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In this paper, some abnormal or rogue wave events registered in the North Sea by means
of the surface elevation measurements are reconstructed with the help of theoretical mod-
els for water waves and numerical simulations of wave evolution. Time series of surface
elevation, which are measured at a single point, provide incomplete information about
the waves. The registered time series are used to restore the wave dynamics under rea-
sonable assumptions. Different frameworks associated with the relation between the sur-
face elevation and the fluid velocity fields are considered, and different numerical models
are used to simulate the wave dynamics in time and space. It is shown that for some
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C. Guedes Soares

Centre for Marine Technology and Engineering,
(CENTEC), Technical University of Lisbon,
Instituto Superior Tecnico,

1049-001 Lisboa, Portugal

e-mail: guedess@mar.ist.utl.pt

1 Introduction

The popularity of abnormal, freak, or rogue wave problem
amplified suddenly within the last few decades, and it is nowadays
a top-rank topic for scientific discussions, conferences, and publi-
cations in marine science [1-3]. The problem has motivated theo-
reticians, who managed to reveal new extraordinary features in
the nonlinear wave dynamics, and naval architects and marine
engineers thanks to trustworthy testimonies of the ultimate effects
caused by these extreme waves. Most frequently, rogue waves are
specified with the help of a simple amplitude criterion, so that a
wave is assumed rogue, if its height at least twice larger than the
significant wave height. At the same time, the discussion on a
proper selection of this wave popularity is still open.

Already, there is a number of well-documented cases of occur-
rence of unexpectedly large sea waves. It is well understood that
the sea may be dangerous for navigation. It is also commonly
expected that the modern engineering level of knowledge is high
enough to protect people from many disasters.

Today, observations and measurements of high waves from
space become possible. A three-week registration of surface
waves from the European satellite ERS-2 revealed the regions
with high waves and detected a wave of 29.8 m height [4]. Bear-
ing in mind that ships are often designed for 10-15m wave
heights, it becomes obvious that the observed waves are real
threats that may cause damage and the ship lost.

The state of affairs can always be improved and casualties can
be reduced in frequency and consequences. Hundreds of vessels
sink and hundreds of people perish annually, although the situa-
tion takes a turn for the better through years [5]. The list of acci-
dents related to the attacks of huge waves contains many recent
dates. Thus, 22 super carriers were lost or severely damaged
between 1969 and 1994 due to the occurrence of sudden rogue
waves; a total of 542 lives were lost as a result [6].

During incidents, relatively high waves are expected to be
recorded. Toffoli et al. [7] found, however, that rather low signifi-
cant wave heights occurred during those ship accidents, which
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have been reported as being due to bad weather. Thus, this could
suggest that the significant wave height is not the only governing
factor that leads to accidents. In fact, Guedes Soares et al. [8] study-
ing accidents reported during a reasonable period in the North At-
lantic demonstrated that the areas of larger heavy weather accident
rates coincide with the areas of larger mean wave steepness [9],
what may claim the importance of wave nonlinearity effects.

The wave loading on stationary or moving floating structures
may be determined by other parameters than wave height, such as
steepness, crest height, horizontal wave asymmetry; in particular
wave sequences are also expected to be quite dangerous due to the
memory and resonance effects [10]. Different types of ships will
be prone to different wave parameters and conditions. Different
kinds of extreme waves may be treated as rogues wave or not,
depending on particular cases and applications. This is an impor-
tant practical question, which should be answered.

The present work aims at reproducing realistic extreme sea
wave events, related to abnormal, rogue or freak waves, which
were registered in the ocean by means of records of the surface
elevation time series. Having this information only at one point in
space is in fact ambiguous, but it is still very useful, and attractive.
The measured time series retains the information on wave dynam-
ics hidden. When the wave evolution is known, the features asso-
ciated with the rogue wave may be computed, and the important
characteristic of the dangerous incident, the rogue wave lifetime,
may be estimated.

In most cases, the surface elevation at a single point is avail-
able, although the surface wave represents a combination of the
surface movement and the fluid movement within the water col-
umn. Obtaining the water velocity field is the first problem when
one desires to estimate the wave dynamics.

In some simplified cases the relation between the surface eleva-
tion and the water velocity is known from the theory. To do so the
waves are generally supposed to be unidirectional. Then, they are
often assumed to be weakly nonlinear or/and narrow-banded.
However, realistic rogue waves are extreme, they are strongly
nonlinear and have broad spectrum thus the approaches listed
above are not verified, and their capability to describe the case is
not obvious.

