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Abstract—In this article a new model of motif (small ensemble) of neuron-like elements is
proposed. It is built with the use of the generalized Lotka – Volterra model with excitatory
couplings. The main motivation for this work comes from the problems of neuroscience where
excitatory couplings are proved to be the predominant type of interaction between neurons of
the brain. In this paper it is shown that there are two modes depending on the type of coupling
between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit
cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional
Lotka – Volterra model.
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1. INTRODUCTION

Many dynamical processes in motifs can be viewed as sequential switching dynamics between
elements or groups of elements. These sequential dynamics could be explained by various
physiological functions of the nervous system. The generation of excitation sequences and their
propagation among solitary elements or among groups of neurons play a crucial role both in the
brain functioning and in the functioning of the nervous system as a whole. As an illustration, this
type of dynamics is an integral part of neural networks in sensory and motor systems of many
animals [1]. Besides, some specific part of a bird’s brain generates bursts that control glottis and
enable singing [2]. There are many other examples where excitation sequences are vital [3, 4].

It seems extremely important to study sequential dynamics in motifs with regard to nonlinear
dynamics. There is a hypothesis [1] that sequential dynamics in motifs can be accounted for
by the existence of a stable heteroclinic circuit in the phase space of a dynamical system that
models dynamics in the motifs [5–8]. The basic principle underlying sequential switching dynamics
generation is the winnerless competition (WLC) principle [9]. The main idea of WLC is that there
exists a stable heteroclinic circuit between the singular trajectory of saddle type in the phase space
(i.e., saddle equilibrium states, saddle limit cycles etc.) and a representative point moves in the
vicinity of this heteroclinic circuit [10, 11]. If the representative point is moving in the vicinity of
a certain saddle trajectory, then a certain neuron-like element or group of neuron-like elements is
activated. Thus, a stable heteroclinic circuit in the phase space is a mathematical representation of
sequential switching dynamics in the motif of coupled neuron-like elements. A necessary condition
for such behavior is the presence of inhibitory couplings between elements.
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In this article we investigate the problem of switching dynamics in the motif of excitatory coupled
neuron-like elements.

We are also interested in finding chaotic behavior in our system. This goal is motivated by the
fact that a strange attractor was found in the generalized Lotka –Volterra model. As shown in [12],
a strange attractor exists even in the three-dimensional generalized Lotka –Volterra model.

2. MODEL OF A MOTIF
Following [1], we study coupled generalized Lotka – Volterra equations. Consider a motif of N

elements coupled by excitatory couplings. The behavior of each element is modeled by the following
equation:

ρ̇j = (Ij + Jj)ρj(−1 + Ij/Mj − ρj
2), (2.1)

where ρj is the level of spike activity of the jth element (see [1]),

Ij =
N∑
i=1

gijF (ρi) (2.2)

is the stimulus to the jth element from other elements; gij are arbitrary positive and (or) negative
couplings;

Jj =
N∑
i=1

gjiF (ρi) (2.3)

is an additional parameter, which is equal to 2 if and only if the element which is to be activated
after the jth element is activated.

In this work the levels of the element’s activity will be calculated with the use of two functions:
the Heaviside function and a continuous sigmoid function F (x) = 1

1+exp(−x) . The continuous sigmoid
function will be used later, now we will use the Heaviside function.

F (ρ) =

⎧⎨⎩ 1, ρ � q

0, ρ < q
(2.4)

is the Heaviside function with a threshold q = 0.999. Let us consider the element number i which
is active if F (ρi) = 1;

Mj =

⎧⎪⎨⎪⎩
N∑

i=1,gij 	=0

F (ρi), Ij �= 0

1, Ij = 0

(2.5)

are the numbers of active elements that have an impact on the jth element; if there are none,
Mj = 1. The purpose of adding this parameter will be explained below.

