SYMBOLS OF TRUNCATED TOEPLITZ OPERATORS

ANTON BARANOV, ROMAN BESSONOV, VLADIMIR KAPUSTIN

Abstract

We consider three problems connected with coinvariant subspaces of the backward shift operator in Hardy spaces H^{p} : - properties of truncated Toeplitz operators; - Carleson-type embedding theorems for the coinvariant subspaces; - factorizations of pseudocontinuable functions from H^{1}.

These problems turn out to be closely connected and even, in a sense, equivalent. The new approach based on the factorizations allows us to answer a number of challenging questions about truncated Toeplitz operators posed by Donald Sarason.

1. Introduction

Let $H^{p}, 1 \leqslant p \leqslant \infty$, denote the Hardy space in the unit disk \mathbb{D}, and let $H_{-}^{p}=\overline{z H^{p}}$. As usual, we identify the functions in H^{p} in the disk and their nontangential boundary values on the unit circle \mathbb{T}.

A function θ which is analytic and bounded in \mathbb{D} is said to be inner if $|\theta|=1 \mathrm{~m}$-a.e. on \mathbb{T} in the sense of nontangential boundary values; by m we denote the normalized Lebesgue measure on \mathbb{T}. With each inner function θ we associate the subspace

$$
K_{\theta}^{p}=H^{p} \cap \theta H_{-}^{p}
$$

of the space H^{p}. Equivalently, one can define K_{θ}^{p} as the set of all functions in H^{p} such that $\langle f, \theta g\rangle=\int_{\mathbb{T}} f \overline{\theta g} d m=0$ for any $g \in H^{q}, 1 / p+1 / q=1$. In particular,

$$
K_{\theta}:=K_{\theta}^{2}=H^{2} \ominus \theta H^{2}
$$

(in what follows we usually omit the exponent 2). It is well known that, for $1 \leqslant p \leqslant \infty$, any closed subspace of H^{p} invariant with respect to the backward shift $\left(S^{*} f\right)(z)=\frac{f(z)-f(0)}{z}$ is of the form K_{θ}^{p} for some inner function θ (see [22, Chapter II] or [14]). Subspaces K_{θ}^{p} are often called star-invariant subspaces. These subspaces play an outstanding role both in function and operator theory (see [14, 27, 28) and, in particular, in the Sz.-Nagy-Foias model for contractions in a Hilbert space (therefore they are sometimes referred to as model subspaces).

A characteristic property of the elements of the spaces K_{θ}^{p} is the existence of a pseudocontinuation outside the unit disk: if $f \in K_{\theta}^{p}$, then there exists

[^0]a function g which is meromorphic and of Nevanlinna class in $\{z:|z|>1\}$ such that $g=f$ a.e. on \mathbb{T} in the sense of nontangential boundary values.

Now we discuss in detail the three main themes of the paper as indicated in the abstract.
1.1. Truncated Toeplitz operators on K_{θ}. Recall that the classical Toeplitz operator on H^{2} with a symbol $\varphi \in L^{\infty}(\mathbb{T})$ is defined by $T_{\varphi} f=$ $P_{+}(\varphi f), f \in H^{2}$, where P_{+}stands for the orthogonal projection from $L^{2}:=L^{2}(\mathbb{T}, m)$ onto H^{2}.

Now let $\varphi \in L^{2}$. We define the truncated Toeplitz operator A_{φ} on bounded functions from K_{θ} by the formula

$$
A_{\varphi} f=P_{\theta}(\varphi f), \quad f \in K_{\theta} \cap L^{\infty}(\mathbb{T}) .
$$

Here $P_{\theta} f=P_{+} f-\theta P_{+}(\bar{\theta} f)$ is the orthogonal projection onto K_{θ}. In contrast to the Toeplitz operators on H^{2} (which satisfy $\left\|T_{\varphi}\right\|=\|\varphi\|_{\infty}$), the operator A_{φ} may be extended to a bounded operator on K_{θ} even for some unbounded symbols φ. The class of all bounded truncated Toeplitz operators on K_{θ} will be denoted by $\mathcal{T}(\theta)$.

Certain special cases of truncated Toeplitz operators are well known and play a prominent role in the operator theory. If $\varphi(z)=z$, then $A_{\varphi}=S_{\theta}$ is the so-called restricted shift operator, the scalar model operator from the Sz.-Nagy-Foias theory. If $\varphi \in H^{\infty}$, then $A_{\varphi}=\varphi\left(S_{\theta}\right)$. Truncated Toeplitz operators include all finite Toeplitz matrices (corresponding to the case $\theta(z)=z^{n}$) and the Wiener-Hopf convolution operators on an interval which are unitary equivalent to the truncated Toeplitz operators on the space generated by the singular inner function associated with a point mass on the circle,

$$
\begin{equation*}
\theta_{a}(z)=\exp \left(a \frac{z+1}{z-1}\right) \tag{1}
\end{equation*}
$$

(for a more detailed discussion see [9]). Bercovici, Foias and Tannenbaum studied truncated (or skew) Toeplitz operators (mainly, with symbols which are rational functions with pole at zero) in connection with control theory (see [11, 12]). However, a systematic study of truncated Toeplitz operators with L^{2} symbols was started recently by Sarason in [31]. This paper laid the basis of the theory and inspired much of the subsequent activity in the field [9, 15, 16, 21].

Unlike standard Toeplitz operators on H^{2}, the symbol of a truncated Toeplitz operator is not unique. The set of all symbols of an arbitrary operator A_{φ} is exactly the set $\varphi+\theta H^{2}+\overline{\theta H^{2}}$, see [31]. Clearly, any bounded function $\varphi \in L^{\infty}$ determines the bounded operator A_{φ} with the norm $\left\|A_{\varphi}\right\| \leqslant\|\varphi\|_{\infty}$. The first basic question on truncated Toeplitz operators posed in 31 is whether every bounded operator A_{φ} has a bounded symbol, i.e., is a restriction of a bounded Toeplitz operator on H^{2}. Note that if a
truncated Toeplitz operator with a symbol $\varphi \in H^{2}$ is bounded, then, as a consequence of the commutant lifting theorem, it admits an H^{∞} symbol (see [31, Section 4]). On the other hand, by the results of Rochberg [30] (proved in the context of the Wiener-Hopf operators and the Paley-Wiener spaces) any operator in $\mathcal{T}\left(\theta_{a}\right)$ has a bounded symbol. However, in general the answer to this question is negative: in 9] inner functions θ are constructed, for which there exist operators in $\mathcal{T}(\theta)$ (even of rank one) that have no bounded symbols.