The wave envelope (wave modulations) concept is a particular
case when the surface elevation and the water field velocity are
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related in a straightforward way, so that the evolution equations
have a relatively simple form and govern the dynamics of com-
plex wave amplitude. Recently, this approach was shown able to
describe rather well even quite steep and short nonlinear wave
packets [11-15].

The reproduction of wave temporal and spatial dynamics was
probably first performed by Trulsen [16] numerically for the case
of the well-known New Year Wave record (retrieved at the Draup-
ner platform in the North Sea), within the framework of envelope
equations (a modified Dysthe model, see Refs. [17-20]). This and
other extreme wave events were reproduced in laboratory condi-
tions by Clauss and Klein (see Ref. [21], and references therein)
with the help of an iterative procedure on the basis of the
“nonlinear” dispersive law for Stokes waves.

Several rogue wave records from the North Sea and Black Sea
were simulated by means of the envelope models (the nonlinear
Schrodinger and the Dysthe equations) in Refs. [22-24]; there the
lifetime of the abnormal wave events was estimated as long as up
to about 100 sec. The present paper reports on the further develop-
ment of that research, with combination of temporal and spatial
evolution approaches, application of different envelope concepts
and the use of strongly nonlinear simulations.

Rogue waves were registered from the North Alwyn fixed steel
jacket platform in the northern North Sea (1°44" E 60°45’ N, depth
126 m) during the storm from the 16th to 22nd of Nov. 1997. Dur-
ing this storm several abnormal waves were identified as reported
in Ref. [25]. Four records NA9711180110, NA9711200131,
NA9711200151, and NA9711200311 were studied in Ref. [23] (the
codes contain the year, month and time of the registration); six
other records NA9711161053, NA9711190751, NA9711191831,
NA9711192011, NA9711192351, and NA9711200731 were con-
sidered in less details in Ref. [24]. These ten time series are exam-
ined in the present study. It is shown that some of them may be
sufficiently well described within the approximate Dysthe model
approach, and the strongly nonlinear effects generally result in the
sharper single wave profile. However, this approach seems to be ca-
pable of describing the extreme wave evolution up to about 10 min,
but fails to describe the whole 20-min time series. Some of the
extreme wave records from the North Alwyn could not be repro-
duced with acceptable accuracy by means of the envelope
approach.

In Sec. 2, an overview of the numerical models employed is
given. The problem of reconstruction of the fluid velocity for
given surface elevation is discussed in Sec. 3. Section 4 presents
the results of numerical reconstructions of rogue wave dynamics,
including the results of fully nonlinear wave simulations. Closing
words and results are formulated in Sec. 5.

2 Numerical Models

Theoretical models that describe the unidirectional propagation
of surface gravity potential waves over deep water are employed
in the present study, the high order spectral method for solution of
the Euler equations, and the modified nonlinear Schrodinger
theory.

2.1 Primitive Equations of Potential Hydrodynamics. The
primitive equations of the potential hydrodynamics for the
surface displacement #(x,f) and the surface velocity potential
D(x, 1) = @(x, t, z=n) have the form
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Here, x is the spatial coordinate along the wave propagation, and ¢
is time. The Oz axis is directed upward, and g is the acceleration
due to gravity.

Equations (1) and (2) constitute the surface boundary condition.
Equation (3) is the Laplace equation for the velocity potential, and
Eq. (4) is the bottom condition (an infinitively deep water case is
considered).

Equations (1)—(4) are integrated in time by means of the high-
order spectral method (HOSM) in the method presented in
Ref. [26]. Following this approach, the Laplace equation for ve-
locity potential, Eq. (3), is solved in a fixed domain, where the
curved free boundary at the water surface is substituted by a hori-
zontal line z=0. The velocity potential, ¢@(x, z, ), is represented
in the form of a Taylor series of a given order (characterized by
parameter M) around the rest water level, what allows obtaining
its value at the surface, ®(x, 7).

The HOSM is strictly speaking not a fully-nonlinear, but a
strongly nonlinear algorithm, which resolves the wave-wave inter-
actions up to the predetermined order M (for M =3 this approach
is of the same accuracy as the Zakharov equation [27]). The value
M =6 of the parameter is used in the present study, what corre-
sponds to practically fully nonlinear case (see discussion in
Ref. [28]).