3. UNIDIRECTIONAL COUPLINGS. SEQUENTIAL DYNAMICS

First of all, we consider a motif of three elements connected by reciprocal excitatory couplings.
The coupling matrix for this motif is as follows:

G =

⎛⎜⎜⎜⎝
0 0 2

2 0 0

0 2 0

⎞⎟⎟⎟⎠ .

The matrix describes unidirectional couplings and specifies the order of activation elements
1-2-3.
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Then the system under study takes the following form (we deleted two multipliers from every
equation): ⎧⎪⎨⎪⎩

ρ̇1 = (F (ρ2) + F (ρ3))ρ1(−1 + 2F (ρ3) − ρ1
2),

ρ̇2 = (F (ρ3) + F (ρ1))ρ2(−1 + 2F (ρ1) − ρ2
2),

ρ̇3 = (F (ρ1) + F (ρ2))ρ3(−1 + 2F (ρ2) − ρ3
2).

(3.1)

We prove that if the initial conditions belong to the cube 0 � ρ1, ρ2, ρ3 � 1, then the correspond-
ing phase trajectory lies in the same domain. Consider the evolution of the variable ρ1. The proof
for other variables is similar to that described below.

Suppose that the initial conditions are such that F (ρ2) = F (ρ3) = 0. Then the first equation
in (3.1) is ρ1 = const. If F (ρ2) = 1, F (ρ3) = 0, then ρ̇1 = ρ1(−1 − ρ1

2) and ρ1 monotonically
converges to 0. If F (ρ2) = 0, F (ρ3) = 1, then ρ̇1 = ρ1(1 − ρ1

2) and ρ1 monotonically converges
to 1. If F (ρ2) = 1, F (ρ3) = 1, then ρ̇1 = 2ρ1(1 − ρ1

2) and ρ1 monotonically converges to 1 again.
Hence, the phase trajectories are in the domain 0 � ρ1, ρ2, ρ3 � 1.
Let us find equilibria of the system in the domain 0 � ρ1, ρ2, ρ3 � 1. For this, we consider all

possible initial conditions.

1. Suppose that the initial conditions are such that F (ρ1) = F (ρ2) = F (ρ3) = 0. In this case,
the following inequalities should be true: 0 � ρ1, ρ2, ρ3 < q. The system takes the form

ρ̇1 = ρ̇2 = ρ̇3 = 0.

Therefore, every point (ρ1, ρ2, ρ3) ∈ {0 � ρ1, ρ2, ρ3 < q} is a stable steady state.
2. Suppose that the initial conditions are such that F (ρ1) = 1, F (ρ2) = F (ρ3) = 0. These

conditions are true in the domain q � ρ1 � 1, 0 � ρ2, ρ3 < q. The system takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = 0

ρ̇2 = ρ2(1 − ρ2
2)

ρ̇3 = ρ3(−1 − ρ3
2).

This system has a steady state in (C, 0, 0), where q � C � 1 in the domain under consider-
ation. The eigenvalues corresponding to the point (C, 0, 0) are λ1 = 0, λ2 = 1, λ3 = −1.

The plane ρ1 = C, q � C � 1 is an invariant set. The point (C, 0, 0) is a saddle on this plane.
3. Suppose that the initial conditions are such that F (ρ1) = F (ρ2) = 1, F (ρ3) = 0. These

conditions hold in the domain q � ρ1, ρ2 � 1, 0 � ρ3 < q. The system takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = ρ1(−1 − ρ1

2)

ρ̇2 = ρ2(1 − ρ2
2)

ρ̇3 = 2ρ3(1 − ρ3
2).

(3.2)

It has the following steady states: (0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1). These steady states do
not belong to the domain q � ρ1, ρ2 � 1, 0 � ρ3 < q. The system (3.2) describes the transition
process to a case similar to the previous one.

4. F (ρ1) = F (ρ2) = F (ρ3) = 1. These conditions are satisfied in the domain q � ρ1, ρ2, ρ3 � 1.
The system takes the following form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ̇1 = 2ρ1(1 − ρ1
2)

ρ̇2 = 2ρ2(1 − ρ2
2)

ρ̇3 = 2ρ3(1 − ρ3
2).

