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SYMBOLS OF TRUNCATED TOEPLITZ OPERATORS

ANTON BARANOV, ROMAN BESSONOV, VLADIMIR KAPUSTIN

Abstract. We consider three problems connected with coinvariant sub-
spaces of the backward shift operator in Hardy spaces Hp:

– properties of truncated Toeplitz operators;
– Carleson-type embedding theorems for the coinvariant subspaces;
– factorizations of pseudocontinuable functions from H

1.
These problems turn out to be closely connected and even, in a sense,
equivalent. The new approach based on the factorizations allows us
to answer a number of challenging questions about truncated Toeplitz
operators posed by Donald Sarason.

1. Introduction

Let Hp, 1 6 p 6 ∞, denote the Hardy space in the unit disk D, and let
Hp

− = zHp. As usual, we identify the functions in Hp in the disk and their
nontangential boundary values on the unit circle T.

A function θ which is analytic and bounded in D is said to be inner if
|θ| = 1 m-a.e. on T in the sense of nontangential boundary values; by m we
denote the normalized Lebesgue measure on T. With each inner function θ
we associate the subspace

Kp
θ = Hp ∩ θHp

−

of the space Hp. Equivalently, one can define Kp
θ as the set of all functions

in Hp such that 〈f, θg〉 =
∫

T
f θg dm = 0 for any g ∈ Hq, 1/p + 1/q = 1. In

particular,
Kθ := K2

θ = H2 ⊖ θH2

(in what follows we usually omit the exponent 2). It is well known that,
for 1 6 p 6 ∞, any closed subspace of Hp invariant with respect to the

backward shift (S∗f)(z) = f(z)−f(0)
z is of the formKp

θ for some inner function
θ (see [22, Chapter II] or [14]). Subspaces Kp

θ are often called star-invariant
subspaces. These subspaces play an outstanding role both in function and
operator theory (see [14, 27, 28]) and, in particular, in the Sz.-Nagy–Foias
model for contractions in a Hilbert space (therefore they are sometimes
referred to as model subspaces).

A characteristic property of the elements of the spaces Kp
θ is the existence

of a pseudocontinuation outside the unit disk: if f ∈ Kp
θ , then there exists
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a function g which is meromorphic and of Nevanlinna class in {z : |z| > 1}
such that g = f a.e. on T in the sense of nontangential boundary values.

Now we discuss in detail the three main themes of the paper as indicated
in the abstract.

1.1. Truncated Toeplitz operators on Kθ. Recall that the classical
Toeplitz operator on H2 with a symbol ϕ ∈ L∞(T) is defined by Tϕf =
P+(ϕf), f ∈ H2, where P+ stands for the orthogonal projection from
L2 := L2(T,m) onto H2.

Now let ϕ ∈ L2. We define the truncated Toeplitz operator Aϕ on bounded
functions from Kθ by the formula

Aϕf = Pθ(ϕf), f ∈ Kθ ∩ L
∞(T).

Here Pθf = P+f−θP+(θf) is the orthogonal projection ontoKθ. In contrast
to the Toeplitz operators on H2 (which satisfy ‖Tϕ‖ = ‖ϕ‖∞), the operator
Aϕ may be extended to a bounded operator on Kθ even for some unbounded
symbols ϕ. The class of all bounded truncated Toeplitz operators on Kθ will
be denoted by T (θ).

Certain special cases of truncated Toeplitz operators are well known and
play a prominent role in the operator theory. If ϕ(z) = z, then Aϕ = Sθ
is the so-called restricted shift operator, the scalar model operator from
the Sz.-Nagy–Foias theory. If ϕ ∈ H∞, then Aϕ = ϕ(Sθ). Truncated
Toeplitz operators include all finite Toeplitz matrices (corresponding to the
case θ(z) = zn) and the Wiener–Hopf convolution operators on an interval
which are unitary equivalent to the truncated Toeplitz operators on the
space generated by the singular inner function associated with a point mass
on the circle,

(1) θa(z) = exp
(

a
z + 1

z − 1

)

(for a more detailed discussion see [9]). Bercovici, Foias and Tannenbaum
studied truncated (or skew) Toeplitz operators (mainly, with symbols which
are rational functions with pole at zero) in connection with control theory
(see [11, 12]). However, a systematic study of truncated Toeplitz operators
with L2 symbols was started recently by Sarason in [31]. This paper laid
the basis of the theory and inspired much of the subsequent activity in the
field [9, 15, 16, 21].

Unlike standard Toeplitz operators on H2, the symbol of a truncated
Toeplitz operator is not unique. The set of all symbols of an arbitrary op-
erator Aϕ is exactly the set ϕ+ θH2 + θH2, see [31]. Clearly, any bounded
function ϕ ∈ L∞ determines the bounded operator Aϕ with the norm
‖Aϕ‖ 6 ‖ϕ‖∞. The first basic question on truncated Toeplitz operators
posed in [31] is whether every bounded operator Aϕ has a bounded symbol,
i.e., is a restriction of a bounded Toeplitz operator on H2. Note that if a



SYMBOLS OF TRUNCATED TOEPLITZ OPERATORS 3

truncated Toeplitz operator with a symbol ϕ ∈ H2 is bounded, then, as a
consequence of the commutant lifting theorem, it admits an H∞ symbol (see
[31, Section 4]). On the other hand, by the results of Rochberg [30] (proved
in the context of the Wiener–Hopf operators and the Paley–Wiener spaces)
any operator in T (θa) has a bounded symbol. However, in general the an-
swer to this question is negative: in [9] inner functions θ are constructed, for
which there exist operators in T (θ) (even of rank one) that have no bounded
symbols.

Thus, the following question seems to be of interest: in which spaces
Kθ does any bounded truncated Toeplitz operator admit a bounded symbol?
In the present paper we obtain a description of such inner functions. In
particular, we show that this is true for an interesting class of one-component
inner functions introduced by Cohn in [18]: these are functions θ such that
the sublevel set

{z ∈ D : |θ(z)| < ε}

is connected for some ε ∈ (0, 1). This statement was conjectured in [9]. A
basic example of a one-component inner function is the function θa given by
(1).

