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Abstract. We prove that the sweeping process on a “regular” class of convex

sets is equicontinuous. Classes of polyhedral sets with a given finite set of
normal vectors are regular, as well as classes of uniformly strictly convex sets.

Regularity is invariant to certain operations on classes of convex sets such as

intersection, finite union, arithmetic sum and affine transformation.

1. Introduction. The sweeping process is an input-output operator, where the
input is a variable closed convex set Z(t) ⊆ Rn, t ∈ I = [0, T ] (all the results are
easily adaptable to I = [0,+∞)), and the output is the position of a “lazy” point
x(t) ∈ Rn that must remain within Z(t) but tries (locally in time) to minimize the
distance passed. This mathematical model finds applications in the theory of elastic-
plastic deformations, queueing processes in information networks, macroeconomics,
etc. For the history of sweeping process theory and some applications see, for
instance, [12, 4, 14, 11, 10, 2, 5, 1, 6, 7, 8] and the review [9].

Here we study the problem of equicontinuity of the sweeping process, that is,
of the uniform continuity of the output as the function of the initial point of the
output and of the set-valued input in the L∞-metric on I. We prove that, if the
variable convex set (the input) takes values in a “regular” class of closed convex
sets (see [13]), then the sweeping process is equicontinuous.

Note that we use an alternative definition of a solution of the sweeping process
as the limit of the catching-up procedure. This solution coincides with the classical
one whenever the classical solution exists.

2. Sweeping process.

2.1. Discrete time. We begin with the discrete-time case. Suppose that a finite
sequence Z of closed convex sets Zi ⊆ Rn, i = 1, . . . ,m, is given as the (set-
valued) input of the process, and x0 ∈ RN is the initial point of the output. The
output x = (x1, . . . , xm) is then found step by step as a finite sequence of points xi,
i = 1, . . . ,m, where xi = PZi(xi−1) is the orthogonal projection of xi−1 on the set
Zi. Henceforth we assume that x0 ∈ Z1, that is, x0 = x1.

Thus, in discrete time the sweeping process {Z, x0} → {x} is uniquely defined.
For I = [0, T ] (continuous time), the output x(t) of the process {Z(t), x0} will be
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defined as the limit of the outputs of discrete-time processes that approximate Z(t).
The existence of this limit is not guaranteed even if Z(t) is Hausdorff-continuous.

2.2. Continuous time. In the continuous-time case the input is a time-dependent
closed convex set Z(t), t ∈ I = [0, T ]. Again, x0 ∈ Z(0) is given.

In order to construct the solution (output) x(t) of the process, we approximate
it by discrete-time solutions. Each finite partition F = {0 = t1 < · · · < tm = T} of
I generates a discrete time approximation of the process Z(·) as follows.

We set ZFi = Z(ti) for i = 1, . . . ,m, and find the output xF (ti) = xFi , i =
1, . . . ,m, of the corresponding discrete-time sweeping process. Then we interpolate
linearly the function xF (ti) on the intervals [ti, ti+1], i = 1, . . . ,m − 1. Hence, for
any partition F , the continuous (actually, piecewise linear) output xF (t), t ∈ I, is
defined.

Denote by F the set of all finite partitions of I such that 0, T ∈ F . Recall that
the order relation by inclusion (that is, F ′ � F whenever F ⊆ F ′) generates the
directed set structure (see [3]) on the set of finite partitions, that is, any pair F, F ′

of partitions has an upper bound (for instance, F ∪ F ′).
We pass to the limit x(t) as the partition F refines indefinitely. This is a well-

known catching-up procedure that approximates “classical solutions” of the sweeping
process in many cases, see [12, 9]. It is important here that for “regular” sweeping
processes, the classical solution, if it exists, coincides with the limit of the catching-
up procedure. This will be clarified in Section 6.

The convergence is understood in the sense of Moore-Smith, that is, xF (·) con-
verges to x(·) if, for any ε > 0, there exists a partition F ∈ F such that

sup
t∈I
‖xF

′
(t)− x(t)‖ < ε whenever F ′ � F.