It has 1 steady state (1, 1, 1) with eigenvalues λ1 = −4, λ2 = −4, λ3 = −4. It is a stable
node.
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5. The cases F (ρ1) = 0, F (ρ2) = 1, F (ρ3) = 0 and F (ρ1) = F (ρ2) = 0, F (ρ3) = 1 are similar to
case 2.

6. The cases F (ρ1) = 1, F (ρ2) = 0, F (ρ3) = 1 and F (ρ1) = 0, F (ρ2) = F (ρ3) = 1 are similar to
case 3.

From all this it follows that the phase space of system (3.1) is divided into 3 domains:

1. Every point from the domain 0 � ρ1, ρ2, ρ3 < q is a nonisolated steady state;

2. Every point from the domain q � ρ1, ρ2, ρ3 � 1 lies on the trajectory that ends in the stable
node (1, 1, 1);

3. Any other point in the domain 0 � ρ1, ρ2, ρ3 � 1 lies on the trajectory on the planes ρ1 = C1,
ρ2 = C2, ρ3 = C3, q � C1, C2, C3 � 1.

Let us consider in detail the dynamics of the system. Let the initial conditions be (0.5, 0.5, 1)1).
We will denote the active state of the element by “a”, the passive one by “p” (recall that the

ith element is considered to be active if ρi � q). The expression (p, p, a) means that the first and
the second elements are passive and the third one is active. During evolution of the system the
elements change states. We will denote the process of changing states by an expression like this:
(p, p, a) → (a, p, a). This expression means that the first element becomes active during evolution
of the system.

1. Under initial conditions, the system takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = ρ1(1 − ρ1

2)

ρ̇2 = ρ2(−1 − ρ2
2)

ρ̇3 = 0.

(3.3)

The phase trajectory lies on the invariant plane ρ3 = 1 ending at the point (1, 0, 1). Therefore,
at this stage the process (p, p, a) → (a, p, a) takes place.

2. Once the first element is activated, the system takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = ρ1(1 − ρ1

2)

ρ̇2 = 2ρ2(1 − ρ2
2)

ρ̇3 = ρ3(−1 − ρ3
2).

(3.4)

From the third equation it becomes obvious that ρ3 converges to 0. Consequently, at this
stage the process (a, p, a) → (a, p, p) takes place2).

3. The system is ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = 0

ρ̇2 = ρ2(1 − ρ2
2)

ρ̇3 = ρ3(−1 − ρ3
2).

At this stage, the phase trajectory comes to the point (C, 1, 0) on the plane ρ1 = C,
q � C � 1. The process that takes place at this stage is (a, p, p) → (a, a, p).

1)The dynamics will be the same for all initial conditions from the domain 0 � ρi � 1 besides the point 0 � ρi < q
and q � ρi � 1.

2)As we see from the second equation of system (3.4), at this stage ρ2 → 1. But activation goes for a longer time
than deactivation, so we do not study this process.
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4. Once the second element becomes active, the system takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = ρ1(−1 − ρ1

2)

ρ̇2 = ρ2(1 − ρ2
2)

ρ̇3 = 2ρ3(1 − ρ3
2).

As can be seen from the first equation, ρ1 converges to 0. Consequently, at this stage the
process (a, a, p) → (p, a, p) is realized.

5. In the next step, by which the deactivation of the first element in the system finishes, we
have ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ̇1 = ρ1(−1 − ρ1
2)

ρ̇2 = 0

ρ̇3 = ρ3(1 − ρ3
2).

The phase trajectory lies on the invariant plane, i.e., ρ2 = C, to the point (0, C, 1). The
process (p, a, p) → (p, a, a) occurs.

