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Abstract

Our main object of study is a 3—valent graph with a vector function
on its edges. The function assignes to an edge a pair of 2—adic integer
numbers and satisfies additional condition: the sum of its values on
three edges, terminating in the same vertex, is equal to 0. For each
vertex of the graph three vectors corresponding to these edges generate
a lattice over the ring of 2—adic integers. In this paper we study the
restrictions, imposed on these lattices by the combinatorics of the
graph.

As an application we obtain the following fact: a rational balanced
polygon cannot be cut into an odd number of triangles of equal areas.
First result of this type was obtained by Paul Monsky in 1970. He
proved that a square cannot be cut into an odd number of triangles of
equal areas. In 2000 Sherman Stein conjectured that the same holds
for any balanced polygon. We prove this conjecture in the case, when
coordinates of all vertices of the cut are rational numbers.

1 Introduction

This paper is motivated by author’s attempts to find a new proof of Monsky
theorem, which claims that a square can not be cut into an odd number of
triangles of equal areas. The only known proof of this theorem, which we
will sketch in section 2, has a few drawbacks.

The main one is that while the statement is, obviously, invariant under
the group of affine transformations of the plane, the proof is not. It is based
on a construction of a coloring of the plane in such a way that a color of a
point depends on the 2—adic valuations of its coordinates. But after applying
an affine transformation, the 2—adic valuations of the coordinates change in
an uncontrollable way.

Another drawback is that this proof seems not to be generalizable on a
wider class of polygons, for which the statement holds.

The third drawback is that not of the proof, but of the theorem itself. The
statement of Monsky theorem is rather restricted, it just claims nonexistance
of a triangulation with some bizarre property. It seems to be more interesting
to find a property of any triangulation, from which Monsky theorem would
follow.

This paper is the result of an attempt to find a proof of Monsky theorem
and its generalisations free of these defects. In the next section we will



formulate the exact generalization of Monsky theorem that we will prove —
Rational Stein Conjecture.

Instead of working with a triangulation of a polygon, we will work with a
pair, consisting of a 3—valent graph and a vector function on its edges. The
graph will be morally a dual graph of the triangulation, and the function
will assign to each edge a vector in the plane, which represents the side,
shared by two triangles, corresponding to the vertices of the edge. The
function, constructed in this way, will have a property that the sum of the
three vectors, corresponding to the three edges with the same terminal vertex,
is 0. We will call a 3—valent graph with such a function — a balanced graph.
For each vertex of a balanced graph one can define its multiplicity. It is equal
to a 2—adic valuation of a determinant, constructed from the values of the
balancing function on the edges, terminating in the vertex. In original terms
it is the 2—adic valuation of the area of the triangle in the triangulation.

The main result of our paper, proved in section 3, is a theorem about bal-
anced graphs. It claims that the number of vertices of a balanced graph with
minimal multiplicity among its all vertices is even. Rational Stein Conjecture
is a corollary of this fact, we prove it in section 4.

The original Stein conjecture is formulated for any balanced polygon with
any triangulation, while we will restrict ourselfs to the case, when all coor-
dinates of vertices of a triangulation are rational numbers. Moreover, the
theorem about balanced graphs will be formulated for a 2—adic-valued bal-
ancing function. This restriction is justified by the following reasons. Firstly,
the proof of the main theorem is based on the analysis of lattices over a nonar-
chemedian field. Secondly, the classical proof of Monsky theorem for rational
triangulations is as hard as for real triangulations.

Acknowledgments. My gratitude goes to Sergei Tabachnikov and Vladimir
Fock for numerous useful discussions. I am especially grateful to my scien-
tific advisor Nikolai Mnev, without whose guidance and support this article
would not have been possible.



Figure 1: A square is cut into triangles
2 Equidissection Problems

The history of Equidissection Problems! started with both beautiful and
puzzling proof of the following fact:

Theorem 2.1 (P. Monsky, 1970). A square cannot be cut® into an odd num-
ber of triangles® of equal areas.