Thus, the following question seems to be of interest: in which spaces K_{θ} does any bounded truncated Toeplitz operator admit a bounded symbol? In the present paper we obtain a description of such inner functions. In particular, we show that this is true for an interesting class of one-component inner functions introduced by Cohn in [18]: these are functions θ such that the sublevel set

$$
\{z \in \mathbb{D}:|\theta(z)|<\varepsilon\}
$$

is connected for some $\varepsilon \in(0,1)$. This statement was conjectured in [9]. A basic example of a one-component inner function is the function θ_{a} given by (1).
1.2. Embeddings of the spaces K_{θ}^{p}. Let μ be a finite positive Borel measure in the closed unit disk $\overline{\mathbb{D}}$. We are interested in the class of measures such that Carleson-type embedding $K_{\theta}^{p} \hookrightarrow L^{p}(\mu)$ is bounded. Since the functions in K_{θ}^{p} are well-defined only m-almost everywhere on \mathbb{T}, one should be careful when dealing with the restriction of μ to \mathbb{T}. Recall that, by a theorem of Aleksandrov, functions in K_{θ}^{p} which are continuous in the closed disk $\overline{\mathbb{D}}$ are dense in K_{θ}^{p}, see [2] or [13]. (While this statement is trivial for the Blaschke products, there is no constructive way to prove the statement in the general case.) This allows one to define the embedding on the dense set of all continuous functions from K_{θ} in a natural way and then ask if it admits a bounded continuation to the whole space K_{θ}^{p}. However, this extension may always be viewed as an embedding operator due to the following theorem by Aleksandrov.

Theorem 1.1. [4, Theorem 2] Let θ be an inner function, let μ be a positive Borel measure on \mathbb{T}, and let $1 \leqslant p<\infty$. Assume that for any continuous function $f \in K_{\theta}^{p}$ we have

$$
\begin{equation*}
\|f\|_{L^{p}(\mu)} \leqslant C\|f\|_{p} \tag{2}
\end{equation*}
$$

Then all functions from K_{θ}^{p} possess angular boundary values μ-almost everywhere and for any $f \in K_{\theta}^{p}$, (2) holds for its boundary values.

The angular convergence μ-almost everywhere gives us a nice illustration of how the embedding acts. This approach, essentially based on results of Poltoratski's paper [29], uses deep analytic techniques. For our purposes we will need the L^{2}-convergence, which can be established much simpler.

To make the exposition more self-contained we present the corresponding arguments in Section 3.

Denote by $\mathcal{D}_{p}(\theta)$ the class of finite complex Borel measures μ on $\overline{\mathbb{D}}$ for which the embedding $K_{\theta}^{p} \subset L^{p}(|\mu|)$ holds; by $|\mu|$ we denote the total variation of the complex measure μ. The class of positive measures in $\mathcal{D}_{p}(\theta)$ is denoted by $\mathcal{D}_{p}^{+}(\theta)$. The classes $\mathcal{D}_{p}^{+}(\theta)$ contain all Carleson measures, i.e., measures for which the embedding $H^{p} \hookrightarrow L^{p}(\mu)$ is a bounded operator (for some, and hence for all $p>0$). However, the class $\mathcal{D}_{p}(\theta)$ is usually much wider due to additional analyticity (pseudocontinuability) of the elements of K_{θ}^{p} on the boundary. The problem of the description of the class $\mathcal{D}_{p}(\theta)$ for general θ was posed by Cohn in 1982; it is still open. Many partial results may be found in [18, 19, 33, 6, 26, 7, 8]. In particular, the classes $\mathcal{D}_{p}(\theta)$ are described if θ is a one-component inner function; in this case there exists a nice geometric description analogous to the classical Carleson embedding theorem [33, 3, 6]. Moreover, Aleksandrov [6] has shown that θ is one-component if and only if all classes $\mathcal{D}_{p}(\theta)$ for $p>0$ coincide.

In what follows we denote by $\mathcal{C}_{p}(\theta)$ the set of finite complex Borel measures μ on the unit circle \mathbb{T} such that $|\mu|$ is in $\mathcal{D}_{p}(\theta)$; the class of positive measures in $\mathcal{C}_{p}(\theta)$ will be denoted by $\mathcal{C}_{p}^{+}(\theta)$.

If $\mu \in \mathcal{C}_{2}(\theta)$, we may define the bounded operator A_{μ} on K_{θ} by the formula

$$
\begin{equation*}
\left(A_{\mu} f, g\right)=\int f \bar{g} d \mu \tag{3}
\end{equation*}
$$

It is shown in 31 that $A_{\mu} \in \mathcal{T}(\theta)$. This follows immediately from the following characteristic property of truncated Toeplitz operators.

Theorem 1.2. [31, Theorem 8.1] A bounded operator A on K_{θ} is a truncated Toeplitz operator if and only if the condition $f, z f \in K_{\theta}$ yields $(A f, f)=$ ($A z f, z f$).

A complex measure μ on \mathbb{T} with finite total variation (but not necessarily from $\mathcal{C}_{2}(\theta)$) will be called a quasisymbol for a truncated Toeplitz operator A if $(A f, g)=\int f \bar{g} d \mu$ holds for all continuous functions $f, g \in K_{\theta}$. The symbol φ of $A=A_{\varphi}$ can be regarded as a quasisymbol if we identify it with the measure φm.

The following conjecture was formulated by Sarason in [31]: every bounded truncated Toeplitz operator A coincides with A_{μ} for some $\mu \in \mathcal{C}_{2}(\theta)$. Below we prove this conjecture. Moreover, we show that nonnegative bounded truncated Toeplitz operators are of the form A_{μ} with $\mu \in \mathcal{C}_{2}^{+}(\theta)$. We also prove that truncated Toeplitz operators with bounded symbols correspond to complex measures from the subclass $\mathcal{C}_{1}\left(\theta^{2}\right)$ of $\mathcal{C}_{2}\left(\theta^{2}\right)=\mathcal{C}_{2}(\theta)$, and, finally, that every bounded truncated Toeplitz operator has a bounded symbol if and only if $\mathcal{C}_{1}\left(\theta^{2}\right)=\mathcal{C}_{2}\left(\theta^{2}\right)$.
1.3. Factorizations. Now we consider a factorization problem for pseudocontinuable functions in H^{1}, which proves to have an equivalent reformulation in terms of truncated Toeplitz operators.

