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Abstract—A certain countable set of families of classes of three-valued logic functions taking values
from the set {0,1} is considered. For each class from these families and for each its finite generating
system, the order of growth of the corresponding Shannon depth function is obtained.
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It is known [1, 2] that for an arbitrary finite system of Boolean functions, any function from the closed
class generated by this system can be realized by a formula whose depth has not more than a linear order
of growth with respect to the number of variables. In this paper we consider some countable set of families
of classes of functions from P3,2 which is the set of all functions of three-valued logic taking the values 0
or 1. For each class from these families and for each its finite generating system we obtain a linear by order
estimate for the corresponding Shannon function of depth.

Present necessary definitions (see also [3–5]). The set of all function of k-valued logic is denoted by Pk,
k ≥ 2. Let F ⊆ Pk, k ≥ 2. By [F ] we denote the closure of F with respect to the superposition operation,
and by F (n) we denote the set of all functions from F dependent on the variables x1, . . . , xn, n ≥ 1. Let
f(x1, . . . , xn) ∈ [F ], Φ be a formula over F realizing the function f , and H ⊆ [F ]. By D(Φ) we denote the
depth of the formula Φ, by DF (f) we denote the minimum of D(̂Φ) over all formulas ̂Φ over the system F
realizing the function f , by DF (H(n)) we denote the Shannon function of depth for the set H .

Let f ∈ P2 and A ⊆ P2. By f∗ we denote the function dual to f and by A∗ we denote the set
⋃

{f∗},
where the union is taken over all functions f ∈ A. We say that a function f satisfies the condition < 0m >
(< 1m >, respectively), 2 ≤ m < ∞, if any m collections where the function f equals zero (one, respectively)
have a common zero (one, respectively) component. We follow the notations for closed classes of Boolean
functions from [3], namely, P2 is the set of all Boolean function; S is the set of all self-dual functions; Ti is
the set of all function preserving the constant i, i = 0, 1; M is the set of all monotone functions; L is the
set of all linear functions; Om is the set of all functions satisfying the condition < 0m >; Im is the set of all
functions satisfying the condition < 1m >, 2 ≤ m < ∞. Assume

M0 = M ∩ T0, M1 = M ∩ T1, T01 = T0 ∩ T1, M01 = M0 ∩ M1, S01 = S ∩ T01, SM = S ∩ M

and for each m ≥ 2 assume

Om
0 = T0 ∩ Om, Im

1 = T1 ∩ Im, MOm = M ∩ Om, MIm = M ∩ Im, MOm
0 = M ∩ Om

0 , MIm
1 = M ∩ Im

1 .

By Q we denote the set of closed classes of Boolean functions

{P2, T0, T1, T01, M, M0, M1, M01, S, S01, SM, Om, Om
0 , MOm, MOm

0 , Im, Im
1 , MIm, MIm

1 , 2 ≤ m < ∞},

and by R we denote the set

{P2, T1, T01, M, M1, M01, O
m, Om

0 , MOm, MOm
0 , 2 ≤ m < ∞}.

It is easy to see that for any class A ∈ Q \ {S, S01, SM} at least one of the two following conditions holds:
1) A ∈ R;
2) there exists a class B ∈ R such that A = B∗.
Let f(x1, . . . , xn) ∈ P3,2 and F ⊆ P3,2. The projection of the function f(x1, . . . , xn) is said to be the

Boolean function prf(x1, . . . , xn) whose value at each collection α̃ ∈ En
2 is determined by the equality

prf(α̃) = f(α̃). The projection prF of the set of functions F is said to be the set
⋃

{prf}, where the union
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is taken over all functions f ∈ F . Let B be an arbitrary closed class of Boolean functions. Define the set
pr−1B in the following way. Assume

pr−1B = {f ∈ P3,2|prf ∈ B}.

Obviously, the set pr−1B is a closed class. In this case for any closed class F ⊆ P3,2 such that prF = B the
relation F ⊆ pr−1B is valid. The closed class pr−1B is called maximal. Assume

N(B) = {A ⊆ P3,2|A = [A], prA = B}.

It is known (see, e.g., [5]) that |N(B)| < ∞ if and only if B ∈ Q.
By Z2,i we denote the set of all functions from P3,2 possessing the following property: if the collection

α̃ ∈ {0, 1}n is obtained from the collection ˜β ∈ {0, 1, 2}n by the change of all twos by i, then f(α̃) = f(˜β),
i = 0, 1.

Define some functions from P3,2. By ji(x) we denote the function equal to one for x = i and to zero in
other cases, i = 0, 1, 2. By x∨y and x ·y we denote the functions from P3,2 whose projections are the Boolean
disjunction and conjunction functions, respectively, and which are equal to zero on collections containing at
least one argument two.

The main result of the paper is the following theorem (see also [6]).
Theorem. Let B be an arbitrary closed class of Boolean functions from the set Q, H be an arbitrary

closed class of functions from P3,2 such that prH = B, and G be an arbitrary finite generating system of the
class H. Then the relation DG(H(n)) 	 n holds.

In the proof of the upper estimate we use well-known synthesis methods for formulas over incomplete
bases realizing logic algebra functions (see [1, 2, 7]) and we also use some properties of functions from P3,2.
Describe principal stages of the proof.

The set Q is represented in the form of a union of three nonintersecting subsets, and the proof of the
upper estimate is performed separately for each of them.