The main idea of the proof is to color the plane in three different colors in
such a way that each line contains vertices of at most two colors. Though this
coloring can be simply defined by formulas, one can view it more conceptually
from the point of view of Tropical Geometry. Let us first restrict ourselfs to
the case of a triangulation, in which all coordinates of vertices are rational
numbers. Then we can apply to the triangulation 2—adic?* tropicalisation

By Equidissection Problems we mean various results in the spirit of Monsky Theorem.

2By the phrase polygon B is cut into triangles we mean that B can be presented as a
union of a finite number of triangles so that the interiors of the triangles have an empty
intersection with each other. Fig. 1 illustrates this.

3Throughout this article ”triangle” is taken to include the degenerate case.

4By 2— adic valuation of rational number we mean a maximal number of 2 deviding
its nomirator minus maximal number of 2 deviding its denominator. It will be denoted by

vy. For example, 15(20) = 2, V2(3—72) = —5,15(0) = 0.



map 1":
T:(2,9) € Q* — (n(z),1(y)) € R

One can color points with rational coordinates in the plane in three colors
according to the rule described below. Firstly, consider the image of the line
r+y+ 1 = 0 under the map T. It is a union of three rays: two of them
are parallel to the coordinate lines and the third is parallel to the diagonal.
This image, called a tropical line, cuts the plane into three parts. We will
color points of these parts in three colors acording to the scheme presented
in Fig.2.

Color B Color A

Color C

Figure 2: Tropical coloring of the plane and the image of the line

The pullback of this coloring under map 7T is the coloring of the plane,
satisfying the desired property, which can be shown as follows. An image of
any line is a tropical line as well and can be obtained by a parallel transport
from the image of the line x + y + 1 = 0. It is visual frome Fig.2 that any
tropical line contains points of two colors only. Furthermore, a stronger
property holds: any triangle, which has vertices of three different colors, has
negative 2—adic valuation. The latter statement can be verified by a direct
computation.



Now we are ready to finish the proof. Suppose that a square can be cut
into odd number of triangles of equal areas. Since this statement is affine
invariant, without loss of generality we can suppose that such cut exists for
a square, whose coordinates of vertices are (0,0), (0,1), (1,0), (1,1). Since its
area is equl to 1, areas of all triangles are equal to the inverse odd integer,
so have the 2—adic valuation equal to 0. From the property, stated above,
each of the triangles is colored in two colors only. One can show that this
contradicts Sperners Lemma, which finishes the proof of Monsky theorem.

After that, several generalizations of Monsky’s results appear. The first
generalization was conjectured by Stein and proved by Monsky in 1990 [5].
It claims that a centrally symmetric polygon cannot be cut into an odd
number of triangles of equal areas. Although it is based on the same idea of
3—coloring, this proof is technically more challenging than the proof in the
case of a square and uses a non-trivial homological technique.

In 1994 Bekker and Netsvetaev proved a similar statement in higher di-
mensions [2].

To state another generalization we need a definition. Let us call a finite
union of squares of area 1 with integer coordinates of vertices a polyomino.
First, Stein proved in 1999 [9] that a polyomino of an odd area can not be
cut into an odd number of triangles of equal areas, and in 2002 Praton [6]
proved the same for an even-area polyomino.

These results rise the following natural questions:

Problem 1. Find an algorithm, which proves or disproves the existence of
an odd equidissection for a given polygon.

Problem 2. Prove that a polygon from some wide class cannot be cut into
an odd number of triangles of equal areas.

Problem 3. For a given polygon let us fix a combinatorial type of its tri-
angulation. Find restrictions on areas of triangles in a triangulation of this

type.

A general algorithm, solving Problem 1, is not known yet. On the other
hand, in the next section we will describe a necessery condition for a polygon
to have an odd equidissection. It is not algorithmically verifiable, and the
question, whether this condition is sufficient or not, is still open.
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Some results on problem 3 were obtained by Aaron Abrams and James
Pommersheim, see [1]. The set of possible areas is, in general, an algebraic
variety, depending on combinatorial type of the triangulation.