It is well known that any function $f \in H^{1}$ can be represented as the product of two functions $g, h \in H^{2}$ with $\|f\|_{1}=\|g\|_{2} \cdot\|h\|_{2}$. By the definition of the spaces K_{θ}^{p}, there is a natural involution on K_{θ} :

$$
\begin{equation*}
f \mapsto \tilde{f}=\bar{z} \theta \bar{f} \in K_{\theta}, \quad f \in K_{\theta} . \tag{4}
\end{equation*}
$$

Hence, if $f, g \in K_{\theta}$, then $f g \in H^{1}$ and $\bar{z}^{2} \theta^{2} \bar{f} \bar{g} \in H^{1}$. Thus,

$$
f g \in H^{1} \cap \bar{z}^{2} \theta^{2} \overline{H^{1}}=H^{1} \cap \bar{z} \theta^{2} H_{-}^{1} .
$$

If $\theta(0)=0$, then θ^{2} / z is an inner function and $H^{1} \cap \bar{z} \theta^{2} H_{-}^{1}=K_{\theta^{2} / z}^{1}$.
It is not difficult to show that linear combinations of products of pairs of functions from K_{θ} form a dense subset of $H^{1} \cap \bar{z} \theta^{2} H_{-}^{1}$. We are interested in a stronger property:

For which θ may any function $f \in H^{1} \cap \bar{z} \theta^{2} H_{-}^{1}$ be represented in the form

$$
\begin{equation*}
f=\sum_{k} g_{k} h_{k}, \quad g_{k}, h_{k} \in K_{\theta}, \quad \sum_{k}\left\|g_{k}\right\|_{2} \cdot\left\|h_{k}\right\|_{2}<\infty ? \tag{5}
\end{equation*}
$$

We still use the term factorization for the representations of the form (5), by analogy with the usual row-column product.

Below we will see that, for functions $f \in H^{1} \cap \bar{z} \theta^{2} H_{-}^{1}$, not only a usual factorization $f=g \cdot h, g, h \in K_{\theta}$, but even a weaker factorization (5) may be impossible. We prove that this problem is equivalent to the problem of existence of bounded symbols for all bounded truncated Toeplitz operators on K_{θ}.

Let us consider two special cases of the problem. Take $\theta(z)=z^{n+1}$. The spaces K_{θ} and $K_{\theta^{2} / z}^{1}$ consist of polynomials of degree at most n and $2 n$, respectively, and then, obviously, $K_{\theta^{2} / z}^{1}=K_{\theta} \cdot K_{\theta}$. However, it is not known if a norm controlled factorization is possible, i.e., if for a polynomial p of degree at most $2 n$ there exist polynomials q, r of degree at most n such that $p=q \cdot r$ and $\|q\|_{2} \cdot\|r\|_{2} \leqslant C\|p\|_{1}$, where C is an absolute constant independent on n. On the other hand, it is shown in [32] that there exists a representation $p=\sum_{k=1}^{4} q_{k} r_{k}$ with $\sum_{k=1}^{4}\left\|q_{k}\right\|_{2} \cdot\left\|r_{k}\right\|_{2} \leqslant C\|p\|_{1}$.

For $\theta=\theta_{a}$ defined by (11), the corresponding model subspaces K_{θ}^{p} are the natural analogs of the Paley-Wiener spaces $\mathcal{P} W_{a}^{p}$ of entire functions. The space $\mathcal{P} W_{a}^{p}$ consists of all entire functions of exponential type at most a, whose restrictions to \mathbb{R} are in L^{p}. It follows from our results (and may be proved directly, see Section (7) that every entire function $f \in \mathcal{P} W_{2 a}^{1}$ of exponential type at most $2 a$ and summable on the real line \mathbb{R} admits a representation $f=\sum_{k=1}^{4} g_{k} h_{k}$ with $f_{k}, g_{k} \in \mathcal{P} W_{a}^{2}, \sum_{k=1}^{4}\left\|g_{k}\right\|_{2} \cdot\left\|h_{k}\right\|_{2} \leqslant$ $C\|f\|_{1}$.

2. Main Results

Our first theorem answers Sarason's question about representability of bounded truncated Toeplitz operators via Carleson measures for K_{θ}.

Theorem 2.1. 1) Any nonnegative bounded truncated Toeplitz operator on K_{θ} admits a quasisymbol which is a nonnegative measure from $\mathcal{C}_{2}^{+}(\theta)$.
2) Any bounded truncated Toeplitz operator on K_{θ} admits a quasisymbol from $\mathcal{C}_{2}(\theta)$.

In general, in assertion 1) of the theorem, μ cannot be chosen absolutely continuous, i.e., bounded nonnegative truncated Toeplitz operators may have no nonnegative symbols. Let δ be the Dirac measure at a point of \mathbb{T}, for which the reproducing kernel belongs to K_{θ}. Then the operator A_{δ} cannot be realized by a nonnegative symbol unless the dimension of K_{θ} is 1 . Indeed, if μ is a positive absolutely continuous measure, then the embedding $K_{\theta} \hookrightarrow L^{2}(\mu)$ must have trivial kernel, while in this example it is a rank-one operator.

The next theorem characterizes operators from $\mathcal{T}(\theta)$ that have bounded symbols.

Theorem 2.2. A bounded truncated Toeplitz operator A admits a bounded symbol if and only if $A=A_{\mu}$ for some $\mu \in \mathcal{C}_{1}\left(\theta^{2}\right)$.

In the proofs of these results the key role is played by the following Banach space X defined by

$$
\begin{equation*}
X=\left\{\sum_{k} x_{k} \bar{y}_{k}: \quad x_{k}, y_{k} \in K_{\theta}, \quad \sum_{k}\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}<\infty\right\} \tag{6}
\end{equation*}
$$

The norm in X is defined as the infimum of $\sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}$ over all representations of the element in the form $\sum x_{k} \bar{y}_{k}$.

Theorem 2.3. 1) The space dual to X can be naturally identified with $\mathcal{T}(\theta)$. Namely, continuous linear functionals over X are of the form

$$
\begin{equation*}
\Phi_{A}(f)=\sum_{k}\left(A x_{k}, y_{k}\right), \quad f=\sum_{k} x_{k} \bar{y}_{k} \in X \tag{7}
\end{equation*}
$$

with $A \in \mathcal{T}(\theta)$, and the correspondence between the functionals over X and the space $\mathcal{T}(\theta)$ is one-to-one and isometric.
2) With respect to the duality (7) the space X is dual to the class of all compact truncated Toeplitz operators.