2.2 Equations for Wave Modulations. The primitive hydro-
dynamic equations are difficult for analysis and even for solving
numerically; therefore, approximate approaches are popular. The
envelope approach which is very powerful, describes the wave
fields in terms of one complex function, the wave amplitude; and
the dynamical equations describe wave modulations (narrow-
banded wave assumption).

The simplest theory on this way is represented by the nonlinear
Schrodinger (NLS) equation, which may be written in form

8A+C 0A +cuoazA
ot ¢ ox 8k3 Ox?

0)01‘0 ‘A’ A=0 )

Here A(x, 1) is the complex wave amplitude. Parameters o, and kg
are the mean cyclic frequency and wavenumber, respectively,
linked by the deep-water dispersion relation

o® = kg ©)

Cgr = dw/dk denotes the group velocity for specified k.

When the first two terms in Eq. (5) prevail, linear effects are
dominant. If the two first and the last terms in Eq. (5) are the main
players, then the group nonlinearity is the most important, and the
nonlinear self-modulation due to the Benjamin-Feir instability
develops, see Ref. [27].

In fact, the NLS equation (5) is capable of describing moder-
ately nonlinear waves only for a few periods; thus, it is not suffi-
cient if one needs to consider a long distance or steep waves.
Besides the NLS equation, the improved theory for wave modula-
tions is employed in this study, the modifications of the Dysthe
model [18-20,29]. This framework takes into account the next-
order terms of nonlinear dispersion, and the full linear dispersion
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The function ¢ is the induced long-scale flow, which should sat-
isfy Egs. (3) and (4). The long-scale velocity potential at the rest
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water level is ¢ = ((z = 0). The operator L in Eq. (7) acts in the
Fourier space and provides fulfillment of the exact water-wave
dispersion law, Eq. (6), for all wavenumbers (see details in
Refs. [18,20]).

The complex envelope A(x,#) describes both the surface
displacement and the velocity potential, what is done by virtue of
the following third-order asymptotic formulas (according to
Refs. [20,29]).
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Limiting cases of reconstruction formulas, Eqs. (9) and (10), agree
with expressions for the fluid velocities in Refs. [19,20]. The
induced mean flow ((x,¢,z) is obtained through numerical solu-
tion of the Laplace equation with use of the boundary conditions,
Egs. (4) and (8).

The asymptotic Dysthe model has the benefit of easy transfor-
mation from the form, Eqgs. (7)—(8), which governs the evolution
in time (z-evolution) to the one, which describes the evolution in
space (x-evolution). This trick is based on the asymptotic
approach implying weak nonlinearity and dispersion, so that in
the leading order the wave evolution is supposed to be described
by the wave equation. The spatial form of the Dysthe equation (7)
has the form
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It describes the wave evolution in space (x-evolution). The Lap-
lace equation for ¢ and Eq. (8) also need transforming
accordingly,
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Note that the dispersion term is now explicitly written in Eq. (11),
what is due to the form of the dispersion law, Eq. (6), and still
describes the linear dispersion fully.

The reconstruction formulas now have the form
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The equation in form (11) is convenient for simulating the bound-
ary problem, which appears in the case of laboratory or in situ
measurements, when the data is represented by the time series
measured in one point.

The wave modulation approach requires a sufficiently narrow
spectrum, and; therefore, it is not always suitable for describing
sea waves; meanwhile modifications of the approach might be ef-
ficient. For example, when short crested sea state is concerned,
coupled equations of the Dysthe-type could be employed.

In this paper, the strongly nonlinear numerical simulation of the
Euler equations is used with the purpose of verification of applic-
ability of the Dysthe envelope model.

3 Reconstruction of the Velocity Fields

In the absolute majority of sea wave records only one of the
fields, the surface elevation, is known. However, estimations of
extreme wave kinematics and loads, wave dynamics, require the
whole information (in particular, the velocity field). The problem,
which is addressed in this section, is how to estimate the second
wave field, fluid velocities, based on given surface elevation.