Our main result is the solution of problem 2 for a class of balanced rational
polygons, which we will now describe.

Let P be a plane polygon with clockwise oriented boundary. P is called
balanced if its edges can be divided into pairs so that in each pair edges
are parallel, equal in length and have opposite orientation (the edges are
oriented, their orientation comes from the orientation of the boundary). P
is called rational if it can be drawn in the plane in a way that all its vertices
have rational coordinates. Its triangulation is called rational if all its vertices
have rational coordinates. For an example of a balanced rational polygone,
see Fig.3.

In 2000 Stein [7] made a conjectural generalization of Theorem 1, see also
8]

Conjecture 2.2 (S. Stein, 2000). A balanced polygon cannot be cut into an
odd number of triangles of equal areas.

In this note we will present a proof of a partial case of Conjecture 2.2.
Namely, we will prove the following theorem, which we will call Rational
Stein Conjecture.

Theorem 2.3 (Rational Stein Conjecture). Let P be a balanced polygon in
the plane. Then it is not possible to cut it into an odd number of triangles
having equal areas in a way that all the coordinates of the vertices of the
triangulation are rational numbers.

Remark 2.4. From Stein Conjecture it follows that a flat orientable surface
cannot be cut into an odd number of triangles of equal areas. If such a cut
would be possible then a ballanced polygon, obtained as an unfolding of the
flat surface would have such a cut as well, which contradicts Stein Conjecture.



Figure 3: Balanced rational polygon
3 Balanced graphs and primitive lattices

Our main object of study in the remaining part of the paper will be a pair,
consisting of a 3—valent graph and a function, assigning to each edge a pair
of 2—adic integers and subject to some conditions. We will call the function
"balancing”, and a graph with such a function — a ”balanced graph”.

Firstly, we would like to specify terminology connected with a 3—valent
graph. Sometimes we would prefer to think of it as of undirected. Specifically,
talking about cycles, degrees of vertices, etc. But in the definition of a bal-
anced graph it is easier to think of it as of directed, simply substituting each
unoriented edge with a pair of oriented edges going in the opposite directions.
We hope that this little ambiguity won’t lead to any misunderstanding.

Definition 3.1. Let I' be a 3—walent graph. We will call a function B,
assigning a pair of 2—adic integers to each of I''s oriented edges, a balancing
function if it satisfies the following two properties:

e B(e") =—B(e™), where €™ and e~ are the two directed edges, corre-
sponding to the same undirected edge e.

e B(e1)+B(ez)+B(es) = 0 for any three directed edges ey, ez, e sharing
the same terminal vertex.



We think of its values as of vectors lying in the lattice Zo & Zo, and denote
their coordinates by B, and B,. The pair, consisting of a graph I' and a
balancing function B is denoted by {T', B}.

Now let us introduce two notions: a multiplicity of a vertex and a lattice
of a vertex. We need the former to state the main result of our paper, while
keeping track of the latter will be the main ingredient of the proof of the
main result.

From now on we will suppose that our graph carries a balancing function.

Let a vertex v be terminal for three edges eq, e, e3. Then we know that
B(e1)+B(ez)+B(ez) = 0. Therefore, the following definitions make sense:

Definition 3.2. A multiplicity of a vertex is the 2—adic valuation of the
value of the determinant built from any two of the balancing vectors. More
concretly,

m(v) = v2(Bx(e1)By(ez) — By(e1)Bx(ez)).
One should bare in mind that the multiplicity of a vertex could be infinite.

Definition 3.3. A lattice of a vertex is a sublattice of Zo & Zs, generated
over Zs by any two of the balancing vectors. More conctetly,

L(v) = (B(e1),B(es)) = ZsB(e;1) + Z2B(e3).

The lattice of a vertex is of rank 1 if its multiplicity is infinite and of rank
2 if its multiplicity is finite.