1.2. Embeddings of the spaces Kp
θ . Let µ be a finite positive Borel mea-

sure in the closed unit disk D. We are interested in the class of measures such
that Carleson-type embedding Kp

θ →֒ Lp(µ) is bounded. Since the functions
in Kp

θ are well-defined onlym-almost everywhere on T, one should be careful
when dealing with the restriction of µ to T. Recall that, by a theorem of
Aleksandrov, functions in Kp

θ which are continuous in the closed disk D are
dense in Kp

θ , see [2] or [13]. (While this statement is trivial for the Blaschke
products, there is no constructive way to prove the statement in the gen-
eral case.) This allows one to define the embedding on the dense set of all
continuous functions from Kθ in a natural way and then ask if it admits a
bounded continuation to the whole space Kp

θ . However, this extension may
always be viewed as an embedding operator due to the following theorem
by Aleksandrov.

Theorem 1.1. [4, Theorem 2] Let θ be an inner function, let µ be a positive
Borel measure on T, and let 1 6 p < ∞. Assume that for any continuous
function f ∈ Kp

θ we have

(2) ‖f‖Lp(µ) 6 C‖f‖p.

Then all functions from Kp
θ possess angular boundary values µ-almost ev-

erywhere and for any f ∈ Kp
θ , (2) holds for its boundary values.

The angular convergence µ-almost everywhere gives us a nice illustration
of how the embedding acts. This approach, essentially based on results of
Poltoratski’s paper [29], uses deep analytic techniques. For our purposes
we will need the L2-convergence, which can be established much simpler.
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To make the exposition more self-contained we present the corresponding
arguments in Section 3.

Denote by Dp(θ) the class of finite complex Borel measures µ on D for
which the embedding Kp

θ ⊂ Lp(|µ|) holds; by |µ| we denote the total vari-
ation of the complex measure µ. The class of positive measures in Dp(θ) is
denoted by D+

p (θ). The classes D+
p (θ) contain all Carleson measures, i.e.,

measures for which the embedding Hp →֒ Lp(µ) is a bounded operator (for
some, and hence for all p > 0). However, the class Dp(θ) is usually much
wider due to additional analyticity (pseudocontinuability) of the elements
of Kp

θ on the boundary. The problem of the description of the class Dp(θ)
for general θ was posed by Cohn in 1982; it is still open. Many partial
results may be found in [18, 19, 33, 6, 26, 7, 8]. In particular, the classes
Dp(θ) are described if θ is a one-component inner function; in this case there
exists a nice geometric description analogous to the classical Carleson em-
bedding theorem [33, 3, 6]. Moreover, Aleksandrov [6] has shown that θ is
one-component if and only if all classes Dp(θ) for p > 0 coincide.

In what follows we denote by Cp(θ) the set of finite complex Borel measures
µ on the unit circle T such that |µ| is in Dp(θ); the class of positive measures
in Cp(θ) will be denoted by C+

p (θ).
If µ ∈ C2(θ), we may define the bounded operator Aµ on Kθ by the

formula

(3) (Aµf, g) =

∫

f ḡ dµ.

It is shown in [31] that Aµ ∈ T (θ). This follows immediately from the
following characteristic property of truncated Toeplitz operators.

Theorem 1.2. [31, Theorem 8.1] A bounded operator A on Kθ is a truncated
Toeplitz operator if and only if the condition f, zf ∈ Kθ yields (Af, f) =
(Azf, zf).

A complex measure µ on T with finite total variation (but not necessarily
from C2(θ)) will be called a quasisymbol for a truncated Toeplitz operator
A if (Af, g) =

∫

f ḡ dµ holds for all continuous functions f, g ∈ Kθ. The
symbol ϕ of A = Aϕ can be regarded as a quasisymbol if we identify it with
the measure ϕm.

The following conjecture was formulated by Sarason in [31]: every bounded
truncated Toeplitz operator A coincides with Aµ for some µ ∈ C2(θ). Below
we prove this conjecture. Moreover, we show that nonnegative bounded
truncated Toeplitz operators are of the form Aµ with µ ∈ C+

2 (θ). We also
prove that truncated Toeplitz operators with bounded symbols correspond
to complex measures from the subclass C1(θ

2) of C2(θ
2) = C2(θ), and, finally,

that every bounded truncated Toeplitz operator has a bounded symbol if
and only if C1(θ

2) = C2(θ
2).
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1.3. Factorizations. Now we consider a factorization problem for pseudo-
continuable functions in H1, which proves to have an equivalent reformula-
tion in terms of truncated Toeplitz operators.

It is well known that any function f ∈ H1 can be represented as the
product of two functions g, h ∈ H2 with ‖f‖1 = ‖g‖2·‖h‖2. By the definition
of the spaces Kp

θ , there is a natural involution on Kθ:

(4) f 7→ f̃ = z̄θf̄ ∈ Kθ, f ∈ Kθ.

Hence, if f, g ∈ Kθ, then fg ∈ H1 and z̄2θ2f̄ ḡ ∈ H1. Thus,

fg ∈ H1 ∩ z̄2θ2H1 = H1 ∩ z̄θ2H1
−.

If θ(0) = 0, then θ2/z is an inner function and H1 ∩ z̄θ2H1
− = K1

θ2/z.

It is not difficult to show that linear combinations of products of pairs of
functions from Kθ form a dense subset of H1 ∩ z̄θ2H1

−. We are interested in
a stronger property:

For which θ may any function f ∈ H1∩ z̄θ2H1
− be represented in the form

(5) f =
∑

k

gkhk, gk, hk ∈ Kθ,
∑

k

‖gk‖2 ·‖hk‖2 <∞?

We still use the term factorization for the representations of the form (5),
by analogy with the usual row-column product.

Below we will see that, for functions f ∈ H1 ∩ z̄θ2H1
−, not only a usual

factorization f = g ·h, g, h ∈ Kθ, but even a weaker factorization (5) may
be impossible. We prove that this problem is equivalent to the problem of
existence of bounded symbols for all bounded truncated Toeplitz operators
on Kθ.