6. At the end of the activation of the third element the system takes the following form:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = 2ρ1(1 − ρ1

2)

ρ̇2 = ρ2(−1 − ρ2
2)

ρ̇3 = ρ3(1 − ρ3
2).

ρ2 converges to 0 (which follows from the second equation). This time the process (p, a, a) →
(p, p, a) takes place.

7. At the next step our system becomes identical to (3.3).

Thus, the system dynamics are a process of cyclic changes in elements’ activity.
Figure 1 shows the time series for initial conditions (1, 0.5, 0.5). Increase in the duration of the

experiment results in the elongation of the elements’ active phase. As may be remembered, a similar
process occurs in motifs with unidirectional inhibitory couplings (see [1]).

Figure 2 shows the phase portrait for the same initial conditions.
We observe this type of behavior due to the fact that there exists a stable heteroclinic cycle in

the phase space that consists of a sequence of saddles and connecting separatrices. Each path that
connects saddles consists of two edges of the cube.

Let us find the duration of the elements’ activity analytically. The activity of the ith element
corresponds to the motion on the face of the cube ρi = C (q � C � 1) in the phase space. The
system dynamics on this face can be described by a system of two ODE. For example, movements
on the face ρ1 = q are defined by the system3){

ρ̇2 = ρ2(1 − ρ2
2)

ρ̇3 = ρ3(−1 − ρ3
2)

with the initial conditions ρ2 = a (0 � a < q), ρ3 = q when t = 0. We are moving on the face
mentioned above, coming to the point ρ2 = q, ρ3 = b when t = τ1 (at this point we move to another
face of the cube).

3)Movements on other two faces are described by the same systems up to a cyclic permutation of the variables.
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Fig. 1. Time series of the variables ρi. The activity time (when ρi � q) of each element increases with each
subsequent activation.

Fig. 2. Phase portrait of the system (3.1).

The solution of the system is as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
1 − a2√
1 − ρ2

2

· ρ2

a
= et,√

1 + ρ2
3√

1 + q2
· q
ρ3

= et.

(3.5)

From the first equation of (3.5) we find τ1:

eτ1 =
√

1 − a2√
1 − q2

· q
a
.
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From the condition ρ3(τ1) = b we obtain the equation

eτ1 =
√

1 + b2√
1 + q2

· q
b
.

As a result, we find the dependence of b on a:

b =

√
a2(1 − q2)

1 + q2 − 2a2
. (3.6)

Time τ2 when the next element is active can be defined by the expression below:

eτ2 =
√

1 − b2√
1 − q2

· q
b
.

The time difference between two successive activations is

τ2 − τ1 = ln
a
√

1 − b2

b
√

1 − a2
.

In view of (3.6), this formula takes the form

τ2 − τ1 = ln
√

1 +
2

1 − q2
− 2

1 − a2
.

If a is small enough, then the last formula takes the following form:

τ2 − τ1 ≈ ln
√

2
1 − q2

− 1.

Therefore, the period of activity increases to infinity. If a is small enough, then the activity
period increases linearly.

4. SYSTEM WITH MUTUAL EXCITATORY COUPLINGS
Let us now consider a system with the following coupling matrix:

G =

⎛⎜⎜⎜⎝
0 ε 2

2 0 ε

ε 2 0

⎞⎟⎟⎟⎠ ,

where 0 < ε � 2.
The system takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ̇1 = F (ρ2, ρ3)ρ1(−1 + Φ(ρ2, ρ3)/M1 − ρ1
2)

ρ̇2 = F (ρ3, ρ1)ρ2(−1 + Φ(ρ3, ρ1)/M2 − ρ2
2)

ρ̇3 = F (ρ1, ρ2)ρ3(−1 + Φ(ρ1, ρ2)/M3 − ρ3
2),

where F (x, y) = (2 + ε)(F (x) + F (y)), Φ(x, y) = εF (x) + 2F (y).
Let us find equilibria in the domain 0 � ρ1, ρ2, ρ3 � 1. As it was done previously, we split this

domain into several parts so that in each of them the condition F (ρi) = const, i ∈ {1, 2, 3} is
satisfied.