First we consider classes B from the set Q\{S, S01, SM}. Let H be an arbitrary closed class of functions
from P3,2 such that prH = B and G be an arbitrary finite generating system of the class H . Let B ∈ R.
It is not difficult to show that there exist a natural number r ≥ 2 and a function Δr(x1, . . . , xr(r−1)) such
that for n ≥ 10 any function f(x1, . . . , xn) ∈ H can be represented in the form f = Δr(˜Y r), where ˜Y r is the
collection of r(r − 1) functions each of which is obtained by identification of variables in the function f and
depends on not more than n− 1 variables (see Lemma 3 from [7]). Then for any finite generating system G0

of the class H containing the function Δr and all functions from the set H(9) the relation DG0(H(n)) ≤ c0n
holds, where c0 is some constant. This implies that for the generating system G of the class H the following
relation holds: DG(H(n)) ≤ cn, where c is some constant (because the transition from one basis to another
causes an increase in the depth of formulas realizing the function f not more than by a constant factor).
If B is a class such that B∗ ∈ R, then the upper estimate for the function DG(H(n)) follows from duality
reasons.

After that we consider classes B ∈ {S, S01}. Let H be an arbitrary closed class of functions from P3,2 such
that prH = B and G be an arbitrary finite generating system of the class H . By ε

(2)
1 (x1, x2) we denote the

function from P3,2 satisfying the condition prε(2)
1 (x1, x2) = x1 and equal to zero on all collections containing

at least one two. The description of the set of all classes whose projection coincides with the class S, or with
S01 (see [5]) implies that for each such class at least one of the following three conditions holds:

1) the relation H ⊆ Z2,i is valid for a certain i ∈ {0, 1};
2) ε

(2)
1 (x1, x2) ∈ H ;

3) the class H is dual to one of the classes satisfying condition 2 with respect to the substitution (01)(2).
The definition of the sets Z2,i implies that for the classes H satisfying condition 1 the upper estimate

for the function DG(H(n)) follows directly from the upper estimate for the function DprG(B(n)). If the
class H satisfies condition 2, then the upper estimate for the Shannon function is obtained with the use of
an analogue of the constant simulation method (see [2]) for functions from P3,2, in this case the function
ε
(2)
1 (x1, x2) is used instead of the constant 0. For a class satisfying condition 3 the corresponding upper

estimate is valid because of duality reasons.
Finally, we consider the case B = SM . Present here additional definitions and a draft of proof of the

theorem for this case. Let p ≥ 2 and 1 ≤ i ≤ p. Assume xi = (xi
1, . . . , x

i
i−1, x

i
i+1, . . . , x

i
p). By ˜Xp we denote

the collection (x1, . . . , xp) consisting of p(p − 1) variables. Let f(x1, . . . , xn) be an arbitrary function from
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P3,2, n ≥ p. By f i
j(x1, . . . , xj−1, xj+1, . . . , xn) we denote the function f(x1, . . . , xj−1, xi, xj+1, . . . , xn). By

˜Y p we denote the collection of functions obtained from the collection ˜Xp by the change of the variables xi
j

by the functions f i
j , respectively, where i, j = 1, . . . , p, i 
= j.

Let f(x1, . . . , xn) ∈ P3,2, n ≥ 5. Define the functions gf
i (y1, . . . , yi, x1, . . . , xn) ∈ P3,2, i = 2, 3, 4, 5, 6, in

the following way. Assume

gf
i (y1, . . . , yi, x1, . . . , xn) = f(x1, . . . , xn)(j1(y1) ∨ . . . ∨ j1(yi)) ∨ (j1(y1) · . . . · j1(yi)).

The proof is based on a special decomposition of functions from pr−1SM . First, using recurrent relations,
we construct the functions Ωi ∈ pr−1SM , i = 2, 3, 4, 5, 6, so that for any function f(x1, . . . , xn) ∈ P3,2,
n ≥ 10, and any collection ˜β ∈ {0, 1, 2}n the following equality holds:

Ωi(j1(x1), . . . , j1(xi), ˜Y 10(˜β)) = gf
i (x1, . . . , xi, ˜β).

Substituting the functions f1
2 , f1

3 , f1
4 , f2

3 , f2
4 , f3

4 instead of the variables x1, . . . , x6, respectively, in the case
i = 6, we get the following relation from this equality:

Ω6(f1
2 , f1

3 , f1
4 , f2

3 , f2
4 , f3

4 , ˜Y 10(˜β)) = gf
i (f1

2 , f1
3 , f1

4 , f2
3 , f2

4 , f3
4 , ˜β).

Using the definition of the functions gf
i , it is not difficult to prove that

gf
i (f1

2 (˜β), f1
3 (˜β), f1

4 (˜β), f2
3 (˜β), f2

4 (˜β), f3
4 (˜β), ˜β) = f(˜β).

Therefore,
f(˜β) = Ω6(f1

2 (˜β), f1
3 (˜β), f1

4 (˜β), f2
3 (˜β), f2

4 (˜β), f3
4 (˜β), ˜Y 10(˜β)).

Let H be an arbitrary closed class of functions from P3,2 such that prH = SM , G be an arbitrary finite
generating system of the class H , f(x1, . . . , xn) ∈ SM , n ≥ 10. Then f = Ω6(f1

2 , f1
3 , f1

4 , f2
3 , f2

4 , f3
4 , ˜Y 10).

Each function substituted into the function Ω6 is obtained by identification of variables of the function f
and depends on not more than n− 1 variables. Then the set G0 = {Ω6}∪H(9) is a generating system of the
class H . Moreover, the following inequality holds:

DG0(f
(n)) ≤ 1 + DG0(H(n − 1)).

Therefore, there exists a constant c0 such that DG0(H(n)) ≤ c0n. Thus, for any finite basis G of the class
H there exists a constant c = c(G) such that DG(H(n)) ≤ cn.

The corresponding lover estimates follows from capacity arguments.
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