Let us consider two special cases of the problem. Take θ(z) = zn+1. The
spaces Kθ and K1

θ2/z consist of polynomials of degree at most n and 2n,

respectively, and then, obviously, K1
θ2/z = Kθ ·Kθ. However, it is not known

if a norm controlled factorization is possible, i.e., if for a polynomial p of
degree at most 2n there exist polynomials q, r of degree at most n such that
p = q·r and ‖q‖2·‖r‖2 6 C‖p‖1, where C is an absolute constant independent
on n. On the other hand, it is shown in [32] that there exists a representation

p =
∑4

k=1 qkrk with
∑4

k=1 ‖qk‖2 ·‖rk‖2 6 C‖p‖1.
For θ = θa defined by (1), the corresponding model subspaces Kp

θ are
the natural analogs of the Paley–Wiener spaces PW p

a of entire functions.
The space PW p

a consists of all entire functions of exponential type at most
a, whose restrictions to R are in Lp. It follows from our results (and may
be proved directly, see Section 7) that every entire function f ∈ PW 1

2a of
exponential type at most 2a and summable on the real line R admits a
representation f =

∑4
k=1 gkhk with fk, gk ∈ PW 2

a,
∑4

k=1 ‖gk‖2 · ‖hk‖2 6

C‖f‖1.
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2. Main results

Our first theorem answers Sarason’s question about representability of
bounded truncated Toeplitz operators via Carleson measures for Kθ.

Theorem 2.1. 1) Any nonnegative bounded truncated Toeplitz operator on
Kθ admits a quasisymbol which is a nonnegative measure from C+

2 (θ).
2) Any bounded truncated Toeplitz operator on Kθ admits a quasisymbol

from C2(θ).

In general, in assertion 1) of the theorem, µ cannot be chosen abso-
lutely continuous, i.e., bounded nonnegative truncated Toeplitz operators
may have no nonnegative symbols. Let δ be the Dirac measure at a point
of T, for which the reproducing kernel belongs to Kθ. Then the operator Aδ
cannot be realized by a nonnegative symbol unless the dimension of Kθ is 1.
Indeed, if µ is a positive absolutely continuous measure, then the embedding
Kθ →֒ L2(µ) must have trivial kernel, while in this example it is a rank-one
operator.

The next theorem characterizes operators from T (θ) that have bounded
symbols.

Theorem 2.2. A bounded truncated Toeplitz operator A admits a bounded
symbol if and only if A = Aµ for some µ ∈ C1(θ

2).

In the proofs of these results the key role is played by the following Banach
space X defined by

(6) X =

{

∑

k

xkȳk : xk, yk ∈ Kθ,
∑

k

‖xk‖2 ·‖yk‖2 <∞

}

.

The norm in X is defined as the infimum of
∑

‖xk‖2 ·‖yk‖2 over all repre-
sentations of the element in the form

∑

xkȳk.

Theorem 2.3. 1) The space dual to X can be naturally identified with T (θ).
Namely, continuous linear functionals over X are of the form

(7) ΦA(f) =
∑

k

(Axk, yk), f =
∑

k

xkȳk ∈ X,

with A ∈ T (θ), and the correspondence between the functionals over X and
the space T (θ) is one-to-one and isometric.

2) With respect to the duality (7) the space X is dual to the class of all
compact truncated Toeplitz operators.

The next theorem establishes a connection between the factorization prob-
lem, Carleson-type embeddings, and the existence of a bounded symbol for
every bounded truncated Toeplitz operator on Kθ.

Theorem 2.4. The following are equivalent:
1) any bounded truncated Toeplitz operator on Kθ admits a bounded sym-

bol;
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2) C1(θ
2) = C2(θ

2);
3) for any f ∈ H1∩ z̄θ2H1

− there exist xk, yk ∈ Kθ with
∑

k ‖xk‖2·‖yk‖2 <
∞ such that f =

∑

k xkyk.

In the proof it will be shown that condition 2) can be replaced by the
stronger condition

2′) D1(θ
2) = D2(θ

2).

Condition 3) also admits formally stronger, but equivalent reformulations.
If 3) is fulfilled, then, by the Closed Graph theorem, one can always find
xk, yk such that

∑

k ‖xk‖2 · ‖yk‖2 6 C‖f‖1 for some constant C independent
from f . Thus, 3) means that X = H1 ∩ z̄θ2H1

− and the norm of X is

equivalent to L1 norm. Moreover, it follows from Proposition 4.1 that one
can require that the sum contain at most four summands.

If θ is a one-component inner function, then all classes Cp(θ) coincide,
see [6, Theorem 1.4]. If θ is one-component, then θ2 is, too, hence C1(θ

2) =
C2(θ

2). As an immediate consequence of Theorem 2.4 we obtain the following
result conjectured in [9]:

Corollary 2.5. If θ is a one-component inner function, then the equivalent
conditions of Theorem 2.4 are fulfilled.

We do not know if the converse is true, that is, whether the equality
C1(θ

2) = C2(θ
2) implies that θ is one-component. If this is true, it would

give us a nice geometrical description of inner functions θ satisfying the
equivalent conditions of Theorem 2.4:

Conjecture 2.6. The equivalent conditions of Theorem 2.4 are fulfilled if
and only if θ is one-component.

Theorem 2.4 also allows to extend considerably the class of counterexam-
ples to the existence of a bounded symbol. Let us recall the definition of
the Clark measures σα [17]. For each α ∈ T there exists a finite (singular)
positive measure σα on T such that

(8) Re
α+ θ(z)

α− θ(z)
=

∫

T

1− |z|2

|1− τ̄ z|2
dσα(τ), z ∈ D.

If σα is purely atomic, i.e., if σα =
∑

n an δtn , then the system {ktn} is an
orthogonal basis in K2

θ ; in particular, ktn ∈ K2
θ and ‖ktn‖

2
2 = |θ′(tn)|/(2π).