The next theorem establishes a connection between the factorization problem, Carleson-type embeddings, and the existence of a bounded symbol for every bounded truncated Toeplitz operator on K_{θ}.

Theorem 2.4. The following are equivalent:

1) any bounded truncated Toeplitz operator on K_{θ} admits a bounded symbol;
2) $\mathcal{C}_{1}\left(\theta^{2}\right)=\mathcal{C}_{2}\left(\theta^{2}\right)$;
3) for any $f \in H^{1} \cap \bar{z} \theta^{2} H_{-}^{1}$ there exist $x_{k}, y_{k} \in K_{\theta}$ with $\sum_{k}\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}<$ ∞ such that $f=\sum_{k} x_{k} y_{k}$.

In the proof it will be shown that condition 2) can be replaced by the stronger condition
$\left.2^{\prime}\right) \mathcal{D}_{1}\left(\theta^{2}\right)=\mathcal{D}_{2}\left(\theta^{2}\right)$.
Condition 3) also admits formally stronger, but equivalent reformulations. If 3) is fulfilled, then, by the Closed Graph theorem, one can always find x_{k}, y_{k} such that $\sum_{k}\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2} \leqslant C\|f\|_{1}$ for some constant C independent from f. Thus, 3) means that $X=H^{1} \cap \bar{z} \theta^{2} H_{-}^{1}$ and the norm of X is equivalent to L^{1} norm. Moreover, it follows from Proposition 4.1 that one can require that the sum contain at most four summands.

If θ is a one-component inner function, then all classes $\mathcal{C}_{p}(\theta)$ coincide, see [6, Theorem 1.4]. If θ is one-component, then θ^{2} is, too, hence $\mathcal{C}_{1}\left(\theta^{2}\right)=$ $\mathcal{C}_{2}\left(\theta^{2}\right)$. As an immediate consequence of Theorem 2.4 we obtain the following result conjectured in [9]:

Corollary 2.5. If θ is a one-component inner function, then the equivalent conditions of Theorem 2.4 are fulfilled.

We do not know if the converse is true, that is, whether the equality $\mathcal{C}_{1}\left(\theta^{2}\right)=\mathcal{C}_{2}\left(\theta^{2}\right)$ implies that θ is one-component. If this is true, it would give us a nice geometrical description of inner functions θ satisfying the equivalent conditions of Theorem 2.4.

Conjecture 2.6. The equivalent conditions of Theorem 2.4 are fulfilled if and only if θ is one-component.

Theorem 2.4 also allows to extend considerably the class of counterexamples to the existence of a bounded symbol. Let us recall the definition of the Clark measures σ_{α} [17]. For each $\alpha \in \mathbb{T}$ there exists a finite (singular) positive measure σ_{α} on \mathbb{T} such that

$$
\begin{equation*}
\operatorname{Re} \frac{\alpha+\theta(z)}{\alpha-\theta(z)}=\int_{\mathbb{T}} \frac{1-|z|^{2}}{|1-\bar{\tau} z|^{2}} d \sigma_{\alpha}(\tau), \quad z \in \mathbb{D} \tag{8}
\end{equation*}
$$

If σ_{α} is purely atomic, i.e., if $\sigma_{\alpha}=\sum_{n} a_{n} \delta_{t_{n}}$, then the system $\left\{k_{t_{n}}\right\}$ is an orthogonal basis in K_{θ}^{2}; in particular, $k_{t_{n}} \in K_{\theta}^{2}$ and $\left\|k_{t_{n}}\right\|_{2}^{2}=\left|\theta^{\prime}\left(t_{n}\right)\right| /(2 \pi)$.

It is shown in [4, Theorem 8] that the condition $\mathcal{C}_{1}\left(\theta^{2}\right)=\mathcal{C}_{2}\left(\theta^{2}\right)$ implies that all measures σ_{α} are discrete.

Corollary 2.7. If, for some $\alpha \in \mathbb{T}$, the Clark measure σ_{α} is not discrete, then the conditions of Theorem 2.4 do not hold and, in particular, there exist operators from $\mathcal{T}(\theta)$ that do not admit a bounded symbol.

3. Embeddings $K_{\theta} \hookrightarrow L^{2}(\mu)$: the radial L^{2}-Convergence

In this section we present a more elementary approach to embedding theorems which is different from that of Theorem 1.1. Sometimes it may be more convenient to work in the L^{2}-convergence setting than with continuous functions from K_{θ}. Here we impose an extra assumption $\theta(0)=0$, or, equivalently, $1 \in K_{\theta}$, to which the general case can easily be reduced (via transform (11) defined below), but we omit the details of the reduction.

We will show that the condition $\mu \in \mathcal{C}_{2}^{+}(\theta)$ is equivalent to the existence of an operator $J: K_{\theta} \rightarrow L^{2}(\mu)$ such that
(i) if $f, z f \in K_{\theta}$ then $J z f=z J f$,
(ii) $J 1=1$.

Moreover, these properties uniquely determine the operator, which turns out to coincide with the embedding operator $K_{\theta} \hookrightarrow L^{2}(\mu)$ defined by Theorem 1.1. The proofs are based on the following result of Poltoratski, see also [23]. For $g \in K_{\theta}, g_{r}$ denotes the function $g_{r}(z)=g(r z)$.
Proposition 3.1. (cf. [29, Theorem 1.1]) Let $\theta(0)=0$. If a bounded operator $J: K_{\theta} \rightarrow L^{2}(\mu)$ satisfies the properties $(i),(i i)$, then for any $g \in K_{\theta}$ we have $\left\|g_{r}\right\|_{L^{2}(\mu)} \leqslant 2 \cdot\|J g\|_{L^{2}(\mu)}$ and $g_{r} \rightarrow J g$ in $L^{2}(\mu)$ as $r \nearrow 1$.