From the balancing condition it is clear that in both definitions neither the
choice of the pair of vectors nor their order matter. One should bare in mind
that the notion of a lattice in a vertex is sharper than that of multiplicity.
Moreover, the multiplicity m(v) is just a 2—adic valuation of an index of
L(v) in Zs @ Zs.

Now we are ready to formulate the main result.

Theorem 3.4. Let I" be a balanced 3—valent graph. Then the number of its
vertices, whose multiplicity is minimal among the vertices of I, is even.
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For each pair {I', B} we will denote by M ({I", B}) the minimal multiplic-
ity of a vertex of I.

Our proof will be organized in the following way. We are going to prove
Theorem 3.4 by induction on M. Firstly, we will prove the base case M = 0.
In the proof of the induction step we will modify the balancing function
B, keeping track of the parity of the number of vertices with multiplicity
M. Eventually, we will come to the balancing function B’, whose z and y
coordinates on each edge are even 2—adic integers. Dividing the coordinate
function by 2, we will construct a balanced graph {I', B”}, to which the
induction hypothesis can be applyed.

Let us call a vector (uy,u,) € Zs @ Zy primitive if at least one of its
coordinates is an odd 2—adic integer. An edge of a balanced graph will be
called primitive, if the corresponding vector is primitive. Analogically, we
will call a sublattice of Zy @ Z, primitive if it contains a primitive vector. A
vertex of a balanced graph will be called primitive if the corresponding lattice
is primitive. The main advantage of this notion comes from the following fact:

Lemma 3.5. Let v be a vertex of a balanced graph I'. Then either m(v) =0
and all the three edges terminating in this vertex are primitive or m(v) > 0
and the number of primitive edges, terminating in this vertex, is even.

The proof is a simple computation, we will state it after the following
corollaries:
Corollary 3.6. (Base of induction.)

If M({T', B}) = 0 then Theorem 3.4 holds for {I', B}.
Proof. Consider a subgraph P of ', consisting of primitive edges only. By
Lemma 3.5, it has only 3—valent and 2—valent vertices. We need to show
that the number of the 3—valent vertices is even. Let us denote the number

of 2—valent vertices of P by Vy(P), 3—valent vertices of P by V5(P) and the
number of edges of P by &(P). Obviously,

2V, (P) + 3V5(P) = 2&(P).

So, V3(P) is even. O
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Corollary 3.7. If M({T', B}) > 0, then the primitive edges form a system
of nonintersecting cycles of T'.

Proof. The proof is obvious. O

These cycles will be called primitive. Further, we will work with these
cycles separately, modifying the balancing function on each of them. Even-
tually, we will get rid of all the primitive edges and apply the induction
hypothesis. But before that we return to the proof of Lemma 3.5.

Proof. Suppose that the three edges ey, e, eg terminate in the vertex v. Let
B(e;)= (x;,y;). If any two of these vectors are equivalent modulo 2, then
m(v)> 0. In this case either they are both primitive and then the third one
is not, thanks to the balancing condition, or none of them is primitive. In
the latter case both coordinates of the third vector are even 2—adic integers
by the same reason.

It remains to analyze the case when all the three vectors are different
modulo 2. Applying the balancing condition again, we see that none of them
can have two even coordinates. Therefore, these vectors equal (0,1),(1,0)
and (1,1) modulo 2. Obviously, in this case

m(v) = vg (‘(1) éD —o.

]

In the following we suppose that M(I') > 0 and we are in a position to
apply Corollary 3.7. From now on we will concentrate on the structure of
primitive cycles. The main issue for us will be to understand which lattices
can correspond to the vertices of such cycle. Obviously, all these lattices are
primitive. The main observation is that the primitive lattices over Zs form
some sort of a tree. We will describe their structure in the following two
lemmas.

Lemma 3.8. Let L be a primitive sublattice of Zo & Zs of multiplicity d.
Then for each 0 < i < d < oo there exists exactly one primitive sublattice of
Lo & Zo which contains L and whose multiplicity is equal to i.

12



If L contains a primitive vector w with odd first coordinate and i is finite,
then the lattice of multiplicity © containing L is generated by the vectors u
and (0,2).