We will prove that, in the “regular” case, a unique limit x(t) exists for a Hausdorff-
continuous input Z(t) and x(·) depends equicontinuously on the input Z(·), in the
L∞-metric.

Note that the assumption of regularity is essential since there exist Hausdorff-
continuous inputs Z(t) for which the limit x(t) does not exist, see the last example
of Section 2.4.

2.3. Continuity. By d(A,B) we denote the Hausdorff distance between the sets
A,B ⊆ Rn:

d(A,B) = max{e(A,B), e(B,A)}, where e(A,B) = sup
x∈A

inf
y∈B
‖x− y‖.

The L∞-distance between the inputs Z(·) and Z ′(·) on I will be defined as

dI(Z(·), Z ′(·)) = sup
t∈I

d(Z(t), Z ′(t)),

and between the outputs x(·) and x′(·) as

dI(x(·), x′(·)) = sup
t∈I
‖x(t)− x′(t)‖.

As follows from the results of [10], the sweeping process in a neighborhood of
a compact-valued Lipschitz-continuous input Z(t), t ∈ I, such that int(Z(t)) 6= ∅,
t ∈ I, is a continuous operator in the above sense.

It is also known that, for special classes of Z(t), this result can be strengthened.
For instance, if Z(t) = Z + u(t) for some closed convex Z ⊆ Rn and continuous
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u(t) : I → Rn, and if Z is a polyhedral set, then the map u(·)→ x(·) (provided x0

is given) is a Lipschitz continuous map from C(I,Rn) to itself, see [14, 5, 1, 7].
This assertion can be also extended to polyhedral inputs of the form

Z(t) = {z ∈ Rn : 〈di, z〉 ≤ ui(t), i = 1, . . . ,m},
where ui(t) are continuous scalar functions.

By equicontinuity we will understand the following property. For each ε > 0
there is a δ > 0 such that the inequalities

‖x0 − x′0‖ < δ and dI(Z(·), Z ′(·)) < δ (1)

imply
dI(x(·), x′(·)) < ε. (2)

In what follows we will prove the equicontinuity property of “regular” classes Z
of closed convex sets. Namely, we will prove that, for each ε > 0, there exists a
δ = δ(ε,Z) > 0 such that (1) implies (2) for all Hausdorff-continuous Z(·), Z ′(·)
that satisfy Z(t), Z ′(t) ∈ Z for all t ∈ I.

2.4. Examples. In general, the sweeping process is not continuous as a map from
{x0, Z(·)} to x(·), even in a neighborhood of a constant input Z(t) ≡ Z. Say, this
is the case for Z = [0, 1]×{0} in R2. Indeed, by small oscillations of the variable
set Z ′(t) in an arbitrarily small neighborhood of Z we may force the output x′(t)
to move, say, from x0 = (0, 0) to (1, 0), while for the process {x0, Z(t)} the output
x(t) is constant, that is, x(t) ≡ x0.

For instance, let Z ′(t) be the triangle [(0,−h(t)), (1,−h(t)), (1, δ/2−h(t)]. If h(t)
makes a large number of oscillations between 0 and δ as t changes from 0 to T , and
if h(T ) = 0, then x(T ) = (1, 0).

Let us also give an example of Hausdorff-continuous input Z(t) for which there
is no solution of sweeping process. We modify the previous example as follows. The
interval [0, T ] is partitioned into an infinite number of intervals [0, T/2], [T/2, 3T/4],
etc. Then, at the first interval we take ε1 = 1 and construct the input Z1(t) that is
ε1-proximal to Z, and that forces x(T/2) to take value (1, 0) for each initial value
x(0).

Then we take ε2 = ε1/2 and construct the input Z2(t) on [T/2, 3T/4] that is
ε2-proximal to Z, and such that Z2(T/2) = Z1(T/2) and x(3T/4) = (0, 0), and so
on. We also set Z(T ) = Z = [(0, 0), (1, 0)]. As a result, we construct a continuous
input Z(t) on [0, T ] for which the value of x(T ) is undefined.