1. F (ρ1) = F (ρ2) = F (ρ3) = 0. Steady states must be placed in the cube 0 � ρ1, ρ2, ρ3 � q.
The system takes the form

ρ̇1 = ρ̇2 = ρ̇3 = 0.

It follows that any point (ρ1, ρ2, ρ3) ∈ {0 � ρ1, ρ2, ρ3 < q} is a stable steady state.
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2. F (ρ1) = 1, F (ρ2) = F (ρ3) = 0. These conditions are satisfied in the domain q � ρ1 � 1, 0 �
ρ2, ρ3 < q. So we rewrite the system as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ̇1 = 0

ρ̇2 = (2 + ε)ρ2(1 − ρ2
2)

ρ̇3 = (2 + ε)ρ3(ε− 1 − ρ3
2).

(4.1)

In the current domain this system has a steady state (C, 0, 0), where q � C � 1. When the
condition 1 < ε < q2 + 1 is satisfied, there is another steady state (C, 0,

√
ε− 1). For the

point (C, 0, 0) the corresponding eigenvalues are λ1 = 0, λ2 = 2 + ε, λ3 = (2 + ε)(ε− 1). For
the point (C, 0,

√
ε− 1) the eigenvalues are λ1 = 0, λ2 = 2 + ε, λ3 = −2(2 + ε)(ε− 1) < 0.

Thus, ε = 1 and ε = q2 + 1 are bifurcation values of the parameter.

The plane ρ1 = const is an invariant manifold. When 1 < ε < q2 + 1, the point (0, 0) on this
plane is an unstable node, and the point (0,

√
ε− 1) is a saddle. When 0 < ε � 1, (0, 0) is a

saddle.

3. F (ρ1) = F (ρ2) = 1, F (ρ3) = 0. These conditions are satisfied in the domain q � ρ1, ρ2 �
1, 0 � ρ3 < q. The system takes the following form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ̇1 = (2 + ε)ρ1(ε− 1 − ρ1
2)

ρ̇2 = (2 + ε)ρ2(1 − ρ2
2)

ρ̇3 = 2(2 + ε)ρ3(ε/2 − ρ3
2).

(4.2)

When the condition q2 + 1 � ε < 2 · q2 is satisfied, the system has one steady state
(
√
ε− 1, 1,

√
ε/2). The corresponding eigenvalues are λ1 = −2(ε− 1), λ2 = −2, λ3 = −ε.

Consequently, the state is a stable node. The system (4.2) describes a transient response
leading to a situation similar to the previous one.

4. F (ρ1) = F (ρ2) = F (ρ3) = 1. These conditions hold in the domain q � ρ1, ρ2, ρ3 � 1. The
system is as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ̇1 = 2(2 + ε)ρ1(ε/2 − ρ1
2)

ρ̇2 = 2(2 + ε)ρ2(ε/2 − ρ2
2)

ρ̇3 = 2(2 + ε)ρ3(ε/2 − ρ3
2).

When
√
ε/2 � q is satisfied, the system has one steady state (

√
ε/2,

√
ε/2,

√
ε/2). The

corresponding eigenvalues are λ1 = −ε, λ2 = −ε, λ3 = −ε. This steady state is a stable
node4).

5. The cases F (ρ1) = 0, F (ρ2) = 1, F (ρ3) = 0 and F (ρ1) = F (ρ2) = 0, F (ρ3) = 1 are studied
similarly to case 2.

6. The cases F (ρ1) = 1, F (ρ2) = 0, F (ρ3) = 1 and F (ρ1) = 0, F (ρ2) = F (ρ3) = 1 are studied
similarly to case 3.

Let us consider the process of switching dynamics of the motif when
√
ε− 1 < q and assume

that the initial conditions are (q, 0.1, 0.1). Then the system takes the form (4.1). From the second
equation of the system it follows that ρ2 → 1. Once ρ2 reaches the threshold of the Heaviside

