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Abstract. Pressure of plasma is calculated by using classical molecular dynamics method.
The formula based on virial theorem was used. Spectrum pressure’s fluctuations of singly ionized
non-ideal plasma are studied. 1/f -like spectrum behavior is observed. In other words, flicker
noise is observed in fluctuations of pressure equilibrium non-ideal plasma. Relations between
the obtained result and pressure fluctuations within the Gibbs and Einstein approaches are
discussed. Special attention is paid to features of calculating the pressure in strongly coupled
systems.

1. Introduction

It is well known that fluctuations of thermodynamic quantities are characterized by a Gaussian
distribution function. According to Einstein approach the probability of thermodynamic
fluctuations near the equilibrium point is described by the relation [1]:

w(∆x) ∼ exp∆S(∆x), (1)

where ∆x is deviation of thermodynamic quantity from equilibrium value, ∆S(∆x) is the
deviation of entropy from its equilibrium value, which depends on the value of the fluctuations.
Assuming that the entropy is analytic function, and considering that the equilibrium point
corresponds to the point of its maximum it can be represented as a power series: ∆S(∆x) =
a2∆x2 + a3∆x3 + ... The first member of this series gives a Gaussian distribution for (1) at
negligibly small deviation of x from the equilibrium value.

The article [2] presents non Gaussian fluctuations of pressure in plasma. Resolving of this
paradox was general motivation of this work.

In this paper spectrum pressure fluctuations was determined by MD simulation. The first
three sections are devoted to the description of the model, discussion of the simulation accuracy
and validity of the model for studying pressure fluctuations. The final section presents the
results and their discussion.

2. Simulation model

The model is exactly the same as in the [2]. It considers a system of non-degenerate electrons
and singly charged ions with masses m and M respectively . The mass ratio is chosen to be equal
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M/m = 100, since the values of M/m ≥ 100 , this parameter has little effect on the dynamics of
electrons [3]. For the integration of the equations of motion used Leap-Frog scheme second-order
accuracy with time step ∆t = 1.66 as. The Langevin thermostat is applied for equilibration
system. Presented in this paper results obtained from analysis of the equilibrium MD trajectory
without using any thermostat, the total duration of which was 8.3 ps, which corresponds to
the 5 × 106 steps in time. The temperature of ions and electrons are equal T = 11600 K. The
number of ions and electrons in the system is N = 1000. The periodic boundary conditions are
used.

To eliminate the Coulomb singularity and to account for quantum effects the electron-ion
interaction potentials are usually corrected at short distances [4]. A simple shell-like potential
was used:

{

U(rij) = − e2

4πε0rij
, rij ≥ rcut,

U(rij) = − e2

4πε0rcut
= E0 = −5.0 eV, rij < rcut.

(2)

The electron-electron interaction and ion-ion interactions are the simple Coulomb. The potential
energy of system is pair-additive. It means that total potential energy of system is the potential
energies of all particles pairs in sum.

3. Pressure calculations

The technique of pressure calculations used in this article is conventional for this class of
problems [5–8]. The pressure P can be calculated by a mechanistic prescription equating the
exterior and interior forces on the container [5, 9]. This leads to the virial expression for the
pressure in an atomic system:

P =
kBTN

V
−

1

3V

∑

i

firi. (3)

It should be noted that this method of obtaining the equation (3) is not really valid for the infinite
periodic systems used in computer simulations: there are no container walls and external forces.
This article do not discuss the problem of finding limits applicability of virial expression here.
It considers only the applicability of formula (3) for the potential (2) with periodic boundary
conditions. The equation (3) is proved for the case when the potential energy of the system is a
homogeneous function (if the argument is multiplied by a coefficient, then the result is multiplied
by some power of this coefficient Ep(αr) = αkEp(r) ) [10]. The proof is based on Bogolyubov-
Zubarev theorem. The main advantages of this evidence is independence on any suggestions
about container walls and any separation of internal and external forces. The potential (2) is
homogenous function (k = −1). Thats why according to [10] equation (3) is the exact expression
for calculating the instantaneous pressure of an infinite system.

Well known that MD simulations with periodic boundary conditions is only approximation
of continues infinite media. The so-called long-range corrections of equation (3) usually are used
to account the difference between the infinite system and the system with periodic boundary
conditions [11,12]. The potential (2) is pair-additive. The article [7] shows that in this case any
long-range correction is not needed.

For further discussion, it is important to emphasize that all the evidence of the formula (3)
explicitly or implicitly use the Gibbs approach.

4. Numerical noise and pressure fluctuations

The fluctuation of any quantity determined from MD simulations consists of physical fluctuation
and numerical errors. The important task in the study of pressure fluctuations is to evaluate last
one. There are three general sources of numerical mistakes in MD—errors computing force acting
between two particles, summation of forces acting on the particle and integration equations of
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motion. The contribution of these errors can be estimated by the change in pressure when
increasing of accuracy of computing forces or decreasing of the time step. It was established
that the relative error of three sources outlined above does not exceed 10−8.

It was found that increasing amounts of particles N in the system leads to the fast increasing
computational error. But the dispersion of pressure behaves like N−1 in full agreement with
the generally accepted theory. So increasing number of particles in the system leads to the fast
increasing of the ratio between numerical and physical fluctuations of pressure. The source of
it is a summation on the right hand side of equation (3). Let approve it analytically.