3. Regular classes.

3.1. Definition. Let Z be some class of closed convex sets Z ⊆ Rn.

Definition 3.1. The class Z is regular if, for any h ∈ X, there exists an ε > 0
such that Z ∈ Z, x ∈ Z and d(x+ h, Z) ≤ ε imply h ∈ KZ(x), where KZ(x) is the
tangent cone to Z at x. Recall that

KZ(x) = ∪y∈Z,α>0α(y − x).

Equivalently,

Definition 3.2. The class Z is regular if, for each vector h ∈ Rn, there is an
ε > 0 such that, whenever Z ∈ Z, x ∈ Z, it follows from [x, x+ h] ∩ Z = {x} that
d(x+ h, Z) ≥ ε and from [x, x− h] ∩ Z = {x} that d(x− h, Z) ≥ ε.

The equivalence of these definitions follows from a simple assertion:
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Lemma 3.3. If x ∈ Z and x+ αh 6∈ Z then h 6∈ KZ(y), where y = PZ(x+ αh).

Proof. Denote g = x+ αh− y. By definition of the projection, 〈g, y − x〉 ≥ 0, that
is, 〈αh, g〉 ≥ 〈g, g〉 > 0. However, 〈g, f〉 ≤ 0 for each f ∈ KZ(y).

We will also use the following equivalent definition of regularity.

Definition 3.4. A class Z of convex closed sets in Rn is regular if, for any h ∈ Rn,
there exists an ε = ε(h) > 0 such that Z ∈ Z, x ∈ Z and d(x + h, Z) ≤ ε imply
x+ h/2 ∈ Z.

3.2. Examples. The class of all singletons Z = {x} is regular. A half-space H =
{x ∈ Rn : 〈x, h〉 ≤ 0} is regular. A class of uniformly strictly convex sets is regular.
Namely, if, for any α > 0 there exists a β = β(α) > 0 such that x, y ∈ Z ⊆ Z
and ‖x − y‖ ≥ α imply x+y

2 + Bβ ⊆ Z, then Z is regular. Here Bβ is the ball
{x ∈ Rn : ‖x‖ ≤ β}.

Indeed, if x ∈ Z and d(x + h, Z) < ε, then x, x + h′ ∈ Z for some h′ such that
‖h− h′‖ < ε. Hence ‖h′‖ > ‖h‖ − ε and x+ h′/2 +Bβ(‖h′‖) ⊆ Z. If β(‖h′‖) ≥ ε/2,
then x+ h/2 ∈ Z since ‖h′/2− h/2‖ ≤ ε/2.

Respectively, it suffices to require that the inequalities

‖h′‖ ≥ ‖h‖
2

and β

(
‖h‖
2

)
≥ ε

2

hold. Therefore, it suffices to assign ε(h) = 2β( 1
2‖h‖).

3.3. Main properties of regular classes. The regularity property is invariant
with respect to some operations on convex sets.

Theorem 3.5. If A and B are regular classes, then

• A ∪ B is regular (the union),
• C = {A ∩B : A ∈ A, B ∈ B} is regular (the intersection),
• MA is regular for any affine mapping M (affine transformation),
• D = {A+B : A ∈ A, B ∈ B} is regular (the arithmetic sum).

Proof. The union is regular because we can take

εA∪B(h) = min{εA(h), εA(h)}.
The regularity of intersections follows immediately from Definition 3.4 since d(x+
h,∩γ∈ΓAγ) < ε implies d(x+ h,Aγ) < ε for all γ ∈ Γ.

Let us now prove the regularity of MA, where M is a linear map from Rn
to Rm. Suppose the contrary. Let, for some h ∈ Rm, there exist a sequence of
xi ∈MAi ∈ A such that xi + h/2 6∈MAi and d(xi + h,MAi)→ 0 as i→∞.

Let yi ∈ MAi be a sequence of points such that ‖xi + h − yi‖ → 0 as i → ∞.
Since xi, yi ∈ MAi, there exist pi, qi ∈ Ai such that xi = Mpi, yi = Mqi. We
assume that, for a given pi, the corresponding qi is chosen such that

‖qi − pi‖ = min
q∈Zi:Mq=yi

‖q − pi‖

(the minimum is attained because Ai is closed). Now we consider two cases.
Suppose first that

lim inf
i→∞

‖qi − pi‖ < +∞.