Proof. Consider the Taylor expansion of $g \in K_{\theta}$,

$$
g(z)=\sum_{k=0}^{\infty} a_{k} z^{k},
$$

and introduce the functions $g_{n} \in K_{\theta}$,

$$
g_{n}(z)=\sum_{k=0}^{\infty} a_{k+n} z^{k} .
$$

By induction from the relation $J g_{n}=a_{n}+z J g_{n+1}$ we obtain the formula

$$
J g=\sum_{k=0}^{n-1} a_{k} z^{k}+z^{n} J g_{n}
$$

We have $\left\|g_{n}\right\|_{2} \leqslant\|g\|_{2}$ and $\left\|g_{n}\right\|_{2} \rightarrow 0$ as $n \rightarrow+\infty$. Therefore, $\sum_{k=0}^{n-1} a_{k} z^{k} \rightarrow$ $J g$ in $L^{2}(\mu)$. Since g_{r} are the Abel means of the sequence $\left(\sum_{k=0}^{n-1} a_{k} z^{k}\right)_{n \geqslant 1}$, we conclude that $g_{r} \rightarrow J g$ as well.

Since for a continuous function $g \in K_{\theta}, J g$ coincides with $g \mu$-almost everywhere, J is the same operator as the embedding from Theorem [1.1,

By Proposition 3.1 the function $z^{-1} \theta(z)$ (or $\frac{\theta(z)-\theta(0)}{z}$ in the general case, if $\theta(0) \neq 0$) has the boundary function defined by the limit in $L^{2}(\mu)$ of θ_{r}, where $\theta_{r}(z)=\theta(r z)$. This allows us to define the boundary values of θ μ-almost everywhere.

Proposition 3.2. If $\mu \in \mathcal{C}_{2}(\theta)$, then $|\theta|=1|\mu|$-almost everywhere.

This fact is mentioned in [4] and its proof there seems to use the techniques of convergence μ-almost everywhere. A more elementary proof is given below for the reader's convenience.

Proof. We may assume that $\mu \in \mathcal{C}_{2}^{+}(\theta)$. It is easy to check the relation

$$
M_{z} J-J A_{z}=(\cdot, \bar{z} \theta) \theta
$$

where M_{z} is the operator of multiplication by z on $L^{2}(\mu), J$ is the embedding $K_{\theta} \hookrightarrow L^{2}(\mu), A_{z}$ is the truncated Toeplitz operator with symbol z, i.e., the model contraction S_{θ}. Indeed, on vectors orthogonal to $\bar{z} \theta$ both sides equal 0 , and for $\bar{z} \theta$ the formula can be verified by a simple straightforward calculation. Similarly, $M_{\bar{z}} J-J A_{\bar{z}}=(\cdot, 1) \bar{z}$, hence

$$
J^{*} M_{z}-A_{z} J^{*}=(\cdot, \bar{z}) 1
$$

We obtain

$$
\begin{aligned}
J J^{*} M_{z}-M_{z} J J^{*} & =J\left(J^{*} M_{z}-A_{z} J^{*}\right)-\left(M_{z} J-J A_{z}\right) J^{*} \\
& =(\cdot, \bar{z}) J 1-(\cdot, J \bar{z} \theta) \theta=(\cdot, \bar{z}) 1-(\cdot, \bar{z} \theta) \theta
\end{aligned}
$$

Theorem 6.1 of [24] says that if $K=\sum\left(\cdot, \bar{u}_{k}\right) v_{k}$ is a finite rank (or even trace class) operator on $L^{2}(\mu)$, where μ is a singular measure on \mathbb{T}, and if $K=X M_{z}-M_{z} X$ for some bounded linear operator X on $L^{2}(\mu)$, then $\sum u_{k} v_{k}=0 \mu$-almost everywhere. By this theorem $z-z|\theta|^{2}=0$, hence $|\theta|=1 \mu$-almost everywhere, as required.

4. The space X

As above, the space X is defined by formula (6),

$$
X=\left\{\sum x_{k} \bar{y}_{k}: \quad x_{k}, y_{k} \in K_{\theta}, \quad \sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}<\infty\right\}
$$

We also consider the analytic analog X_{a} of the space X,

$$
\begin{equation*}
X_{a}=\left\{\sum x_{k} y_{k}: \quad x_{k}, y_{k} \in K_{\theta}, \quad \sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}<\infty\right\} \tag{9}
\end{equation*}
$$

By (4),

$$
X \subset \bar{\theta} z H^{1} \cap \theta \overline{z H^{1}}
$$

and

$$
X_{a}=\{\bar{z} \theta f: f \in X\} \subset H^{1} \cap \bar{z} \theta^{2} H_{-}^{1} \subset K_{\theta^{2}}^{1}
$$

The norms in these spaces are defined as infimum of $\sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}$ over all possible representations, thus X, X_{a} are Banach spaces.

Proposition 4.1. 1) Any nonnegative element of X can be written as $|g|^{2}$, $g \in K_{\theta}$.
2) Any element of X can be represented as a linear combination of four nonnegative elements of X.
3) Every element of X, X_{a} admits a representation as a sum containing only four summands in the definition of these spaces, and the norm of each
summand in the space does not exceed the norm of the initial element of the space.

Proof. 1) Let $f=\sum x_{k} \bar{y}_{k} \in X, f \geqslant 0$. Since $\bar{z} \theta \bar{y}_{k} \in K_{\theta}$, we have $\bar{z} \theta f \in H^{1}$. Then, by Dyakonov's result [20], $f=|g|^{2}$ for some $g \in K_{\theta}$ (proof: take the outer function with modulus $f^{1 / 2}$ on \mathbb{T} as g; then $\bar{z} \theta \bar{g} \in H^{2}$ and hence $g \in K_{\theta}$).
2) Since X is symmetric with respect to complex conjugation, it suffices to show that real functions from X may be represented as a difference of two nonnegative functions from X. The real part of a function from X of the form $\sum x_{k} \bar{y}_{k}$ with $x_{k}, y_{k} \in K_{\theta}, \sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}<\infty$, is

$$
\frac{1}{2} \sum\left(x_{k} \bar{y}_{k}+\bar{x}_{k} y_{k}\right)=\sum\left|\frac{x_{k}+y_{k}}{2}\right|^{2}-\sum\left|\frac{x_{k}-y_{k}}{2}\right|^{2}
$$

which is the desired representation. We may suppose that $\left\|x_{k}\right\|=\left\|y_{k}\right\|$ for every k, then each of the norms $\left\|\sum\left|\frac{x_{k}+y_{k}}{2}\right|^{2}\right\|_{X},\left\|\sum\left|\frac{x_{k}-y_{k}}{2}\right|^{2}\right\|_{X}$ obviously does not exceed $\sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}$.
3) For the space X this directly follows from 1) and 2), for X_{a} it remains to use the relation $X_{a}=\bar{z} \theta X$, which is a consequence of (4).