The wave envelope concept explicitly employs the dependence
between the two fields, the surface elevation and the fluid veloc-
ity. The Hilbert transform is a primitive method for obtaining the
wave envelopes, which disregards wave nonlinearity, what
becomes inappropriate when rogue waves are considered. Many
other approaches have been suggested (see for example Refs.
[30-33]). In this study the wave envelopes are imposed according
to the following approaches:

* taking into account second order wave-wave interaction

* taking into account second order and third order bound
(Stokes) waves under a narrow-band assumption

¢ using the Creamer transform

3.1 Second Order Wave-Wave Interactions. In this
approach each pair of free wave harmonics is supposed to gener-
ate bound wave components in all possible combinations,

2 2 2
n= Z ajcos 0; + Z anJ[-O] + Z a]?M][z] cos 20;
=1 =1 =1
+ a1a;M,, cos(0, + 02) + ayarM,, cos(6, — 0>)

16)
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Here, a; play the roles of free wave amplitudes, and
Oj:wjt—ij—i—Oj(O) are wave phases with some constants Oj(o).
The surface elevation and the velocity of each harmonic of the
free waves are related according to the linear dispersion relation.
Coefficients M, and N are functions of partial wavenumbers and
may be found in Ref. [33]. This approach does not require the
spectrum to be narrow. Though the formulas are transparent,
implementation of the approach is computationally costly and did
not exhibit substantial advantages when was compared with the
other methods. The two other approaches discussed below are pre-
ferred in this study.

3.2 Second and Third Order Bound Waves Under the

Narrow-Band Approximation. Bound (phase-locked) waves are
generated due to nonresonant nonlinear wave interactions and
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may be described within the high-order nonlinear Schrodinger (or
Dysthe) theory (second and third order corrections will be consid-
ered), which was briefly introduced in the previous Section, and
details may be found in Refs. [20,29]. This approach assumes that
the wave spectrum is narrow, and the wave steepness is small.
However, the comparison between the simulations within the Dys-
the envelope model and the full equations of hydrodynamics in
Ref. [12] showed that nonlinear solitary wave packets, which are
well-captured by the envelope approach, may be quite steep (up to
about koH/2 = 0.2, where H is the surface wave height) and quite
short (a few individual waves). Other testimonies of the high per-
formance of the Dysthe theory exist.

It is a strong point of this approach that it takes into account
wave dispersion. In contrast to the linear approximation, the
groups are not just a linear combination of Stokes waves, but are
altered due to the nonlinear wave-wave interaction.

The reconstruction formulas which produce the elevation and
velocity fields taking into account bound waves are given in
Egs. (9) and (10) for the case when space series is known; Eqs,
(14) and (15) should be used if a time series is available. Terms
up to the order @ or @ are retained for the second and third order
approach, respectively.

3.3 Creamer Transform. The transformation which com-
pletes the free wave components by bound waves according to the
Hamiltonian representation was suggested by Creamer et al. in
Ref. [34]. It was shown to describe accurately the Stokes waves
up to the fourth order, and thus, is of even higher order than the
considered above methods, although it does not take into account
wave dispersion. The reconstruction formulas for complex Fourier
amplitudes of the surface elevation and surface velocity potential
may be expressed in the following form (see example of applica-
tion in Ref. [35])

1

e = m J ek (eik"” - l)dx, !

; ) 0D,
P, = mjg’“”u*«*) %dx (18)

where for given complex-valued envelope A(x) the quantities 1y
and @y are specified by relations

ny = —Im(AE), Oy = —F! {(%(ﬁx{Re(AE)}},

o0y,
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(compare with expressions for 11(1) and (p(l) in Egs. (9) and (10)).
Here, w is specified according to the deep-water dispersion rela-
tion, Eq. (6), and operator F.{- - -} denotes the Fourier transform
in space. The elevation and surface potential are obtained from 1
and ®@; after the inverse Fourier transform, » :F;l {nits
O=F_"{D}.

The Creamer transform is originally formulated for space se-
ries. In order to apply this method to time series, the envelope is
at first recalculated from the time domain to time-space domain,
A(x, 1), within the linear framework for water wave dynamics with
use of the deep-water dispersion relation,

A(x,t)E(x,1) = F;! {F,{A(z)E(z)} exp (—iw ‘%‘x) } (20)

Then, the Creamer transform, Egs. (18)—(19) is applied to each
space series Ay(x,t;) for all #; (the Hanning mask centered at the
location of the registration, x =0, is applied at this stage, which
selects the area near x =0 in integrals, Eq. (18)), and finally the
wanted time series #(x =0, ¢) and ®(x =0, 7) are obtained.