Then there exists a subsequence of i (let it be the whole sequence without loss of
generality) such that

lim
i→∞

(qi − pi) = g ∈ Rn. (3)
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Then, clearly, h = Mg. Hence, pi + g/2 6∈ Ai (otherwise xi + h/2 ∈ MAi). Thus,
by the regularity of A, the inequality

d(qi + g,Ai) ≥ ε(g)

holds for each i = 1, 2, . . . , which is a contradiction with (3).
Now let

lim
i→∞

‖qi − pi‖ = +∞. (4)

Passing, if necessary, to a subsequence, we denote

f = lim
i→∞

qi − pi
‖qi − pi‖

. (5)

It follows that Mf = 0. By the choice of qi we conclude that qi − αf 6∈ Ai for all
α > 0 (otherwise there exists a point qi − αf ∈ Ai which is closer to pi than qi,
and, since M(qi − αf) = yi, we have a contradiction).

Then qi − f/2 6∈ Ai and, by the regularity assumption,

d(qi − f,Ai) ≥ ε(f).

By convexity of Ai we conclude that

d(qi − ‖qi − pi‖f,Ai) ≥ ε(f)‖qi − pi‖,

but this is a contradiction with (5) and (4). It remains to verify that MA is closed
whenever A ∈ A. The proof is nearly the same as the proof of the second case
above.

Finally, let us prove that D = A+B is regular. First, let us note that the product
A×B is regular (this product consists of the sets {(x, y) ∈ R2n : x ∈ A, y ∈ B} for
all pairs A ∈ A, B ∈ B).

Let h = (h1, h2). Note that the inequality d(h,A×B) ≤ ε implies d(h1, A) ≤
ε and d(h2, B) ≤ ε. Now the regularity of A×B follows straightaway from the
definition of regularity.

It remains to note that A + B is the image of A×B under the linear map M :
(x, y) → x + y that acts from R2n to Rn. The assertion now follows from the
regularity of MD.

3.4. Some regular and irregular classes. As a consequence of Theorem 3.5, for
a given finite set {h1, . . . , hK} of unit vectors in Rn, the class of polyhedral sets of
the form

Z = {z ∈ Rn : 〈z, hi〉 ≤ ai, i = 1, . . . ,K}
is regular.

Also, if Z is regular, then the class of neighborhoods Z + Ba, 0 ≤ a ≤ A < ∞,
Z ∈ Z, is regular since the class of balls {Ba : 0 ≤ a ≤ A < ∞} is regular as a
uniformly strictly convex class.

More examples of regular classes can be constructed by means of operations on
sets from Theorem 3.5. It can be easily seen that in R2 any compact convex set is
regular.

On the other hand, if n ≥ 3, there exist non-regular compact convex sets, for

instance, the truncated cone Z = {(x, y, z) : z ≥ 0,
√
x2 + y2 + z ≤ 1} in R3.

Indeed, set h = (1, 0, 1) and p = (ε − 1,
√

2ε− ε2, 0). Then p + h/2 6∈ Z but
d(p+ h, Z)→ 0 as ε→ 0.
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Modifying this example we may construct an irregular set with smooth boundary.
Its dual set is, hence, strictly convex and is an example of a regular set whose dual
is irregular.

3.5. Polyhedral norm. Let Z be a regular class with the symmetric function
ε(h) as in Definition 3.2. By Sn−1 we denote the unit sphere in Rn. The open balls
B0(h, ε(h)), h ∈ Sn−1, cover the sphere Sn−1 (compact set). Hence, we can find a
finite symmetric subset Q = {v1, . . . , vK} ⊆ Sn−1 such that the balls B0(v, ε(v)),
v ∈ Q, still cover Sn−1.

Denote R(v) = {g ∈ Sn−1 : ‖v − g‖ = ε(v)}. There is a unique hyperplane H(v)
that contains R(v). This hyperplane is orthogonal to v. Actually,

H(v) = {z ∈ Rn : 〈z, v〉 = c(v)}, where c(v) = 1− ε(v)2

2
.

Let us consider the polyhedron G bounded by the hyperplanes H(v), v ∈ Q:

G = {z ∈ Rn : |〈z, v〉| ≤ c(v), v ∈ Q}.