Given a function f in the unit disk, define functions $f_{r}, 0<r<1$, by $f_{r}(z)=f(r z)$. We may think of functions $f \in X_{a}$ as analytic functions in \mathbb{D}. For $f \in X_{a}$ write $f=\sum x_{k} y_{k}$ with $x_{k}, y_{k} \in K_{\theta}$ and $\sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}<\infty$. We have $f_{r}=\sum\left(x_{k}\right)_{r}\left(y_{k}\right)_{r}$. Now it follows from Proposition 3.1 that, for any $\mu \in \mathcal{C}_{2}^{+}(\theta)$, the embedding of the space X_{a} into $L^{1}(\mu)$ is a well-defined bounded map realized by the limit of f_{r} in $L^{1}(\mu)$ as $r \nearrow 1$.

We will need the following important lemma.
Lemma 4.2. Let $\mu \in \mathcal{C}_{2}(\theta)$ and let $x_{k}, y_{k} \in K_{\theta}, \sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}<\infty$. If $\sum x_{k} \bar{y}_{k}=0$ in the space X, then also $\sum x_{k} \bar{y}_{k}=0 \quad|\mu|$-almost everywhere.

In other words, the embedding $X \hookrightarrow L^{1}(|\mu|)$ is well defined.
Proof. There is no loss of generality if we assume that $\mu \in \mathcal{C}_{2}^{+}(\theta)$. As above, let J stand for the embedding $K_{\theta} \hookrightarrow L^{2}(\mu)$. If $g \in K_{\theta}$, then $\tilde{g} \in K_{\theta}$, where $\tilde{g}=\bar{z} \theta \bar{g}$. By Proposition 3.1 the functions \tilde{g}_{r} have a limit as $r \nearrow 1$, and we want to show that

$$
\begin{equation*}
\lim _{r \rightarrow 1-} \tilde{g}_{r}=\bar{z} \theta \bar{g} \quad \text { in } L^{2}(\mu) \tag{10}
\end{equation*}
$$

It suffices to check this relation on a dense set. It is easily seen that for reproducing kernels $\frac{1-\overline{\theta(\lambda) \theta}}{1-\bar{\lambda} z}$ this property is equivalent to the fact that $\left|\theta_{r}\right|^{2} \rightarrow 1$ proved in Proposition 3.2,

Take $x_{k}, y_{k} \in K_{\theta}$ such that $\sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}<\infty$ and $\sum x_{k} \bar{y}_{k}=0$. Consider the functions $\tilde{y}_{k} \in K_{\theta}, \tilde{y}_{k}=\bar{z} \theta \bar{y}_{k}$. By (10) we have $\left(\tilde{y}_{k}\right)_{r} \rightarrow \bar{z} \theta \bar{y}_{k}$
in $L^{2}(\mu)$. The formula $\sum x_{k} \tilde{y}_{k}$ determines the zero element of X_{a}, hence $\sum\left(x_{k}\right)_{r}\left(\tilde{y}_{k}\right)_{r}=\left(\sum x_{k} \tilde{y}_{k}\right)_{r}=0$. We obtain

$$
\sum x_{k} \cdot \bar{z} \theta \bar{y}_{k}=\lim _{r \rightarrow 1-} \sum\left(x_{k}\right)_{r}\left(\tilde{y}_{k}\right)_{r}=0
$$

in the norm of the space $L^{1}(\mu)$. Since $\theta \neq 0 \mu$-a.e. (e.g., by Proposition (3.2), we conclude that $\sum x_{k} \bar{y}_{k}=0 \mu$-almost everywhere.

5. Proofs of Theorems 2.1 2.3

Proof of Theorem [2.1, 1) Let A be a nonnegative bounded truncated Toeplitz operator with symbol φ. Denote by X_{c} the set of all continuous functions from X and define the functional l on X_{c} by $l: f \mapsto \int \varphi f d m$. If $f \in X_{c}, f \geqslant 0$, then $l f \geqslant 0$. Indeed, by item 1) of Proposition 4.1, there exists a function $g \in K_{\theta}$ such that $|g|^{2}=f$ (g turns out to be bounded), and hence

$$
l f=\int \varphi f d m=\int \varphi g \bar{g} d m=(A g, g) \geqslant 0 .
$$

Assume first that $\theta(0)=0$, then $1 \in X$. Extend the functional l to the space $C(\mathbb{T})$ of all continuous functions on \mathbb{T} by the Hahn-Banach theorem so that the norm of the extended functional equal the norm of l. Since $1 \in X$, it will be nonnegative automatically, hence $l f=\int f d \mu, f \in X_{c}$, for some nonnegative Borel measure μ on \mathbb{T}. The map $K_{\theta} \rightarrow L^{2}(\mu)$, which takes continuous functions to their traces on the support of μ, is bounded. Indeed, if $g \in K_{\theta}$ is continuous, then

$$
\int|g|^{2} d \mu=(A g, g) \leqslant\|A\| \cdot\|g\|_{2}^{2}
$$

This proves that $\mu \in \mathcal{C}_{2}^{+}(\theta)$. By linearity and continuity the relation $\int|g|^{2} d \mu=(A g, g), g \in K_{\theta}$, implies $\int x \bar{y} d \mu=(A x, y)$ for all $x, y \in K_{\theta}$, hence $A=A_{\mu}$.

If $w=\theta(0) \neq 0$, consider so-called Crofoot's transform

$$
\begin{equation*}
U: f \mapsto \sqrt{1-|w|^{2}} \frac{f}{1-\bar{w} \theta} \tag{11}
\end{equation*}
$$

which is a unitary map of K_{θ} onto K_{Θ}, where $\Theta=\frac{\theta-w}{1-\bar{w} \theta}$ is the Frostman shift of θ. Take a bounded truncated Toeplitz operator $A \geq 0$ acting on the space K_{θ}. By [31, Theorem 13.2] the operator $U A U^{*} \geq 0$ is a bounded truncated Toeplitz operator on K_{Θ}. Note that $\Theta(0)=0$. Let $\mu \in \mathcal{C}_{2}^{+}(\Theta)$ be a quasisymbol of $U A U^{*}$. Then the measure $\nu=\frac{1-|w|^{2}}{|1-\bar{w} \theta|^{2}} \mu$ is a quasisymbol of A. Indeed, $\nu \in \mathcal{C}_{2}^{+}(\theta)$, and from (11) it follows that for any $f, g \in K_{\theta}$, we have

$$
(A f, g)=\left(U A U^{*} U f, U g\right)=\int U f \cdot \overline{U g} d \mu=\int f \bar{g} d \nu
$$