4)Here the parameter Mi is significant. Since all elements are active, M1 = M2 = M3 = 2, which means that the

stable node has coordinates (
√
ε/2,

√
ε/2,

√
ε/2). If the parameter Mi is omitted, then the stable node has

coordinates (
√
ε,

√
ε,

√
ε), and when ε > 1, the representative point leaves the cube 0 � ρ1, ρ2, ρ3 � 1.
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function, the system takes the form (4.2). As can be seen from the first equation of this system, ρ1

starts to decrease, converging to
√
ε− 1. But once ρ1 is less than the threshold, the system takes

the form ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = (2 + ε)ρ1(ε− 1 − ρ1

2)

ρ̇2 = 0

ρ̇3 = (2 + ε)ρ3(1 − ρ3
2).

Therefore, ρ3 → 1 and ρ1 → √
ε− 1. After ρ3 exceeds the threshold, we can write⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = 2(2 + ε)ρ1(ε/2 − ρ1

2)

ρ̇2 = (2 + ε)ρ2(ε− 1 − ρ2
2)

ρ̇3 = (2 + ε)ρ3(1 − ρ3
2).

The variable ρ2 starts to decrease, converging to
√
ε− 1. After it becomes less than the threshold

value, the system takes the form ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = (2 + ε)ρ1(1 − ρ1

2)

ρ̇2 = (2 + ε)ρ2(ε− 1 − ρ2
2)

ρ̇3 = 0.

(4.3)

As can be seen from the first equation of (4.3), ρ1 → 1. When ρ1 becomes equal to the threshold,⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = (2 + ε)ρ1(ε− 1 − ρ1

2)

ρ̇2 = 2(2 + ε)ρ2(ε/2 − ρ2
2)

ρ̇3 = (2 + ε)ρ3(ε− 1 − ρ3
2).

The variable ρ3 begins to decrease after it no longer exceeds the threshold value; the system
takes its original form and the whole process repeats.

It follows from the above that the elements will be oscillating in the range (
√
ε− 1, q]. The time

series is presented in Figure 3.
Now consider the case where the motif is such that q2 + 1 � ε � 2.
If there are no active elements, i.e., F (ρ1) = F (ρ2) = F (ρ3) = 0, then ρ̇1 = ρ̇2 = ρ̇3 = 0.
If there is only 1 active element, for example, the first (i.e., F (ρ1) = 1, F (ρ2) = F (ρ3) = 0), then

the system takes the following form:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = 0

ρ̇2 = (2 + ε)ρ2(1 − ρ2
2)

ρ̇3 = (2 + ε)ρ3(ε− 1 − ρ3
2).

In this case all the elements are active for a period of time.
If there are 2 active elements, for example, the first and the third (i.e., F (ρ1) = 1, F (ρ2) = 0,

F (ρ3) = 1), then we can write ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = (2 + ε)ρ1(1 − ρ1

2)

ρ̇2 = 2(2 + ε)ρ2(ε/2 − ρ2
2)

ρ̇3 = (2 + ε)ρ3(ε− 1 − ρ3
2).
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Since
√
ε/2 �

√
ε− 1 � q, all the elements become active.

If all the elements are active (F (ρ1) = F (ρ2) = F (ρ3) = 1), the system takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = 2(2 + ε)ρ1(ε/2 − ρ1

2)

ρ̇2 = 2(2 + ε)ρ2(ε/2 − ρ2
2)

ρ̇3 = 2(2 + ε)ρ3(ε/2 − ρ3
2).

In this case, the representative point comes to a stable node (
√
ε/2,

√
ε/2,

√
ε/2), and all the

elements remain active.
From the foregoing it follows that for such values of ε there exist two modes in the system: when

all the elements are passive and when all the elements are active (ρ1 = ρ2 = ρ3 =
√
ε/2). Switching

sequential dynamics are absent here.