Now we define the polyhedral norm

‖x‖G = inf{a > 0 :
1

a
x ∈ G}.

This norm will be used for the proof of equicontinuity of regular sweeping processes.

3.6. Some properties of the polyhedral norm. By construction,

‖x‖G > ‖x‖ if x 6= 0. (6)

For each h ∈ Sn−1, let us define the vector v(h) ∈ Q such that

〈h, v(h)〉 = max
v∈Q

〈h, v〉
c(v)

.

Such a choice is unique if h intersects the boundary of G at the relative interior
of a face of maximal dimension n − 1. Otherwise we chose a single vector v ∈ Q
among several alternatives (does not matter which one, but we will require that
v(h) = −v(−h), h ∈ Sn−1).

By construction, ‖h − v(h)‖ ≤ ε(v(h)). From (6) we conclude that there exists
an α = α(G,Q) > 0 such that

‖h− v(h)‖ < ε(v(h))− α for each h ∈ Sn−1. (7)

Additionally,

Lemma 3.6. If 〈z, v(h)〉 ≥ 0 then ‖h+ z‖G ≥ ‖h‖G.

This assertion follows from the fact that h/‖h‖G belongs to the (n−1)-dimensional
face of G, orthogonal to v(h).

Let us also extend the map v(·) to Rn\{0} by homogeneity. For any h 6= 0 we
set v(h) = ‖h‖v( h

‖h‖ ).
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4. Equicontinuity in discrete time.

4.1. Projections. The discrete-time sweeping process is defined as a sequence of
projections onto closed convex sets. We assume all these sets to be taken from
a regular class Z (Z-processes). We will compare the solutions xi and x′i of Z-
processes Z and Z ′, respectively.

Denote hi = x′i − xi. Let us study the dynamics of hi, i = 1, . . . . To begin
with, consider two sets Z,Z ′ ∈ Z and two points x, x′ ∈ Rn. Denote y = PZ(x),
y′ = PZ′(x′), g = x′ − x, h = y′ − y. Suppose that ‖h‖ ≥ 1. We will compare ‖g‖G
and ‖h‖G.

Lemma 4.1. If d(Z,Z ′) ≤ α‖h‖ then ‖h‖G ≤ ‖g‖G,

where α is defined by (7).

Proof. Since ‖h‖ ≥ 1, (7) implies

‖h− v(h)‖ < ‖h‖(ε(v(h))− α).

Then, since y′ = y+ h ∈ Z ′ and, hence, d(y+ h, Z) ≤ α‖h‖, we get the inequalities

d(y + v(h), Z) < α‖h‖+ ‖h‖(ε(v(h))− α) = ‖h‖ε(v(h)). (8)

and, respectively

d(y′ − v(h), Z ′) < ‖h‖ε(v(h)). (9)

It follows from (8), (9) that [y, y + v(h)] ∩ Z 6= {y} and [y′, y′ − v(h)] ∩ Z ′ 6=
{y′}. For instance, y + αv(h) ∈ Z for some α > 0. Since y = PZ(x), we have
〈x− y, (y + αv(h))− y〉 ≤ 0, that is, 〈x− y, v(h)〉 ≤ 0. Similarly, 〈x′ − y′, v(h)〉 ≥
0. Hence,

〈h, v(h)〉 ≤ 〈g, v(h)〉.

From Lemma 3.6 we conclude then that ‖h‖G ≤ ‖g‖G.

4.2. Main theorem.

Theorem 4.2. The regular discrete-time sweeping process is equicontinuous.

Proof. First, from the inequality

‖PZ(x)− PZ(y)‖ ≤ ‖x− y‖

we conclude that the outputs xi, yi of the processes {Zi, x0} and {Zi, x′0} (the same
input, different initial points) are non-diverging, that is, ‖xi − yi‖ ≤ ‖xi−1 − yi−1‖
for all i = 1, . . . ,K. Hence, it suffices to consider the case x0 = x′0.