It is shown in [4, Theorem 8] that the condition C1(θ
2) = C2(θ

2) implies
that all measures σα are discrete.

Corollary 2.7. If, for some α ∈ T, the Clark measure σα is not discrete,
then the conditions of Theorem 2.4 do not hold and, in particular, there exist
operators from T (θ) that do not admit a bounded symbol.



8 ANTON BARANOV, ROMAN BESSONOV, VLADIMIR KAPUSTIN

3. Embeddings Kθ →֒ L2(µ): the radial L2-convergence

In this section we present a more elementary approach to embedding
theorems which is different from that of Theorem 1.1. Sometimes it may be
more convenient to work in the L2-convergence setting than with continuous
functions from Kθ. Here we impose an extra assumption θ(0) = 0, or,
equivalently, 1 ∈ Kθ, to which the general case can easily be reduced (via
transform (11) defined below), but we omit the details of the reduction.

We will show that the condition µ ∈ C+
2 (θ) is equivalent to the existence

of an operator J : Kθ → L2(µ) such that
(i) if f, zf ∈ Kθ then Jzf = zJf ,
(ii) J1 = 1.

Moreover, these properties uniquely determine the operator, which turns
out to coincide with the embedding operator Kθ →֒ L2(µ) defined by The-
orem 1.1. The proofs are based on the following result of Poltoratski, see
also [23]. For g ∈ Kθ, gr denotes the function gr(z) = g(rz).

Proposition 3.1. (cf. [29, Theorem 1.1]) Let θ(0) = 0. If a bounded
operator J : Kθ → L2(µ) satisfies the properties (i), (ii), then for any g ∈ Kθ

we have ‖gr‖L2(µ) 6 2 · ‖Jg‖L2(µ) and gr → Jg in L2(µ) as r ր 1.

Proof. Consider the Taylor expansion of g ∈ Kθ,

g(z) =
∞
∑

k=0

akz
k,

and introduce the functions gn ∈ Kθ,

gn(z) =

∞
∑

k=0

ak+nz
k.

By induction from the relation Jgn = an + zJgn+1 we obtain the formula

Jg =
n−1
∑

k=0

akz
k + znJgn.

We have ‖gn‖2 6 ‖g‖2 and ‖gn‖2 → 0 as n→ +∞. Therefore,
∑n−1

k=0 akz
k →

Jg in L2(µ). Since gr are the Abel means of the sequence
(

∑n−1
k=0 akz

k
)

n>1
,

we conclude that gr → Jg as well. �

Since for a continuous function g ∈ Kθ, Jg coincides with g µ-almost
everywhere, J is the same operator as the embedding from Theorem 1.1.

By Proposition 3.1 the function z−1θ(z) (or θ(z)−θ(0)
z in the general case,

if θ(0) 6= 0) has the boundary function defined by the limit in L2(µ) of θr,
where θr(z) = θ(rz). This allows us to define the boundary values of θ
µ-almost everywhere.

Proposition 3.2. If µ ∈ C2(θ), then |θ| = 1 |µ|-almost everywhere.
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This fact is mentioned in [4] and its proof there seems to use the techniques
of convergence µ-almost everywhere. A more elementary proof is given below
for the reader’s convenience.

Proof. We may assume that µ ∈ C+
2 (θ). It is easy to check the relation

MzJ − JAz = (·, z̄θ)θ,

whereMz is the operator of multiplication by z on L2(µ), J is the embedding
Kθ →֒ L2(µ), Az is the truncated Toeplitz operator with symbol z, i.e.,
the model contraction Sθ. Indeed, on vectors orthogonal to z̄θ both sides
equal 0, and for z̄θ the formula can be verified by a simple straightforward
calculation. Similarly, Mz̄J − JAz̄ = (·, 1)z̄, hence

J∗Mz −AzJ
∗ = (·, z̄)1.

We obtain

JJ∗Mz −MzJJ
∗ =J(J∗Mz −AzJ

∗)− (MzJ − JAz)J
∗

=(·, z̄)J1 − (·, Jz̄θ)θ = (·, z̄)1− (·, z̄θ)θ.

Theorem 6.1 of [24] says that if K =
∑

(·, ūk)vk is a finite rank (or even
trace class) operator on L2(µ), where µ is a singular measure on T, and
if K = XMz −MzX for some bounded linear operator X on L2(µ), then
∑

ukvk = 0 µ-almost everywhere. By this theorem z − z|θ|2 = 0, hence
|θ| = 1 µ-almost everywhere, as required. �

4. The space X

As above, the space X is defined by formula (6),

X =
{

∑

xkȳk : xk, yk ∈ Kθ,
∑

‖xk‖2 ·‖yk‖2 <∞
}

.

We also consider the analytic analog Xa of the space X,

(9) Xa =
{

∑

xkyk : xk, yk ∈ Kθ,
∑

‖xk‖2 ·‖yk‖2 <∞
}

.

By (4),

X ⊂ θ̄zH1 ∩ θzH1

and

Xa = {z̄θf : f ∈ X} ⊂ H1 ∩ z̄θ2H1
− ⊂ K1

θ2 .

The norms in these spaces are defined as infimum of
∑

‖xk‖2·‖yk‖2 over all
possible representations, thus X, Xa are Banach spaces.

Proposition 4.1. 1) Any nonnegative element of X can be written as |g|2,
g ∈ Kθ.

2) Any element of X can be represented as a linear combination of four
nonnegative elements of X.

3) Every element of X,Xa admits a representation as a sum containing
only four summands in the definition of these spaces, and the norm of each
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summand in the space does not exceed the norm of the initial element of the
space.