Fig. 3. Time series of the variables ρi for different values of ε ((a) ε = 0.4, (b) ε = 1.6, (c) ε = 1.98). When ε
increases, the oscillation amplitude decreases to zero.

Let us determine possible types of motion in the phase space depending on ε (0 < ε < q2 + 1).
Let the initial conditions be (q, a, q)5). Then we construct a map from the cube edge ρ1 = ρ3 = q,
0 � ρ2 � q to the edge ρ1 = ρ2 = q, 0 � ρ3 � q. The dynamics of the system on the invariant plane
ρ1 = q are defined by ⎧⎨⎩ ρ̇2 = ρ2(1 − ρ2

2)

ρ̇3 = ρ3(ε− 1 − ρ3
2).

(4.4)

5)We consider initial conditions of this type only because for any other set of initial conditions that allows the
existence of one active element only the representative point acquires a similar type of behavior after a while.
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If ε = 1, the solution of (4.4) that satisfies the initial conditions is⎧⎪⎪⎨⎪⎪⎩
ρ2

√
1 − a2

a
√

1 − ρ2
2

= et

1
2ρ3

2
− 1

2 · q2 = t.

The final point to which we come has coordinates ρ2 = q, ρ3 = b6). The dependence b(a) is given
by the formula

b =

√√√√√ 1
1
q2

+ ln
q2(1 − a2)
a2(1 − q2)

.

This function has 3 points of intersection with the line b = a: at the endpoints of [0, q] and at
the interior point of this interval that corresponds to a stable limit cycle7).

When ε �= 1, the system has the following solution:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ2

√
1 − a2

a
√

1 − ρ2
2

= et,

ρ3

√|q2 − ε+ 1|
q
√|ρ3

2 − ε+ 1| = e(ε−1)t.

(4.5)

Hence, we obtain the expression for b:

b =

√√√√√ q2(ε− 1)

q2 − |q2 − ε+ 1|
(
a2(1 − q2)
q2(1 − a2)

)ε−1 . (4.6)

The function b(a) is increasing. It intersects the y-axis in
√
ε− 1 when 1 � ε < q2 + 1 and in 0

when 0 < ε � 1. It also passes through the point (q, q) and has another intersection with the line
b = a in (a∗, b∗) (i.e., a∗ = b∗) when 0 < a∗ < q. This point corresponds to a stable limit cycle. The
dependence b(a) is shown in Figure 4.

Thus, in the phase space of the system for 0 < ε < q2 + 1 there is a stable limit cycle, and b∗ is
the minimum level of spike activity.

The duration of the elements’ activity can be found from the first equation of system (4.5) and
formula (4.6). To do this, we set the initial value of a0 and use the formulas

Δti+1 = ln
q
√

1 − ai2

ai
√

1 − q2

ai+1 =

√√√√√ q2(ε− 1)

q2 − |q2 − ε+ 1|
(
ai

2(1 − q2)
q2(1 − ai2)

)ε−1 .

6)a and b are the coordinates of intersection points where the phase trajectory crosses the cube edges.
7)To determine if we have a limit cycle, it is not necessary to consider all three invariant planes ρi = q because the

dynamics are exactly the same on all of them.

REGULAR AND CHAOTIC DYNAMICS Vol. 20 No. 6 2015



712 KOROTKOV et al.

Fig. 4. The dependence b(a) for various values of ε.

5. IMPACT OF A SMALL PARAMETER ON THE SYSTEM

In real situations the behavior of neural networks is affected by external perturbations. Let us
add a small parameter μ to the system and consider its effect on the dynamics of the original system
with unidirectional couplings.