Let us consider the difference hi = x′i − xi between the outputs of two processes
Z and Z ′. It follows from Lemma 4.1 that, if d(Zi, Z

′
i) < α then ‖hi‖G ≤ ‖hi−1‖G

whenever ‖hi‖ ≥ 1.
By obvious scaling we prove also that, for any ε > 0, there exists a δ > 0 such

that, if d(Zi, Z
′
i) < δ then ‖hi‖G ≤ ‖hi−1‖G whenever ‖hi‖ ≥ ε. Since the norms

‖ · ‖ and ‖ · ‖G are equivalent (as is always the case in a finite-dimensional space),
we conclude that ‖hi‖G never exceeds γε for some γ = γ(G) > 0.
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5. Equicontinuity in continuous time.

5.1. Uniqueness. The output of the continuous-time sweeping process {Z(t), x0}
on the time interval I is defined as a limit of discrete-time ones as the finite partition
F of I refines indefinitely. This limit exists and is unique if Z(t) is a Hausdorff-
continuous regular process.

Indeed, the maximum of Hausdorff distance between ZF
′
(t) and ZF

′′
(t) taken

over all F ′, F ′′ � F and all t ∈ I, vanishes as F refines indefinitely. Then, by
Theorem 4.2, the maximal distance between the outputs xF

′
(t) and xF

′′
(t) also

vanishes. Therefore the directed set xF (·) has the Cauchy property and, hence,
converges uniformly as F refines to infinity. The limit x(t) is called the output of
the continuous-time sweeping process Z(t).

5.2. Equicontinuity.

Theorem 5.1. The regular continuous-time sweeping process is equicontinuous,
that is, for any ε > 0 there is a δ > 0 such that ‖x′(t)− x(t)‖ < ε, t ∈ I, whenever
x0 = x′0 and dH(Z(t), Z ′(t)) < ε, t ∈ I.

The result is an immediate consequence of Theorem 4.2. Actually, the assertion
is true without the assumption of Hausdorff-continuity of Z(t). Obviously, it suf-
fices to require unique solvability of the sweeping process for the class of inputs in
consideration.

As a consequence, we prove again that a polyhedral sweeping process is Lipschitz
continuous. This is due to the scaling properties of the finite class of half-spaces.
Indeed, the polyhedral class Z is invariant to multiplication by a positive constant
α. Moreover, the output of the process {αZ(t), αx0} is equal to αx(t).

Hence, if

d(Z(·), Z ′(·)) < δ, ‖x0 − x′0‖ < δ

implies

d(x(·)− x′(·)) < ε,

then

d(Z(·), Z ′(·)) < αδ, ‖x0 − x′0‖ < αδ

implies

d(x(·)− x′(·)) < αε.

6. Classical solutions. Let us discuss briefly the relation between our definition
of the output x(t) and the classical solution of the sweeping process defined by J.-J.
Moreau. Namely, we demonstrate that x(t) coincides with the classical solution
whenever the latter exists.

Recall that x(t) is the classical solution of the sweeping process Z(t) if x(t) ∈ Z(t)
is absolutely continuous on I and

ẋ(t) ∈ −KZ(t)(x(t)) for almost all t ∈ I.

Let Z(t) be a Hausdorff-continuous regular input with a classical solution x(t).
Let us construct a piecewise constant input Z ′(t) with the catching-up output x′(t)
such that d(Z(t), Z ′(t)) < ε and ‖x(t)− x′(t)‖ < ε for all t ∈ I. As a first step, we
construct x′(t) as a broken line that is close to x(t) uniformly on I and such that
the vector x′i+1− x′i = x′(ti+1)− x′(ti) for each linear segment of x′(·) is parallel to
ẋ(si) for some si ∈ [ti, ti+1].
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Then we set Z ′(t) = Z(si) for all t ∈ (ti, ti+1] which guarantees that x′(t) is the
output of the input Z ′(t). If x′(·) is close enough to x(·) and maxi ‖x′i+1 − x′i‖ is
small enough, we get the required approximation.

Finally, we let ε → 0 and use the fact that the corresponding outputs x′ε(t)
converge to the output of Z(t) uniformly on I. Since they also converge to the
classical solution x(t), we conclude that the classical solution coincides with the
catching-up one.
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