Proof. 1) Let f =
∑

xkȳk ∈ X, f > 0. Since z̄θȳk ∈ Kθ, we have
z̄θf ∈ H1. Then, by Dyakonov’s result [20], f = |g|2 for some g ∈ Kθ

(proof: take the outer function with modulus f1/2 on T as g; then z̄θḡ ∈ H2

and hence g ∈ Kθ).
2) Since X is symmetric with respect to complex conjugation, it suffices

to show that real functions from X may be represented as a difference of
two nonnegative functions from X. The real part of a function from X of
the form

∑

xkȳk with xk, yk ∈ Kθ,
∑

‖xk‖2 ·‖yk‖2 <∞, is

1

2

∑

(xkȳk + x̄kyk) =
∑

∣

∣

∣

∣

xk + yk
2

∣

∣

∣

∣

2

−
∑

∣

∣

∣

∣

xk − yk
2

∣

∣

∣

∣

2

,

which is the desired representation. We may suppose that ‖xk‖ = ‖yk‖ for

every k, then each of the norms
∥

∥

∥

∑
∣

∣

xk+yk
2

∣

∣

2
∥

∥

∥

X
,
∥

∥

∥

∑
∣

∣

xk−yk
2

∣

∣

2
∥

∥

∥

X
obviously

does not exceed
∑

‖xk‖2 ·‖yk‖2.
3) For the space X this directly follows from 1) and 2), for Xa it remains

to use the relation Xa = z̄θX, which is a consequence of (4). �

Given a function f in the unit disk, define functions fr, 0 < r < 1, by
fr(z) = f(rz). We may think of functions f ∈ Xa as analytic functions in
D. For f ∈ Xa write f =

∑

xkyk with xk, yk ∈ Kθ and
∑

‖xk‖2·‖yk‖2 <∞.
We have fr =

∑

(xk)r(yk)r. Now it follows from Proposition 3.1 that, for
any µ ∈ C+

2 (θ), the embedding of the space Xa into L1(µ) is a well-defined
bounded map realized by the limit of fr in L

1(µ) as r ր 1.

We will need the following important lemma.

Lemma 4.2. Let µ ∈ C2(θ) and let xk, yk ∈ Kθ,
∑

‖xk‖2 ·‖yk‖2 < ∞. If
∑

xkȳk = 0 in the space X, then also
∑

xkȳk = 0 |µ|-almost everywhere.

In other words, the embedding X →֒ L1(|µ|) is well defined.

Proof. There is no loss of generality if we assume that µ ∈ C+
2 (θ). As

above, let J stand for the embedding Kθ →֒ L2(µ). If g ∈ Kθ, then g̃ ∈ Kθ,
where g̃ = z̄θḡ. By Proposition 3.1 the functions g̃r have a limit as r ր 1,
and we want to show that

(10) lim
r→1−

g̃r = z̄θḡ in L2(µ).

It suffices to check this relation on a dense set. It is easily seen that for repro-

ducing kernels 1−θ(λ)θ
1−λ̄z

this property is equivalent to the fact that |θr|
2 → 1

proved in Proposition 3.2.
Take xk, yk ∈ Kθ such that

∑

‖xk‖2 ·‖yk‖2 < ∞ and
∑

xkȳk = 0. Con-
sider the functions ỹk ∈ Kθ, ỹk = z̄θȳk. By (10) we have (ỹk)r → z̄θȳk
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in L2(µ). The formula
∑

xkỹk determines the zero element of Xa, hence
∑

(xk)r(ỹk)r = (
∑

xkỹk)r = 0. We obtain
∑

xk · z̄θȳk = lim
r→1−

∑

(xk)r(ỹk)r = 0

in the norm of the space L1(µ). Since θ 6= 0 µ-a.e. (e.g., by Proposition 3.2),
we conclude that

∑

xkȳk = 0 µ-almost everywhere. �

5. Proofs of Theorems 2.1–2.3

Proof of Theorem 2.1. 1) Let A be a nonnegative bounded truncated
Toeplitz operator with symbol ϕ. Denote by Xc the set of all continuous
functions from X and define the functional l on Xc by l : f 7→

∫

ϕf dm. If
f ∈ Xc, f > 0, then lf > 0. Indeed, by item 1) of Proposition 4.1, there
exists a function g ∈ Kθ such that |g|2 = f (g turns out to be bounded),
and hence

lf =

∫

ϕf dm =

∫

ϕgḡ dm = (Ag, g) > 0.

Assume first that θ(0) = 0, then 1 ∈ X. Extend the functional l to the
space C(T) of all continuous functions on T by the Hahn–Banach theorem
so that the norm of the extended functional equal the norm of l. Since
1 ∈ X, it will be nonnegative automatically, hence lf =

∫

f dµ, f ∈ Xc,
for some nonnegative Borel measure µ on T. The map Kθ → L2(µ), which
takes continuous functions to their traces on the support of µ, is bounded.
Indeed, if g ∈ Kθ is continuous, then

∫

|g|2dµ = (Ag, g) 6 ‖A‖ · ‖g‖22.

This proves that µ ∈ C+
2 (θ). By linearity and continuity the relation

∫

|g|2dµ = (Ag, g), g ∈ Kθ, implies
∫

xȳ dµ = (Ax, y) for all x, y ∈ Kθ,
hence A = Aµ.

If w = θ(0) 6= 0, consider so-called Crofoot’s transform

(11) U : f 7→
√

1− |w|2
f

1− wθ

which is a unitary map of Kθ onto KΘ, where Θ = θ−w
1−wθ is the Frostman

shift of θ. Take a bounded truncated Toeplitz operator A ≥ 0 acting on
the space Kθ. By [31, Theorem 13.2] the operator UAU∗ ≥ 0 is a bounded
truncated Toeplitz operator on KΘ. Note that Θ(0) = 0. Let µ ∈ C+

2 (Θ) be

a quasisymbol of UAU∗. Then the measure ν = 1−|w|2

|1−wθ|2µ is a quasisymbol

of A. Indeed, ν ∈ C+
2 (θ), and from (11) it follows that for any f, g ∈ Kθ, we

have

(Af, g) = (UAU∗Uf,Ug) =

∫

Uf · Ug dµ =

∫

f ḡ dν.