Replace the summation over the particles on the summation in pairs:

N
∑

i

firi =
N
∑

i

N
∑

j>i

fijrij = W. (4)

Let’s present the virial of a system W as the sum of three variables. Where Wee, Wii and Wie

is the virial of all electron-electron, ion-ion and electron-ion interactions respectively:

W = Wee +Wii +Wei. (5)

According to the [13], you can replace the summation over pairs of particles to integration at
an average density n including the pair correlation function g(r). Without loss of generality we
can assume molecular cell a spherical with radius R:

Wee =
Ne
∑

i

Ne
∑

j>i

f ee
ij rij =

Ne
∑

i

wee
i , (6)

wee
i =

Ne
∑

j>i

reeij fij =

R
∫

0

[rf(r)] (negee(r))(4πr
2 dr) =

= 4πne

R
∫

0

gee(r)

(

−
1

r2

)

r3 dr = −4πne

R
∫

0

gee(r)r dr. (7)

To simplify the equations coefficient e2

4πε0
omitted. The well-known property of the pair

correlation function is lim
r→∞

(g(r)) = 1. Assume that g(r) = 1 for sufficiently big r:

wee
i ≈ −4πne





ε
∫

0

gee(r)r dr +

R
∫

ε

r dr



 =

= ϕee(ε) + 2πneR
2 ∼ R2 ∼ N

2

3 ,

Wee = Ne(ϕee(ε) + 2πneR
2) ∼ N

5

3 . (8)

Similarly we can prove the following assertions:

Wii ≈ Ni(ϕii(ε) + 2πNiniR
2) ∼ N

5

3 , (9)

Wei ≈ (Ni +Ne)ϕei(ε) − 2πR2(Nine +Neni) ∼ N
5

3 . (10)
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Figure 1. Dependence of normalized pressure on time.

Figure 2. Pressure fluctuations spectrum S(ω), f = ω/2π. The solid line represents the MD
result. Other lines are fits of it.

It appears from this that the virial W is little difference between the two fast-growing and
very close quantities Wei and Wee + Wii. This conclusion and equation (8,9,10) are perfectly
confirmed by the MD results. Note that the numerical problem in formula (3) exists only in
systems with a long-range potentials because lim

R→∞

wee
i (R) = const for short-range force fields.

After analyzing all sources of numerical errors can conclude that the ratio of amplitudes of
numerical noise and thermodynamic fluctuations is less 10−3.
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5. Spectrum pressure fluctuations

Consider a system with temperature T = 11600 K and density ne = ni = 5 × 1018 cm−3.
According to the article [2] at these parameters difference between Gaussian distribution and
distribution of pressure fluctuations are most evident. Electron plasma period in this system
is τe = 1/fe = 2π/ωe =

√

ǫ0me/(e2ne) = 49 fs. The MD trajectory length is 8.3 ps. or 169
electron plasma periods. The coupling parameter is:

Γ =

(

4πne

3

)1/3 e2

4πǫ0kBT
= 0.4. (11)

The average of the pressure Pavg and its variance were calculated according to generally accepted
formulas. Figure 1 shows the dependence of the normalized equilibrium pressure in the electron-
ion system on time. Without any analysis it is obvious that P (t) is not Gaussian process. To
analyze properties of this process we estimate spectrum of pressure as function of time. There
is an conventional way of calculating the spectrum S(ω) = |F{P (t)}|2, where F the Fourier
transform. But Welch method is used here. Although mathematically this method is equivalent
to Fourier transform based one, they differ from the numerical point of view. The Welch method
is more precisely (see [14] for the details).

The spectra pressure fluctuations are given in figure 2. According to the Einstein approach [1],
this spectrum should be white noise spectrum (S(ω) = const). But it is clear that the graph
can be approximated by superposition of three lines:











S(ω) = c1/f, 0.03 < f < 0.3 fs−1,

S(ω) = c2/f
3, 2 < f < 20 fs−1,

S(ω) = c3/f
5, f > 20 fs−1,

(12)

where c1, c2 and c3 some constants, f = ω/2π. Maximum of spectrum is reached at the minimum
resolvable frequency. Maximum of spectrum is reached at the minimum resolvable frequency
and depends on the time observation (length of MD trajectory). Last property and shape of
the spectrum allowed to assert that the flicker noise are observed in pressure fluctuations of
equilibrium plasma [15–19].

For Coulomb systems pressure and potential energy are strongly correlated values [10, 20].
There are articles [21–24] which reported flicker noise in potential energy of their system. In all
cases it is different biophysical MD system with a strong Coulomb interaction. This demonstrates
that the flicker noise is observed for a fairly wide range of different Coulomb systems.

6. Conclusions

The spectrum of equilibrium plasma pressure are investigated. Confirmed result of the article [2]:
fluctuation of plasma with temperature T = 11600 K and density ne = ni = 5× 1018 cm−3 are
non Gaussian. On the basis of the obtained spectrum concluded that the flicker noise are found
in the pressure fluctuations.

It is shown that the accuracy of calculations by formula (3) requires special attention in the
case of long-range potentials. A physical explanation of the reasons for this are given.

The article [10] shows that the pressure fluctuations in the Gibbs and Einstein approach are
not equal. Moreover their physical meaning is generally not equivalent. Any conclusions about
Gauss distribution of pressure fluctuations are obtained using Einstein’s approach. At the same
time all results based on the virial equation obtained in the Gibbs approach. This is the reason
of paradox, which is announced in the introduction.
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