If L contains a primitive vector w with odd second coordinate and i is
finite, then the lattice of multiplicity © containing L is generated by the vectors
w and (2¢,0).

If L contains a primitive vector w and v = d 1is infinite, then the lattice
of multiplicity v containing L is equal to L. In this case L is generated by w.

Proof. Let M be any primitive lattice between Zs & Zo and L. Let u be
a primitive vetor in L. Then it will be a primitive vector in M as well.
Without loss of generality suppose that the first coordinate of u is odd. It
is well known, and, essentially, a special case of the classification theorem of
abelian groups, that there exists a vector ' € Zg @ Zsy such that (u,u’) form
a basis of M. But then (u,u — %u) is a basis as well. Dividing the second
vector by invertible 2—adic integer we see that M has a basis (u, (0,2")) for
some i. Obviously, i = m(M). First two statements of the lemma follow from
that. The last statement is obvious. [

In the next lemma we will explain which sublattices of minimal index a
primitive lattice might have.

Lemma 3.9. Let L be a primitive lattice of multiplicity d < oo. Then it has
exactly three sublattices of multiplicity d+ 1. Two of them are primitive (we
will denote them Lt and L~ ) and one is not (it will be called L°). The last
one consists of all nonprimitive vectors in L. Fvery primitive vector in L lies
either in L™ or in L™.

Proof. 1t is easy to show that there are only three sublattices of multiplicity
d+ 1. Leaving the proof to the reader, we will just construct them. Without
loss of generality let us suppose that L contains a primitive vector u with
an odd first coordinate. By previous lemma, L has a basis of the form
(u, (0,2%)). Tts primitive sublattices of multiplicity d+1 are (u, (0,2%"1)) and
(u+ (0,2%),(0,2%+1)). A nonprimitive one is (2u, (0, 2%)). O
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So, primitive lattices form a 3—valent tree under inclusion with the root
Ziy @ Zs. In this interpretation, multiplicity of a lattice is simply the distace
to the root.

Lemma 3.10. Let v and w be two vertices of a balanced graph connected by
a primitive edge. If m(v)> m(w), then L(v)C L(w).

Proof. Let us denote the edge, which connects the two vertices, by e. By
Lemma 3.8, L(v) has a basis of the form (B(e), (0,2™™)) and L(w) has a
basis of the form (B(e), (0,2™™)). From this the statement follows. O

The following lemma contains information about lattices corresponding
to vertices of a primitive cycle, which is essential for our proof. As it has
been stated before, we suppose that M{[', B} > 0.

Lemma 3.11. Suppose that vertices vy, = vg,V1,...,Vn_1 form a cycle € in
I' and are all primitive. If at least one of them is of finite multiplicity, then
the following is true:

1. Among the lattices L(vy),...,L(vn_1) there exists one which contains
all the others. We will call it maximal and denote by L(C).

2. The number of the vertices of the cycle C, whose lattices are equal to
L(C), is even.

3. All the vectors, corresponding to the edges, which connect a vertex in
the cycle with a vertexr not in the cycle, are contained in the lattice

L(e)°.

Proof. 1. Let us form an abstract graph S(C), whose vertices correspond
to vg,...,vn_1. We will use the same symbols to denote the vertices
of € and of S(€).Two vertices a and b will be connected by an edge if
either L(a)C L(b) or L(b)C L(a). From the previous lemma we know
that v; is connected by an edge with v; 1, so this graph is connected.

Let us take a vertex m in the cycle, whose lattice L(m) is maximal by
inclusion among the lattices L(v;). We will show that it contains all
other lattices of the cycle. Let us suppose the opposite and take any
vertex t, for which L(t)Z L(m).
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Since S(C€) is connected, m and t can be connected in S(€) by a path
of minimal length. If the length of the path is equal to 1, then we come
to a contradiction. We know that L(t)Z L(m) by the suggestion about
t and L(m)¢ L(t) by the maximality of m.