Figures 1-4 show examples of application of different
approaches to the reconstruction of the wave fields in space (Figs.
1 and 2) and time (Figs. 3 and 4) domains. In Fig. 1, a steep
Stokes wave is shown (koH/2 =0.3, where H is the wave height):
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the surface elevation, surface velocity potential and their Fourier
spectra, represented by different envelope approaches. The solid
green curve gives the “exact” Stokes wave solution, found
numerically with use of the conformal representation of the Euler
equations. The second order wave-wave interaction curves coin-
cide with the second order NLS theory for narrow-banded waves.
It follows from Figs. 1(b) and 1(d) that although the Creamer
transform deviates from the exact solution, it has wider spectrum
and potentially may describe steeper wave crests.

Figure 2 shows a similar comparison for the case of a solitary
wave envelope, which is the analytic soliton solution of the NLS
equation. Such long-living nonlinear wave groups have been
observed in fully nonlinear numerical simulations [11,12] and
also in laboratory tests [15]. Note that although the deviation
between the surface elevation profiles obtained from different en-
velope approaches is invisible (Fig. 2(a), the distinctions between
the vertical velocities in Fig. 2(b) and spectral tails in Fig. 2(c) are
obvious.

By the moment, the reconstruction formulas were applied with
the purpose to produce the bound wave corrections for a given
wave envelope. The inverse problem, when the envelope is
obtained on the basis of known wave elevation, gives the way to
find fluid velocities. In laboratory and in situ experiments it is
most typical to deal with time series. Therefore to test it, use was
made below of the formulation of reconstruction formulas (the
high-order NLS theory and the Creamer approach) which is capa-
ble to deal with time series.
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2-order NLS theory
3-order NLS theory
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— — — Creamer fransform

_02 1 1 n 1L 1
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F UG @)
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Fig. 1 Comparison of a Stokes wave (koH/2=0.3) recon-
structed within different frameworks: the wave profile and the
corresponding Fourier spectrum (a) and (b), and the surface ve-
locity potential and its Fourier spectrum (c) and (d)
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Fig. 2 Reconstruction of a solitary nonlinear wave group
(steepness koH/2 = 0.3) within different frameworks: the wave
profile (a), vertical fluid velocity at the water surface (b), Fourier
spectrum of the surface elevation (¢)
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Fig. 3 Test of the reconstruction procedures for time series.
The input time series is the NLS solitary group (peak frequency
1rad/s, steepness kyH/2=0.3, with bound waves of three
orders). Panel (a): the target time series and reconstructed
envelopes. Panels (b) and (c): Fourier spectra in semilogarith-
mic scales for the surface displacement and surface velocity
potential.
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Fig. 4 Different wave envelope approaches applied to the time
series NA199711200151 from the North Alwyn platform: original
and reconstructed surface elevation (a), wave envelopes (b),
Fourier spectrum of the surface elevation (c), vertical (d), and
horizontal (e) fluid velocities at the water surface

The first test of such procedure is shown in Fig. 3, when, simi-
larly to Fig. 2, the time series of surface elevation described by
the NLS envelope soliton is used as the input data. The wave pro-
file is produced for the soliton with characteristic steepness 0.3
taking into account third order bound wave corrections, Eq. (9).
The time series of the surface elevation is the only information
which is used for the reconstruction of the envelope and then the
velocity potential. An iterative numerical procedure is used to
adjust the wanted envelope function with strategy to minimize the
mean square difference between the target and reconstructed se-
ries of surface elevations (maximum ten iterations is allowed). A
frequency cut-off is applied to the envelope, so that it is admitted
to occupy the spectral domain in the range (—wy, +wy), where the
carrier wave frequency, @, is also adjusted by the iterative
procedure.

The difference between the target and reconstructed surface ele-
vations is almost invisible (it is most noticeable near the maxi-
mum wave crest, not shown); the errors of the reconstruction are
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up to about 2.5%. The difference between the envelope shapes is
somewhat easier to observe and is shown in Fig. 3(a); it is most
pronounced near the group maximum; the amplitude of the wave
envelope increases in the order: second order, third order NLS
theories, and the Creamer approach.

It is natural, that the third order NLS theory provides the best
agreement with the target wave (see Figs. 3(b) and 3(c)). The
application of the Creamer transform results in longer spectrum
tail for the surface elevation, while the second order NLS theory
underestimated the spectrum tail magnitude.