Thus, each nonnegative bounded truncated Toeplitz operator admits a qua-
sisymbol from C+

2 (θ).
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2) Let A be a bounded truncated Toeplitz operator. It may be repre-
sented in the form A = A1 − A2 + iA3 − iA4, where all Ai, i = 1, 2, 3, 4,
are nonnegative truncated Toeplitz operators. Indeed, A∗ is a truncated
Toeplitz operators as well, which allows us to consider only selfadjoint op-
erators. The identity operator I is trivially a truncated Toeplitz operator
(with symbol 1), and A is the difference of two nonnegative operators ‖A‖·I
and ‖A‖ · I − A. For each Ai construct µi as above. It remains to take
µ = µ1 − µ2 + iµ3 − iµ4. �

Proof of Theorem 2.2. If A has a bounded symbol ϕ, then A = Aµ
with dµ = ϕdm, and µ ∈ C1(θ

2).
Now let µ ∈ C1(θ

2). We need to prove that Aµ coincides with a truncated
Toeplitz operator with a bounded symbol. Define the functional l : f 7→
∫

f dµ on functions from X which are finite sums of the functions of the
form xkȳk with xk, yk ∈ Kθ. For f =

∑

xkȳk we have
∣

∣

∣

∣

∫

f dµ

∣

∣

∣

∣

6

∫

|f |d|µ| 6 C‖f‖1,

since θz̄f ∈ K1
θ2 and µ ∈ C1(θ

2). Hence, the functional l can be continuously

extended to L1, and so there exists a function ϕ ∈ L∞ such that l(f) =
∫

ϕf dm, f ∈ X. Hence, for any x, y ∈ K2
θ , we have

∫

xȳ dµ = l(xȳ) =

∫

ϕxȳ dm = (Aϕx, y),

and thus Aµ = Aϕ. �

Proof of Theorem 2.3. 1) First, we verify that the functional (7) is well
defined for any operator A ∈ T (θ). We need to prove that

∑

(Axk, yk) = 0
if xk, yk ∈ Kθ,

∑

‖xk‖2·‖yk‖2 <∞, and
∑

xkȳk = 0 almost everywhere with
respect to the Lebesgue measure. To this end, apply Theorem 2.1 and find
a measure µ ∈ C2(θ) such that (Ax, y) =

∫

xȳ dµ for all x, y ∈ Kθ. Lemma
4.2 holds for all complex measures from C2(θ); we conclude that

∑

xkȳk = 0
µ-almost everywhere. By the definition of Aµ we have

∑

(Axk, yk) =

∫

(

∑

xkȳk

)

dµ.

Thus
∑

(Axk, yk) = 0, and the functional is defined correctly.
Now prove the equality ‖ΦA‖ = ‖A‖. Indeed, for any function

∑

xkȳk ∈
X we have

∣

∣

∣
ΦA

(

∑

xkȳk

)
∣

∣

∣
=

∣

∣

∣

∑

(Axk, yk)
∣

∣

∣
6 ‖A‖

∑

‖xk‖2 ·‖yk‖2.

Hence ‖ΦA‖ 6 ‖A‖. On the other hand, for any unit norm vectors x, y ∈ K2
θ

we have ‖xȳ‖X 6 1 and

‖A‖ = sup
‖x‖2,‖y‖261

|(Ax, y)| = sup
‖x‖2,‖y‖261

|ΦA(xȳ)| 6 ‖ΦA‖.

This proves the inverse inequality.
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It remains to show that any linear continuous functional Φ on X may
be represented in the form Φ = ΦA for some (unique) truncated Toeplitz
operator A. Take a continuous functional Φ on X and define the operator

AΦ by its bilinear form: (AΦx, y)
def
= Φ(xȳ). If f, zf ∈ Kθ, we have

(AΦf, f) = Φ(|f |2) = Φ(|zf |2) = (AΦzf, zf)

Now, applying Theorem 1.2, we obtain A ∈ T (θ). The uniqueness of A is a
consequence of the relation ‖AΦ‖ = ‖Φ‖.

2) Consider the duality 〈f,A〉 =
∑

(Axk, yk) where A ∈ T (θ), f =
∑

xkȳk ∈ X (by Lemma 4.2 〈f,A〉 does not depend on the choice of
factorization). We need to prove that every continuous functional Φ on
the space T0(θ) of all compact truncated Toeplitz operators is realized by
an element of X. Extend Φ by Hahn–Banach theorem to the space of
all compact operators in Kθ. The trace class is the dual space to the
class of all compact operators, hence the functional may be written in
the form Φ(A) =

∑

(Axk, yk), A ∈ T0(θ), for some xk, yk ∈ Kθ with
‖Φ‖ =

∑

‖xk‖2 ·‖yk‖2. Then f =
∑

xkȳk ∈ X and Φ(A) = 〈f,A〉. Re-
peating the arguments from 1) we conclude that ‖Φ‖ 6 ‖f‖X . On the other
hand, ‖f‖X 6

∑

‖xk‖2 ·‖yk‖2 = ‖Φ‖. �

Now we prove two corollaries which give us additional information on the
structure of the space of truncated Toeplitz operators.

Corollary 5.1. The closed (in the norm) linear span of rank-one truncated
Toeplitz operators coincides with the set of all compact truncated Toeplitz
operators.

Proof. For λ ∈ D, denote by kλ, k̃λ the functions from Kθ,

kλ(z) =
1− θ(λ)θ(z)

1− λ̄z
, k̃λ(z) =

θ(z)− θ(λ)

z − λ

(recall that kλ is the reproducing kernel for the space Kθ). If x, y ∈ Kθ,

then (x, kλ) = x(λ), (ỹ, k̃λ) = y(λ). It is shown in [31] that the operators

Tλ = (·, kλ)k̃λ are rank-one truncated Toeplitz operators. Take f ∈ X as an
element of the dual space to the class of all compact truncated Toeplitz op-
erators. Set g = z̄θf ∈ Xa, let g =

∑

xkyk with xk, yk ∈ Kθ. The following
formula illustrates the duality on rank-one truncated Toeplitz operators:

〈f, Tλ〉 =
〈

∑

xk · ỹk, Tλ
〉

=
∑

(Tλxk, ỹk)

=
∑

xk(λ) · (k̃λ, ỹk) =
∑

xk(λ) · yk(λ) = g(λ).