We are going to show that the path can be made shorter, which contra-
dicts to its choice. Let us denote its vertices by wog = m, wy, ..., W) =
t. For each j either L(wj;) CL(Wjy1) or L(w;)D L(wjiq). If for all j
the case is the same, then we have either L(m) CL(t) or L(m) DL(t),
none of which is possible. Moreover, by maximality of m we know that
L(wo)DL(wq). Therefore, there exists j such that L(wj_1)2 L(w;)C
L(wji1). Since all these lattices are primitive, it follows from Lemma
3.10 that L(w;j_1) DL(Wj+1) or L(wj—1)C L(Wjt1). So wi_q1 and wjiq
are connected in S(€) by an edge and the chosen path is not minimal.

. Let’s denote the edge of I' connecting v; and vi,1 by e;. For each
edge e; we know that B(e;) is a primitive vector, B(e;) €L(C€). Since
at least one vertex of the cycle had finite multiplicity, L(€) has finite
multiplicity. First we would like to show that either B(e;) €L(C)' or
B(ej)e L(C)~. If B(e) lies in both L(C)* and L(€)~, then L(C)* =
L(€)~ by Lemma 3.10 which contradicts Lemma 3.9. At the same time,
by Lemma 3.9, any primitive vector of L(C) is contained in L(C)* or
L(C).

Therefore, we can divide the edges of the cycle in two groups: those
for which B(e;)€ L(C)* or L(€)~. The eveness of the number of the
vertices v for which L(v)= L(C) will follow from the following fact:
L(viy1)= L(@) if and only if B(e;)e L(C)" and B(ejr1)€ L(C)~, or
B(ej)e L(C)™ and B(ejyq)€ L(C)*.

The if-part follows from the fact that B(e;) and B(ej;1) form a basis
of L(viy1), so if they both are contained in L(C)* or L(C)~, then the
whole lattice L(vitq) is.

The only-if-part is also easy to show. If L(vi;1)# L(€) then by Lemma
3.9 we have L(vit1)C L(C)* or L(vi11)C L(C)~. In the first case B(e;)
and B(ejy1) are contained in L(€)™, in the second case they are con-
tained in L(C).

So the vertices, whose lattices are equal to L(C), are exactly those,
at which a change of the type of the edge happens. Therefore, there
number is even.
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3. An edge going from a vertex in the cycle to a vertex not in the cycle is
not primitive by Corollary 3.7 so it is contained in L° by Lemma 3.9.

]

Now we can finish the proof of the Theorem 3.4.

If M{T', B} = oo, we need to show that the number of vertices of the
graph is even. But this is true for any 3—valent graph. So we can suppose
that M{T', B} is finite.

We prove the statement for a pair {I', B} by induction on M{I", B}. Base
follows from Corollary 3.6, so we can suppose that M{I', B} > 0. By Corol-
lary 3.7, the nonprimitive edges form a number of nonintersecting cycles.
Each primitive cycle either does not contain any vertices of multiplicity M,
if its maximal vertex is of greater multiplicity, or contains even number of
them, if its maximal vertex is of multiplicity exactly M.

Now we will change B on each edge of each primitive cycle in such a way
that all the edges become nonprimitive and all the vertices have multiplicity
at least m + 1. This can be done separately for each primitive cycle. Let us
take a cycle € with vertices v, = vgq,...,va_1 and edges f, = fy,...,fu_1,
going out of the cycle. Let L(C) be a maximal lattice of the cycle. Then
m(L(€)) > M and m(L(€)°) > M + 1. All the vectors B(f;) are contained in
L(€)° by Lemma 3.11. We can modify B on the edges of the cycle, assigning
to the edge, which connects v; and v;.q, a vector

-2 B).

It is easy to check that if B was a balancing function, then the mod-
ified function will also be balancing. Now for each edge of the cycle the
corresponding vector is inside L°, so it is nonprimitive and all the lattices,
corresponding to the vertices, are contained in L°, so they have multiplicity
greater than M + 1. We can do it for all the primitive cycles consequently
and eventually construct a new balancing B* with the desired property.