Finally, different approaches are applied to the in situ record
NA199711200151 as shown in Fig. 4. In the discussed ten time
series from the North Sea the extreme waves are single waves or
intense wave groups (see time series in Figs. 6 and 7 below). The
crest amplitudes are from 8.7 to 13.2m, the mean wave lengths are
estimated within the range 140-180 m. Thus, the waves are strongly
nonlinear, and the peak wave steepness, kpA., is close to the break-
ing limit. Each time series is represented by a 20-min sequence of
surface elevations with good resolution (5 Hz). The details of the
measurements and conditions may be found in Ref. [25].

An extract of the recorded time series NA199711200151 is
shown in Fig. 4(a) and 4(b) in a large scale (the green solid line).
It contains a wave of 18.2 m height with the crest 13.2 m, with the
amplification factor H ,,./H; = 2.31. The mean wave period in the
record is about 10s.

The resulting envelopes (absolute values of the complex ampli-
tudes, *IA(?)l) are plotted in Fig. 4(b). The reconstructed surface
elevations are shown in Fig. 4(a) by different lines, and the corre-
sponding Fourier spectra—are shown in Fig. 4(c). Although the
envelopes provided by the second and third order NLS theories
look quite similar, the differences between the surface elevation
shapes (Fig. 4(a)) and the reconstructed velocities (Figs. 4(e) and
4(d)) are noticeable. The envelopes obtained through the
approaches may be rather different, as well seen in Fig. 4(b), and
the horizontal velocities also differ significantly (Fig. 4(e)). All

/[ Xx -evolution
¥ ¥ ¥ ¥ K K A’

the approaches result in Fourier spectra with the tails which decay
significantly faster than it is measured in the sea (Fig. 4(c)).

In the numerical experiments described below the third order
bound wave correction formulas are employed.

4 Reconstruction of Rogue Events

In most cases the in situ registrations are represented by the
time series of the water surface displacement, retrieved in one
point. Even if the fluid velocity is obtained at the location of the
measurement by virtue of the described above approaches, the in-
formation on the wave history and further evolution is important.
This information can discover even more extreme events nearby
the point of registration, and can answer the question on the rogue
wave life time. In this section the complete dynamics of the rogue
wave in time and space is reconstructed by means of numerical
simulations of dynamical equations. The simulations are per-
formed upstream and downstream the wave evolution under the
assumption of unidirectional wave propagation.

In the previous study [22-24] several rogue wave events
recorded at the North Alwyn platform and Draupner platform, and
also recorded in the Black Sea, were simulated within the frame-
work of approximate equations for wave modulations. It was
found that the amplitude criterion on rogue waves H/H;>?2,
where Hj is the significant wave height remains satisfied for up to
a hundred seconds (rogue wave lifetime).

The present paper aims at some sort of verification of the
weakly nonlinear simulations by the Dysthe equation. When a
time series of a rogue wave is available, models for the x-evolu-
tion (like Eq. (11)) are most suitable. However, the primitive
equations of hydrodynamics, Eqs. (1)—(4) describe the evolution
in time, and therefore a direct use of the strongly nonlinear codes
is impossible. To perform validation of the approximate simula-
tions, the following strategy is employed, as described below (see
the illustration in Fig. 5):

Y4
b4
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Fig. 5 Explanation diagram for the upstream x-evolution and forward #-evolution
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Fig. 6 Verification of the combined use of the spatial and temporal versions the
Dysthe equations. The thick red line is the initial condition, the thin black line is the
recovered time series: a train of solitary waves (a), and the time series from the
North Alwyn platform (b)—(i), see record codes above the figures.

(1) The wave envelope A(?) is reconstructed on the basis of the reg-
istered time series 7),..(¢) (shown in Fig. 5 by a red solid line at
x=0, 0 < t<T) with the third order Dysthe theory, Eq. (14).

