Ď to cover the branching processes of
nested Petri nets. Then, the unfolding of a conservative nested Petri net NP (denoted by
UpNPq) is the Ď-maximal branching process of NP.

Now it is possible to see that the fundamental property of unfoldings holds for our definition
of the conservative NP-nets unfolding.

Theorem 2. Let M be a reachable marking in a nested Petri net NP and MU be a reachable
marking in UpNPq s.t. h̃pMU q “M .
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pq1, N2q

pp2, N2q

pp1, N1q

pq1, N1q

pq2, N2q

pp3, N2q

pp2, N1q

pq2, N1q

αtt1, k1u

pq2, N2qk2

pq2, N1q

k2

pq1, N2q

pp3, N2qβ

tt2, k3u

pq2, N2qk2

Figure 8: Complete branching process BP c of NP2

1. If there is a step MU
tU
ÝÑ M 1

U in UpNPq, then there is a step M t
ÝÑ M 1 in NP, such that

h̃pM 1
U q “M 1 and hptU q “ t.

2. If there is a step M t
ÝÑ M 1 in NP, then there is a step MU

tU
ÝÑ M 1

U in UpNPq, such that
h̃pM 1

U q “M 1 and hptU q “ t.

Application to verification. Thanks to the results outlined in this section, the basic al-
gorithm (described in [14]) for constructing finite prefixes of unfoldings of low-level P/T-nets
can be modified in a straightforward way to obtain an algorithm for constructing finite prefixes
of unfoldings of conservative NP-nets. In fact, the only part of the algorithm that needs to
be modified is the PotExt function, which has to be changed in accordance with the possible
extension rules in Fig. 4. This is attainable because all the necessary definitions (in particular,
the definition of a cutting context) and the theory of canonical prefixes [16, 14] can be directly
extended to cover NP-nets.

For example, let’s consider the result of the standard algorithm applied to the NP-net NP2

from Figs. 5 and 6 using the McMillan’s cutting context (in the notation of [14], C 1 « C2 ðñ
MarkpC 1q “ MarkpC2q и C 1 Ÿ C2 ðñ |C 1| ă |C2|). The resulting canonical prefix can be
seen in Fig. 8.

This canonical prefix BPC allows us to solve the executability problem: a transition t may
fire in the NP-net iff an event labeled with t is present in the canonical branching process. For
example, one can observe, that because a transition e1 (colored red) in BP 2 has is labeled with
tt1, k1u, the transition t1 is executable in the NP-net.

One can also use the canonical prefix BPC to check the net for deadlocks. A deadlock is
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present in the NP-net iff there exists a configuration in the prefix BPC that does not contain
cut-off events and lead to a deadlock marking in BPC . For example, in Fig. 8 such configuration
is colored orange. This configuration corresponds to a marking in the NP-net, in which both
of the net tokens are located in position p1 and p2 in the system net, and both net tokens has
the same marking tq2u. It is obvious that such a marking is a deadlock.

6 Conclusion

In this paper, we have defined branching processes of conservative nested Petri nets. An unfold-
ing of an NP-net is defined as the maximal branching processes. It is shown that the unfolding
posses the same behavior as the original net. Our definition of branching processes allows us
to reuse most of the techniques used for the verification via the canonical prefixes of net un-
foldings. An algorithm for generating finite canonical prefixes of unfoldings differs from the
standard one only in the PotExt function, which is used for generating possible extensions of
branching processes. We have also presented a component wise unfolding construction and have
proven that it correlates with the NP-net definition.

In future work, we plan to examine a possibility of extending this technique to other NP-net
classes.
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A Proof of Theorem 1

Proof. We provide a proof for the first part of the theorem, and consider only the synchroniza-
tion step. Other cases can be proved in a similar way.

For each of the components UCpNiq, i P IT involved in the firing of the TU , there is a
transition ti P TU . Additionally, there is tS P TU that belongs to the system net.

For each ti there exists pi in which the net token UCpNiq resides. It is then the case
that ‚ti Ď MU ppiq. Furthermore, if the firing of T moves the token UCpNiq from pi to some
p1i, then we have M 1

U pp
1
iq “ MU ppiqz

‚ti Y ti
‚. This means that in a net token (viewed as a

separate component), MU ppiq
ti
ÝÑM 1

U pp
1
iq. But then, according to the fundamental property of

unfoldings, hpMU ppiqq “Mphppiqq
hptiq
ÝÝÝÑM 1phpp1iqq “ hpM 1

U pp
1
iqq in Ni.

Further, there exists a stepMU
tS
ÝÑM 1

U in UCpSNq viewed as a separate component. Hence,

there exists a step hpMU æSNq
hptSq
ÝÝÝÑ hpM 1

U æSNq in SN. Combined with the fact that UC preserves
labels on transitions, this implies that each transition in T “ hpTU q is active in NP under M .
Moreover, it is easy to see that M 1 coincides with hpM 1

U q.

B Proof of Proposition 1

Proof. Let Θ “ pPΘ, TΘ, FΘq be an element-indexed branching process. We prove that Θ is an
occurrence net, i.e., that all four conditions from the definition of the occurrence net hold.

1. This condition holds simply because Θ is an element-indexed C-Petri net.
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2. We can verify that this prerequisite holds by noting that every rule makes sure that each
place has at most one pre-transition (keeping in mind the way that pre-sets are defined
for element-indexed C-nets).

3. Validity of this conditions follows immediately from the inductive rules.

4. Assume that there exists a self-conflicting node in the branching process. Let x P PΘYTΘ

be the minimal self conflicting node (x#x). That means that Dt, t1 P TΘ, t ‰ t1. t ă
x^ t1 ă x^ ‚tX

‚
t1 ‰ H.

If x is a place, then there exists a unique (according to the case 2) transition y such that
‚x “ tyu and y#y. Furthermore, x#x ðñ y#y; therefore, we are to consider only the
case of x being an event.
This means that x has a form of pB, tq, and there exist conditions b, b1 P B such that b#b1,
i.e.,  copBq, but this is is impossible, according to the rules.

C Proof of Lemma 1
Proof. This can be proven by the structural induction on the definition of a branching process.
The statement clearly holds for the initial branching process.

Assume that the lemma holds for θ and θ1 is an extension of θ obtained by applying one of
the possible extension rules. Let C be the set of newly added conditions labeled with places
from the system net. One can notice that all conditions in C are labeled with a different net
tokens. Therefore, in order to prove the lemma we only are to show that @pA, pi, ηkq P θ,
@pB, pj , ηkq P C,  ppA, pi, ηkq co pB, pj , ηkqq.

The PosEN rule does not introduce new conditions labeled with places from the system net,
so the set C is empty. As for the PosSN rule, it is possible to notice that there exists a condition
pA1, pl, ηkq from θ, such that pA1, pl, ηkq P

‚‚
pB, pj , ηkq (where pj is adjacent to pl). Due to the

inductive hypothesis,  ppA1, pl, ηkq co pA, pi, ηkqq. Therefore,  ppA, pi, ηkq co pB, pj , ηkqq.
The PosSync case can be handled in a similar way.
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