If all the vertices of {I", B}, having multiplicity M{T', B}, were primitive,

16



then theorem 1 is proved for {I', B}, since we know that in each cycle the
number of vertices of multiplicity M{I', B} is even. If not, there exist a
nonprimitive vertex of multiplicity M{T", B}.

Let us consider a function B” = %,, which is also balancing by the fact
that all the vectors of B" are nonprimitive: both their coordinates are even.
We know that M{T', B"} = M{T', B} — 2, since in {I', B} there was a non-
primitive vertex of multiplicity M{T', B}. So by the induction hypothesis, the
number of vertices in {I', B"} of multiplicity M{T', B} — 2 is even. But the
number of vertices in {I", B} of multiplicity M{T", B} has the same parity,
from which Theorem 3.4 follows.

4 Rational Stein’s conjecture

Now we are ready to give a proof of Rational Stein Conjecture.

Theorem 4.1 (Rational Stein Conjecture). Let P be a balanced polygon in
the plane. Then it is not possible to cut it into an odd number of triangles
having equal areas in a way that all coordinates of vertices of the triangulation
are rational.

Proof. Let’s suppose that such a cut exists and come to a contradiction.
Since the statement is invariant under affine transformations of the plane, we
can suppose that all coordinates of vertices of the triangulation are integer
numbers.

Some triangles in the cut can intersect not in the proper way: a vertex of
a triangle can lie in the interior of a side of another triangle. By adding ad-
ditional degenerate triangles of area 0 we can make the triangulation proper.
In this modified triangulation there will be an odd number of triangles of
equal areas and several triangles of area 0.

From a triangulation of the balanced polygon P we can form a 3—valent
graph I'(P) in a natural way. First we take a dual graph of the triangulation.
Then we add an extra edge for each pair of the corresponding sides of the
boundary of the polygon P.

17



The inclusion of polygon P in the plane determines a balancing function
B(P). On each edge e from the dual triangulation balancing B is defined
to be a vector of the common side of the two triangles, corresponding to the
ends of e. For extra edges we can take the corresponding vector of the side
of P. Two triangles, corresponding to the ends of the edge have the same
vector of the side, because P is balanced. Coordinates of such a vector will
be integer numbers, and one can think of them as of 2—adic integers.

Let’s suppose that all nondegenerate triangles in the triangulation have
the same area S. Multiplicity of a vertex, corresponding to a nondegenerate
triangle of I'(P) equals 1 + 15(S), while that of a vertex, correponding to a
degenerate triangle is infinite. So, by Theorem 3.4 applied to the ballanced
graph {I'(P), B(P)}, the number of triangles of area A is even. This leads
to the contradiction. O

18



5

1]

References

A. Abrams and J. Pommersheim. Spaces of polygonal triangulations and
Monsky polynomials. To appear in Discrete and Computational geome-
try.

B. M. Bekker and N. Yu. Netsvetaev. Generalized Sperner lemma and
subdivisions into simplices of equal volume. Journal of Mathematical
Sciences, 1998, Volume 91, Number 6, 3492-3498.

S. Lang. Algebra. Addison-Wesley, Reading, Mass., 1965.

P. Monsky. On dividing a square into triangles. Amer. Math. Monthly
77 (1970), 161-164.

P. Monsky. A conjecture of Stein on plane dissections. Math. Z. 205
(1990), 583-592.

I. Praton. Cutting Polyominos into Equal-Area Triangles. Amer. Math.
Monthly 109 (2002), 818-826.

S. Stein. A generalized conjecture about cutting a polygon into triangles
of equal areas. Discrete Comput. Geom. 24 (2000), 141-145.

S. Stein. Cutting a polygon into triangles of equal areas. Math. Intelli-
gencer 26 (2004), no. 1, 17-21.

S. Stein. Cutting a polyomino into triangles of equal areas. Amer. Math.
Monthly 106 (1999), 255-257.

A.Hales, E Straus. Projective colorings. Pacific Journal of Mathematics
99 (1982),n0.1, 31-43.

19