(2) The envelope A(x =0, ¢) is simulated upstream by means of
the Dysthe equation (11) (backward x-evolution) up to loca-

Journal of Offshore Mechanics and Arctic Engineering

tion x = —L (see the sequence of waves by red solid lines in
Fig. 5). Hence, the wave fields A(x, #), n(x, t), and ®(x, t) are
obtained in some domain (x,?), and the initial conditions
A(x,t=0), n(x,t=0) and ®(x,7=0) may be formulated
(shown by the blue broken line in Fig. 5 at r=0,0 <x <L).
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Fig. 7 A reconstruction of the wave record NA199711200151.
The in situ recorded wave (“record”), the high-frequency fil-
tered time-series (“frequency cut-off”’), simulations of the Dys-
the equation and the strongly nonlinear HOSM (M=6)
simulation. The whole time series is given in panel (a), and the
rogue wave event is shown in a larger scale in panel (b).

The third step (forward 7-simulation, represented by the sequence
of waves given in blue broken lines in Fig. 5) is undertaken in two
different ways,

(3) The wave envelope A(x, t =0) is simulated by means of the
Dysthe equation (8) downstream until  =T.

(4) Alternatively to step (3), the couple of fields n(x, r=0) and
®(x, t=0) is used as the initial condition for the Euler
equations (1)—(4), and are simulated downstream by means
of the HOSM method until r=T.

One of the results of this loop of backward x-simulation and
forward ¢-simulation, is the recovered surface elevation 7(¢) at the
point of the in situ measurement, x =0. The recovered elevation,
theoretically, should coincide with the in situ recorded values,
() = Nec(?), what in fact does not happen. The difference
obtained is not due to the numerical errors, but due to the fact that

011302-8 / Vol. 136, FEBRUARY 2014

different wave models were solved upstream and downstream
wave propagation. The evolution in time and evolution in space
Dysthe models (7) and (11) are asymptotically close under the
assumptions of small nonlinearity and dispersion. Therefore, they
describe wave evolution with some difference which is admitted
by the asymptotic approach (of order &*, where ¢ is the characteris-
tic wave steepness). In the extraordinary situation of steep rogue
waves the asymptotic expansions may become invalid; hence, the
difference between the two models is not surely small. In compar-
ison with the employed Dysthe equation, the HOSM describes
differently the effects of strong nonlinearity and also may result in
a different shape of the reconstructed wave.

Examples of the original and recovered time series are shown
in Fig. 6, when the downstream simulation is performed within
the Dysthe theory framework, i.e., steps (1), (2), and (3) are under-
taken. The red solid lines show the initial surface displacements,
Nrees (time series of 1200 s duration at location x =0), while the
thin black lines are the results of the upstream x-simulation of the
Dysthe equations (11) up to x & —9200 m, and then the forward -
simulation of the Dysthe equations (7) up to = 1200s.

Panel (a) in Fig. 6 demonstrates the sample when the initial
wave field is specified in the form of a sequence of envelope soli-
tons (similar to shown in Fig. 3) with the characteristic steepness
koH/2 =~ 0.2 and wave period 10s. It may be easily realized from
the sketch in Fig. 5, that waves with smaller 7 in the recorded time
series during the loop of the simulations upstream and return
eventually pass a smaller distance, and therefore, should be less
affected by the difference in governing evolution equations; hence
should be restored with a better performance. Results shown in
Fig. 6(a) confirm this expectation: after the loop of simulations
waves registered at small ¢ are reproduced almost perfectly, while
the waves which correspond to longer simulation distances exhibit
some difference between the original and recovered wave shapes.

Figures 6(b)-6(i) show similar results, when the rogue wave records
from the North Alwyn platform are used as the input data, 7c(7).

Because the equations are solved numerically with the help of
the discrete Fourier transform, periodic boundary conditions are
imposed, which alter the actual data. Therefore, some part of the
records near ¢ ~ 0 and r ~ 1200 s for x =0 is simulated a fortiori
in a wrong way and cannot be reconstructed by this approach.
This effect may excuse the manifest distinction between surface
displacements at, e.g., the right side of Fig. 6(c).

The difference between the original surface elevation, and the
recovered data may be provided either by the terms which are not
taken into account by the Dysthe equations or due to the strongly
nonlinear nature of the waves, and thus cancellation of the formal
range of applicability of the approximate model and hence, incon-
sistency of the spatial and temporal versions of the Dysthe
equations.

To see the role of the strong nonlinearity we perform the for-
ward simulation from #=0 to t=1200s by means of the strongly
nonlinear high order spectral method for the Euler equations. We
set the nonlinearity parameter M = 6 (resolution of up to 7-wave
interactions), see Ref. [26]. The result of the simulation is shown
in Fig. 7 for the record NA199711200151.