Suppose that f annihilates all operators of the form Tλ with |λ| < 1. Then
g ≡ 0 in D, hence f is the zero element of X. �

The space of all bounded linear operators on a Hilbert space is dual to the
space of trace class operators. This duality generates the ultraweak topology
on the former space. Formally, the ultraweak topology is stronger than
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the weak operator topology, but on the subspace of all truncated Toeplitz
operators they coincide.

Corollary 5.2. The weak operator topology on T coincides with the ultra-
weak topology.

Proof. Any ultraweakly continuous functional Φ on T is generated by some
trace class operator

∑

k(·, yk)xk, where xk, yk ∈ Kθ,
∑

k ‖xk‖2 ·‖yk‖2 < ∞,
and is of the form

Φ(A) =
∑

k

(Axk, yk).

The function f =
∑

k xkȳk belongs to the space X. It follows from Propo-

sition 4.1 that there exist f1, g1 . . . f4, g4 ∈ Kθ such that f =
∑4

k=1 fkḡk.
Therefore, by the duality from Theorem 2.3,

Φ(A) = 〈f,A〉 =
〈

4
∑

k=1

fkḡk, A
〉

= (Af1, g1) + . . . + (Af4, g4).

Now the statement of the corollary is obvious. �

6. Proof of Theorem 2.4

Throughout this section we will assume, for simplicity, that θ(0) = 0. The
general case follows immediately by means of the transform (11) (note that
in this case Cp(Θ) = Cp(θ) for any p, see, e.g., [5, Theorem 1.1]).

For the proof of Theorem 2.4 we need the following obvious lemma (see
[5]) based on the relations Kθ2 = Kθ ⊕ θKθ and Kθ ·Kθ ⊂ K1

θ2 .

Lemma 6.1. For any inner function θ we have C2(θ) = C2(θ
2) and C1(θ

2) ⊂
C2(θ

2). If θ(0) = 0, we also have Cp(θ
2) = Cp(θ

2/z) for any p. The same
equalities or inclusions hold for the classes Dp(θ).

Proof of Theorem 2.4. 3) ⇒ 2). We will establish condition 2′),
which is formally stronger than 2). By Lemma 6.1 it suffices to prove the
inclusion D2(θ) ⊂ D1(θ

2/z). Take a complex measure µ ∈ D2(θ). We
must check that the embedding K1

θ2/z →֒ L1(|µ|) is a bounded operator. By

condition 3), there is a positive constant c1 such that any function f ∈ K1
θ2/z

can be represented in the form f =
∑∞

k=1 fkgk, where the functions fk, gk
are in Kθ and

∑∞
k=1 ‖fk‖2 · ‖gk‖2 6 c1‖f‖1. Since µ ∈ D2(θ), we have

∑∞
k=1 ‖fk‖L2(|µ|) · ‖gk‖L2(|µ|) < ∞, so the series converges in L1(|µ|) and

f ∈ L1(|µ|). Moreover,
∫

|f | d|µ| =

∫

∣

∣

∣

∣

∣

∞
∑

k=1

fkgk

∣

∣

∣

∣

∣

d|µ| 6
∞
∑

k=1

‖fk‖L2(|µ|) ·‖gk‖L2(|µ|)

6 c2

∞
∑

k=1

‖fk‖2 ·‖gk‖2 6 c1c2‖f‖1,
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and, thus, µ ∈ D1(θ
2/z). Therefore, we have D2(θ) ⊂ D1(θ

2/z) which
implies D2(θ

2) = D1(θ
2) (and, in particular, C2(θ

2) = C1(θ
2)).

The implication 2) ⇒ 1) follows directly from Theorems 2.1 and 2.2 (even
with the weaker assumption C1(θ

2) = C2(θ
2)).

1) ⇒ 3). Condition 3) can be written in the form Xa = K1
θ2/z or, equiva-

lently, as X = zθ̄K1
θ2/z (see Section 4). In the general case we have that X

is a dense subset of zθ̄K1
θ2/z. By the Closed Graph theorem, X = zθ̄K1

θ2/z

if and only if the norms in the spaces X and K1
θ2/z are equivalent. Take an

arbitrary function h =
∑

xkȳk ∈ X. Clearly, we have ‖h‖1 6 ‖h‖X . On the
other hand, it follows from Theorem 2.3 that

(12) ‖h‖X = sup
{∣

∣

∣

∑

(Axk, yk)
∣

∣

∣
: A ∈ T (θ), ‖A‖ 6 1

}

.

The Closed Graph theorem and condition 1) guarantee the existence of a
bounded symbol fA ∈ L∞ for any operator A ∈ T (θ) with ‖fA‖∞ 6 c‖A‖.
Therefore, the supremum in (12) does not exceed

sup
{
∣

∣

∣

∑

(fxk, yk)
∣

∣

∣
: f ∈ L∞, ‖f‖∞ 6 c

}

= c sup
‖f‖∞61

∣

∣

∣

∣

∫

f ·
∑

xkȳk dm

∣

∣

∣

∣

.

Thus, ‖h‖X 6 c‖h‖1, h ∈ X, which proves the theorem. �

7. One-component inner functions

As we have noted in Section 2, one-component inner functions satisfy the
condition 2) of Theorem 2.4: C2(θ) = C1(θ

2). It is also possible to show
that one-component inner functions satisfy the factorization condition 1)
in Theorem 2.4. We will start with a particular case of the Paley–Wiener
spaces.

Example 7.1. Let Θa(z) = exp(iaz), a > 0, be an inner function in
the upper half-plane. Then for the corresponding model subspace we have
Kp

Θa
= PW p

a ∩H
p. Note, that the model subspaces in the half-plane case

are defined as Kp
Θ = Hp ∩ΘHp, the involution is given by f 7→ Θf̄ , and so

fg ∈ K1
Θ2 for any f, g ∈ K2

Θ. Thus, in view of Proposition 4.1, the factoriza-
tion for the corresponding space X is equivalent to the following property:
for any f ∈ PW 1

2a which takes real values there exist g ∈ PW 1
2a such that

|f | 6 g. This can be easily achieved. Let a = π/2. Put

g(z) =
∑

n∈Z

cn
sin2 π2 (t− n)

(t− n)2
,

where cn = max[n,n+1] |f |. By the Plancherel–Pólya inequality (see, e.g.,

[25, Lecture 20]),
∑

n cn 6 C‖f‖1, and so g ∈ PW 1
π. Also, if t ∈ [n, n + 1],
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then

|f(t)| 6 cn 6 cn
sin2 π2 (t− n)

(t− n)2
6 g(t).