Thus, each nonnegative bounded truncated Toeplitz operator admits a quasisymbol from $\mathcal{C}_{2}^{+}(\theta)$.
2) Let A be a bounded truncated Toeplitz operator. It may be represented in the form $A=A_{1}-A_{2}+i A_{3}-i A_{4}$, where all $A_{i}, i=1,2,3,4$, are nonnegative truncated Toeplitz operators. Indeed, A^{*} is a truncated Toeplitz operators as well, which allows us to consider only selfadjoint operators. The identity operator I is trivially a truncated Toeplitz operator (with symbol 1), and A is the difference of two nonnegative operators $\|A\| \cdot I$ and $\|A\| \cdot I-A$. For each A_{i} construct μ_{i} as above. It remains to take $\mu=\mu_{1}-\mu_{2}+i \mu_{3}-i \mu_{4}$.
Proof of Theorem 2.2. If A has a bounded symbol φ, then $A=A_{\mu}$ with $d \mu=\varphi d m$, and $\mu \in \mathcal{C}_{1}\left(\theta^{2}\right)$.

Now let $\mu \in \mathcal{C}_{1}\left(\theta^{2}\right)$. We need to prove that A_{μ} coincides with a truncated Toeplitz operator with a bounded symbol. Define the functional $l: f \mapsto$ $\int f d \mu$ on functions from X which are finite sums of the functions of the form $x_{k} \bar{y}_{k}$ with $x_{k}, y_{k} \in K_{\theta}$. For $f=\sum x_{k} \bar{y}_{k}$ we have

$$
\left|\int f d \mu\right| \leqslant \int|f| d|\mu| \leqslant C\|f\|_{1}
$$

since $\theta \bar{z} f \in K_{\theta^{2}}^{1}$ and $\mu \in \mathcal{C}_{1}\left(\theta^{2}\right)$. Hence, the functional l can be continuously extended to L^{1}, and so there exists a function $\varphi \in L^{\infty}$ such that $l(f)=$ $\int \varphi f d m, f \in X$. Hence, for any $x, y \in K_{\theta}^{2}$, we have

$$
\int x \bar{y} d \mu=l(x \bar{y})=\int \varphi x \bar{y} d m=\left(A_{\varphi} x, y\right)
$$

and thus $A_{\mu}=A_{\varphi}$.
Proof of Theorem 2.3. 1) First, we verify that the functional (7) is well defined for any operator $A \in \mathcal{T}(\theta)$. We need to prove that $\sum\left(A x_{k}, y_{k}\right)=0$ if $x_{k}, y_{k} \in K_{\theta}, \sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}<\infty$, and $\sum x_{k} \bar{y}_{k}=0$ almost everywhere with respect to the Lebesgue measure. To this end, apply Theorem 2.1 and find a measure $\mu \in \mathcal{C}_{2}(\theta)$ such that $(A x, y)=\int x \bar{y} d \mu$ for all $x, y \in K_{\theta}$. Lemma 4.2 holds for all complex measures from $\mathcal{C}_{2}(\theta)$; we conclude that $\sum x_{k} \bar{y}_{k}=0$ μ-almost everywhere. By the definition of A_{μ} we have

$$
\sum\left(A x_{k}, y_{k}\right)=\int\left(\sum x_{k} \bar{y}_{k}\right) d \mu
$$

Thus $\sum\left(A x_{k}, y_{k}\right)=0$, and the functional is defined correctly.
Now prove the equality $\left\|\Phi_{A}\right\|=\|A\|$. Indeed, for any function $\sum x_{k} \bar{y}_{k} \in$ X we have

$$
\left|\Phi_{A}\left(\sum x_{k} \bar{y}_{k}\right)\right|=\left|\sum\left(A x_{k}, y_{k}\right)\right| \leqslant\|A\| \sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}
$$

Hence $\left\|\Phi_{A}\right\| \leqslant\|A\|$. On the other hand, for any unit norm vectors $x, y \in K_{\theta}^{2}$ we have $\|x \bar{y}\|_{X} \leqslant 1$ and

$$
\|A\|=\sup _{\|x\|_{2},\|y\|_{2} \leqslant 1}|(A x, y)|=\sup _{\|x\|_{2},\|y\|_{2} \leqslant 1}\left|\Phi_{A}(x \bar{y})\right| \leqslant\left\|\Phi_{A}\right\|
$$

This proves the inverse inequality.

It remains to show that any linear continuous functional Φ on X may be represented in the form $\Phi=\Phi_{A}$ for some (unique) truncated Toeplitz operator A. Take a continuous functional Φ on X and define the operator A_{Φ} by its bilinear form: $\left(A_{\Phi} x, y\right) \stackrel{\text { def }}{=} \Phi(x \bar{y})$. If $f, z f \in K_{\theta}$, we have

$$
\left(A_{\Phi} f, f\right)=\Phi\left(|f|^{2}\right)=\Phi\left(|z f|^{2}\right)=\left(A_{\Phi} z f, z f\right)
$$

Now, applying Theorem 1.2, we obtain $A \in \mathcal{T}(\theta)$. The uniqueness of A is a consequence of the relation $\left\|A_{\Phi}\right\|=\|\Phi\|$.
2) Consider the duality $\langle f, A\rangle=\sum\left(A x_{k}, y_{k}\right)$ where $A \in \mathcal{T}(\theta), f=$ $\sum x_{k} \bar{y}_{k} \in X$ (by Lemma $4.2\langle f, A\rangle$ does not depend on the choice of factorization). We need to prove that every continuous functional Φ on the space $\mathcal{T}_{0}(\theta)$ of all compact truncated Toeplitz operators is realized by an element of X. Extend Φ by Hahn-Banach theorem to the space of all compact operators in K_{θ}. The trace class is the dual space to the class of all compact operators, hence the functional may be written in the form $\Phi(A)=\sum\left(A x_{k}, y_{k}\right), A \in \mathcal{T}_{0}(\theta)$, for some $x_{k}, y_{k} \in K_{\theta}$ with $\|\Phi\|=\sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}$. Then $f=\sum x_{k} \bar{y}_{k} \in X$ and $\Phi(A)=\langle f, A\rangle$. Repeating the arguments from 1) we conclude that $\|\Phi\| \leqslant\|f\|_{X}$. On the other hand, $\|f\|_{X} \leqslant \sum\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}=\|\Phi\|$.