The measurement of the sea wave (the solid blue line in Fig. 7)
was first filtered (the solid green line) to cut off the high-
frequency wave components which definitely cannot be captured
by the third order bound wave corrections. It may be seen that this
cut-off reduces the rogue wave amplitude significantly.

The wave profile after the upstream and thereupon forward sim-
ulation within the framework of the Dysthe equation (steps (1),
(2) and (3)) is shown in Fig. 7 by the dashed red curve. When the
forward t-simulation is performed within the frameworks of the
fully nonlinear equations (steps (1), (2), and (4)), the recovered
wave elevation is shown in Fig. 7 by the black solid line. In gen-
eral, all these curves are rather close around the moment of the
extreme event. The recovered extreme waves both exhibit smaller
amplitudes than the initial wave, although the fully nonlinear sim-
ulation results in a bigger wave.
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It follows from the analysis of Fig. 7, that the considered
extreme wave dynamic is in fact rather well captured by the Dys-
the model, although the extreme wave amplitude is underesti-
mated by all the applied models. However, the reconstruction
procedures could not reproduce the recorded waves for the time
intervals larger than about 10 min (see Figs. 6 and 7), what is less
than the typical duration of a time series (20 min).

5 Conclusion

The problem of reconstruction of an abnormal event in the
major part consists of restoring the field of the fluid velocity on
the basis of incomplete information represented by the time series
of the surface elevation retrieved at a single point. To proceed this
way, the waves are typically assumed to be freely propagating and
unidirectional. Besides these assumptions other simplifications are
usually involved (weakly nonlinear or/and narrow-banded waves)
to enable reconstruction of the nonlinear velocity field.

In the paper three different approaches are considered: the
second order nonlinear corrections due to wave-wave interactions;
the second and third order corrections in the assumption of
narrow-banded waves; and the Creamer transform which is a
fourth order approach. Ten wave records of abnormal waves
retrieved on the North Alwyn platform from the North Sea are
used to test the envelope approaches. The sea conditions corre-
spond to relatively deep water.

Some differences between these approaches are highlighted
which may result in distinct kinematic and dynamical properties
of extreme waves, although the preferable approach is not evident
at the stage. All the tested approaches could not reproduce the
wide wave spectrum measured in situ, and thus, the simulated
extreme wave is always somewhat smaller than the measured one.

This paper shows that the rogue wave evolution may be recon-
structed in a realistic way by means of numerical simulations. The
approach is validated by means of cross-simulations of different
Dysthe models, and also with the help of the fully nonlinear simu-
lation of the Euler equations. The adopted here method differs
from the one developed and applied by Clauss et al. [21] in the
part, that the wave dynamics is permitted to be significantly non-
linear, so that the wave spectrum may change. Thus, potentially
the present approach may have a wider range of applicability.

It is demonstrated that in some cases the approximate NLS
(Dysthe) theory may be suitable for the description of rogue
events, although the reconstructed extreme wave is smaller in
height. The reconstructed steep wave dynamics becomes inad-
equate for a large distance/time of wave propagation. This limit is
estimated to be about 10 min, what corresponds to about 60 wave
periods.

Some time series of the abnormal events could not be described
well by the envelope approach: the difference between the origi-
nal time series and the simulated upstream and thereupon forward
waves is found unacceptable. In some cases the forward simula-
tion could not be performed by means of the HOSM due to nu-
merical instability, which may be attributed to the wave breaking.

The revealed mismatches between input and reconstructed sur-
face elevations may prove the importance of strongly nonlinear
effects of wave dynamics, including wave breaking, and also im-
portance of the effects of wave directionality. The wave breaking
effect makes the description much more difficult and the results
which will be obtained for this case are expected to be generally
less robust. The accounting for wave directionality obviously
increases the freedom in formulating the initial conditions, and
naturally decreases the reliability of the reconstruction procedure.
Moreover, a new dimension may change the strongly nonlinear
wave dynamics drastically, as new wave-wave resonances become
allowed, and 3D wave instabilities may act. With this concern it is
interesting to point out the approach by Adcock and Taylor [37],
where the method to estimate the directional spreading is sug-
gested, which employs the peculiarities of bound wave
components.

Journal of Offshore Mechanics and Arctic Engineering

The particular cases, when the reconstruction of the rogue wave
dynamics exhibit robust and steady results are of a high interest
and the paper presents such an example.
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