�

An analogous argument works for general one-component inner function.
Let θ be an inner function in the unit disk. In view of Proposition 4.1,
the property 1) in Theorem 2.4 will be obtained as soon as we prove the
following theorem:

Theorem 7.2. For any real-valued element f of X there exist tn ∈ T and
cn > 0 such that

g =
∑

cn|ktn |
2 ∈ X,

‖g‖1 6 C‖f‖1, and |f | 6 g on R.

First we collect some known properties of one-component inner functions.

(i) Let ρ(θ) be the so-called spectrum of the inner function θ, that is, the
set of all ζ ∈ D such that lim inf

z→ζ, z∈D
|θ(z)| = 0. Then θ, as well as any element

of Kp
θ , has an analytic extension across any subarc of the set T \ σ(θ).

It is shown in [6] that for a one-component inner function σα(ρ(θ)) = 0 for
any Clark measure σα defined by (8). Thus, all Clark measures are purely
atomic and supported on the set T \ ρ(θ).

(ii) On each arc of the set T \ ρ(θ), there exists a smooth increasing
branch of the argument of θ (denote it by ψ) and the change of the argument
between two neighboring points tn and tn+1 from the support of one Clark
measure is exactly 2π.

(iii) By (tn, tn+1) we denote the closed arc with endpoints tn, tn+1, which
contains no other points from the Clark measure support. There exists
a constant A = A(θ) such that for any two points tn and tn+1 satisfying
|ψ(tn+1)− ψ(tn)| = 2π and for any s, t from the arc (tn, tn+1),

(13) A−1
6

|θ′(s)|

|θ′(t)|
6 A,

that is, |θ′| is almost constant, when the change of the argument is small.
This follows from the results of [6], a detailed proof may be found in [10,
Lemma 5.1].

(iv) If θ is one-component, then C1(θ) = C2(θ). The same holds for the
function θ2 which is also one-component. By Lemma 6.1, C1(θ

2) = C2(θ
2) =

C2(θ), and so there is a constant B such that for any measure in C+
2 (θ),

(14) sup
f∈K1

θ2

‖f‖L1(µ)

‖f‖1
6 B sup

f∈K2
θ

‖f‖L2(µ)

‖f‖2
.
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(v) Let {tn} be the support of some Clark measure for θ and let sn ∈
(tn, tn+1). There exists a constant C = C(θ) which does not depend on {tn}
and {sn} such that for any f ∈ K2

θ ,

∑

n

|f(sn)|
2

|θ′(sn)|
6 C‖f‖22.

This follows from the stability result due to Cohn [19, Theorem 3].

So (v) means that for the measures of the form
∑

n |θ
′(sn)|

−1δsn the supre-
mum in the right-hand side of (14) is uniformly bounded. From this, (iii)
and (iv) we have the following Plancherel–Polya type inequality:

Corollary 7.3. Let {tn} be the support of some Clark measure for θ and let
sn, un ∈ (tn, tn+1). There exists a constant C = C(θ) which does not depend
on {tn}, {sn}, {un}, such that for any f ∈ X ⊂ K1

θ2 ,

(15)
∑

n

|f(sn)|

|θ′(un)|
6 C‖f‖1.

Proof of Theorem 7.2. Let f ∈ X. Take two Clark bases corresponding
to 1 and −1, and let {tn} be the union of their supports. If tn and tn+1 are
two neighbor points from our set, then

∫

(tn,tn+1)
|θ′(t)|dm(t) = π.

If we write tn = eixn and take the branch of the argument ψ so that θ(eix) =

e2iψ(x), then |ψ(xn+1)− ψ(xn)| = π/2.
Let cn = supt∈(tn,tn+1) |f(t)| and put, for some constant D whose value

will be specified later,

g(z) = D
∑

cn
|ktn(z)|

2

|θ′(tn)|2
.

Then g ∈ L1 since the series converges in L1-norm. Indeed, cn = |f(sn)| for
some sn ∈ (tn, tn+1) and

∑

|cn|
‖k2tn‖1

|θ′(tn)|2
=

∑ |f(sn)|

|θ′(tn)|
6 C‖f‖1

by Corollary 7.3. Also g ∈ X and g > 0.
It remains to show that g > |f |. Let t = eix ∈ (tn, tn+1). We have

(16) |ktn(t)| =

∣

∣

∣

∣

θ(t)− θ(tn)

t− tn

∣

∣

∣

∣

=

∣

∣

∣

∣

2
sin(ψ(x) − ψ(xn))

eix − eixn

∣

∣

∣

∣

.

Since |ψ(x)−ψ(xn)| 6 π/2, we have | sin(ψ(x)−ψ(xn))| > 2|ψ(x)−ψ(xn)|/π.
Of course we have |eix − eixn | 6 |x− xn|. Hence, the last quantity in (16) is

>
4

π
·

∣

∣

∣

∣

ψ(x)− ψ(xn)

x− xn

∣

∣

∣

∣

=
4ψ′(yn)

π
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for some yn ∈ [xn, x]. If we put un = eiyn we have ψ′(yn) = |θ′(un)|/2.
Thus, we have shown that |ktn(t)| > 2|θ′(un)|/π for some un ∈ (tn, tn+1).
Hence, if we take D > π2A2/4, then

g(t) > Dcn
|ktn(t)|

2

|θ′(tn)|2
> D

4|θ′(un)|
2

π2|θ′(tn)|2
cn >

4D

π2A2
cn > cn > |f(t)|.

The theorem is proved. �
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