The perturbed system is⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̇1 = F (ρ2, ρ3)(ρ1(−1 + 2F (ρ3) − ρ1

2) + μ),

ρ̇2 = F (ρ3, ρ1)(ρ2(−1 + 2F (ρ1) − ρ2
2) + μ),

ρ̇3 = F (ρ1, ρ2)(ρ3(−1 + 2F (ρ2) − ρ3
2) + μ),

where F (x, y) = F (x) + F (y).
Numerical calculations show that in this case there is no increase in time that the phase point

spends in the vicinity of the saddles.
Thus, the introduction of a small parameter μ destroys the heteroclinic cycle and leads to the

creation of a stable limit cycle.

6. CHAOTIC DYNAMICS OF MOTIF

The generalized Lotka –Volterra model has been the subject of many studies. For example, as
shown in [13], if we assume that there is interspecific competition, a strange attractor can exist
in 4- and higher dimensional systems. Thus, a strange attractor was found in a 4-dimensional
system [14, 15]. It is also proved in some works ([12]) that without interspecific competition a
strange attractor can exist even in a 3-dimensional system. The above-mentioned study gives us an
example of a Henon strange attractor that appears after a sequence of period-doubling bifurcations.
In this paper, we aimed to find strange attractors in system (3.1) with some changes. We will not
use normalization, i.e., all coefficients Mi from formula (2.5) are equal to 1. Also, we will use the
continuous sigmoid function

F (x) =
1

1 + exp(10(0.999 − x))
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instead of the Heaviside function as it was mentioned in Section 2. In order to find strange attractors,
we will fix the values of some parameters of the system and will only vary the parameter g21. The
coupling matrix is as follows:

G =

⎛⎜⎜⎜⎝
0 2 −10

g21 0 2

2 3 0

⎞⎟⎟⎟⎠ . (6.1)

Figures 5 show phase portraits of the system. Figure 5a shows the system with a limit cycle.
When parameter g21 decreases to 8.245, the period-doubling bifurcation occurs, resulting in the
creation of a limit cycle with doubled period (see Fig. 5b). As g21 decreases even further and reaches
the value of 6.795, we observe another period-doubling bifurcation and the limit cycle doubles again
(see Fig. 5c). We suppose that with a further decrease of g21 the limit cycle undergoes an endless
cascade of period-doubling bifurcations. As a result, when g21 < 5.7, the system has a strange
attractor of Feigenbaum type ([16], see Fig. 5d). To support this hypothesis, we calculated the
spectrum of Lyapunov exponents of our system depending on g21 in the range [5.5, 8.5]. Figure 6
shows the graph of dependence of three Lyapunov exponents λ1, λ2 and λ3 on g21. At the moment
of period-doubling bifurcation the second highest exponent becomes 0, and when g21 < 5.75, the
maximum of the Lyapunov exponent is greater than 0, which corresponds to the emergence of
chaotic behavior in the system (birth of a strange attractor).

Fig. 5. Phase portraits of the system (2.1)–(2.5) with the coupling matrix (6.1). A cascade of period-doubling
bifurcation leads to the birth of a strange attractor of Feigenbaum type.

7. CONCLUSION

In this paper we have proposed and studied a new model of a motif. The elements were connected
with each other by excitatory couplings. We studied models with both mutual and unidirectional
couplings. It was found that if an asymmetric coupling takes place, then there appears a stable
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Fig. 6. The Lyapunov exponents of the system (2.1)–(2.5) with the coupling matrix (6.1).

heteroclinic cycle in the phase space of the system. A stable heteroclinic cycle also exists in the motif
of inhibitorily coupled neuron-like elements. However, the motif with mutual couplings does not
have a stable heteroclinic cycle but has a stable limit cycle. In addition, we studied the perturbed
system. It was discovered that this system also has a stable limit cycle instead of a stable heteroclinic
one.

We studied our system (with small changes) in order to examine its chaotic behavior and found a
strange attractor. This attractor is born via the Feigenbaum scenario. Recall that strange attractors
were found in the classical generalized Lotka –Volterra model and were born via a cascade of period-
doubling bifurcations. Although our system is not a classical one, the birth of a strange attractor
also happens via a cascade of period-doubling bifurcations.
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