Now we prove two corollaries which give us additional information on the structure of the space of truncated Toeplitz operators.

Corollary 5.1. The closed (in the norm) linear span of rank-one truncated Toeplitz operators coincides with the set of all compact truncated Toeplitz operators.

Proof. For $\lambda \in \mathbb{D}$, denote by $k_{\lambda}, \tilde{k}_{\lambda}$ the functions from K_{θ},

$$
k_{\lambda}(z)=\frac{1-\overline{\theta(\lambda)} \theta(z)}{1-\bar{\lambda} z}, \quad \tilde{k}_{\lambda}(z)=\frac{\theta(z)-\theta(\lambda)}{z-\lambda}
$$

(recall that k_{λ} is the reproducing kernel for the space K_{θ}). If $x, y \in K_{\theta}$, then $\left(x, k_{\lambda}\right)=x(\lambda),\left(\tilde{y}, \tilde{k}_{\lambda}\right)=\overline{y(\lambda)}$. It is shown in 31 that the operators $T_{\lambda}=\left(\cdot, k_{\lambda}\right) \tilde{k}_{\lambda}$ are rank-one truncated Toeplitz operators. Take $f \in X$ as an element of the dual space to the class of all compact truncated Toeplitz operators. Set $g=\bar{z} \theta f \in X_{a}$, let $g=\sum x_{k} y_{k}$ with $x_{k}, y_{k} \in K_{\theta}$. The following formula illustrates the duality on rank-one truncated Toeplitz operators:

$$
\begin{aligned}
\left\langle f, T_{\lambda}\right\rangle & =\left\langle\sum x_{k} \cdot \overline{\tilde{y}_{k}}, T_{\lambda}\right\rangle=\sum\left(T_{\lambda} x_{k}, \tilde{y}_{k}\right) \\
& =\sum x_{k}(\lambda) \cdot\left(\tilde{k}_{\lambda}, \tilde{y}_{k}\right)=\sum x_{k}(\lambda) \cdot y_{k}(\lambda)=g(\lambda) .
\end{aligned}
$$

Suppose that f annihilates all operators of the form T_{λ} with $|\lambda|<1$. Then $g \equiv 0$ in \mathbb{D}, hence f is the zero element of X.

The space of all bounded linear operators on a Hilbert space is dual to the space of trace class operators. This duality generates the ultraweak topology on the former space. Formally, the ultraweak topology is stronger than
the weak operator topology, but on the subspace of all truncated Toeplitz operators they coincide.

Corollary 5.2. The weak operator topology on \mathcal{T} coincides with the ultraweak topology.

Proof. Any ultraweakly continuous functional Φ on \mathcal{T} is generated by some trace class operator $\sum_{k}\left(\cdot, y_{k}\right) x_{k}$, where $x_{k}, y_{k} \in K_{\theta}, \sum_{k}\left\|x_{k}\right\|_{2} \cdot\left\|y_{k}\right\|_{2}<\infty$, and is of the form

$$
\Phi(A)=\sum_{k}\left(A x_{k}, y_{k}\right)
$$

The function $f=\sum_{k} x_{k} \bar{y}_{k}$ belongs to the space X. It follows from Proposition 4.1 that there exist $f_{1}, g_{1} \ldots f_{4}, g_{4} \in K_{\theta}$ such that $f=\sum_{k=1}^{4} f_{k} \bar{g}_{k}$. Therefore, by the duality from Theorem 2.3,

$$
\Phi(A)=\langle f, A\rangle=\left\langle\sum_{k=1}^{4} f_{k} \bar{g}_{k}, A\right\rangle=\left(A f_{1}, g_{1}\right)+\ldots+\left(A f_{4}, g_{4}\right)
$$

Now the statement of the corollary is obvious.

6. Proof of Theorem 2.4

Throughout this section we will assume, for simplicity, that $\theta(0)=0$. The general case follows immediately by means of the transform (11) (note that in this case $\mathcal{C}_{p}(\Theta)=\mathcal{C}_{p}(\theta)$ for any p, see, e.g., [5, Theorem 1.1]).

For the proof of Theorem 2.4 we need the following obvious lemma (see [5]) based on the relations $K_{\theta^{2}}=K_{\theta} \oplus \theta K_{\theta}$ and $K_{\theta} \cdot K_{\theta} \subset K_{\theta^{2}}^{1}$.
Lemma 6.1. For any inner function θ we have $\mathcal{C}_{2}(\theta)=\mathcal{C}_{2}\left(\theta^{2}\right)$ and $\mathcal{C}_{1}\left(\theta^{2}\right) \subset$ $\mathcal{C}_{2}\left(\theta^{2}\right)$. If $\theta(0)=0$, we also have $\mathcal{C}_{p}\left(\theta^{2}\right)=\mathcal{C}_{p}\left(\theta^{2} / z\right)$ for any p. The same equalities or inclusions hold for the classes $\mathcal{D}_{p}(\theta)$.
Proof of Theorem [2.4. 3) $\Rightarrow 2$). We will establish condition 2^{\prime}), which is formally stronger than 2). By Lemma 6.1 it suffices to prove the inclusion $\mathcal{D}_{2}(\theta) \subset \mathcal{D}_{1}\left(\theta^{2} / z\right)$. Take a complex measure $\mu \in \mathcal{D}_{2}(\theta)$. We must check that the embedding $K_{\theta^{2} / z}^{1} \hookrightarrow L^{1}(|\mu|)$ is a bounded operator. By condition 3), there is a positive constant c_{1} such that any function $f \in K_{\theta^{2} / z}^{1}$ can be represented in the form $f=\sum_{k=1}^{\infty} f_{k} g_{k}$, where the functions f_{k}, g_{k} are in K_{θ} and $\sum_{k=1}^{\infty}\left\|f_{k}\right\|_{2} \cdot\left\|g_{k}\right\|_{2} \leqslant c_{1}\|f\|_{1}$. Since $\mu \in \mathcal{D}_{2}(\theta)$, we have $\sum_{k=1}^{\infty}\left\|f_{k}\right\|_{L^{2}(|\mu|)} \cdot\left\|g_{k}\right\|_{L^{2}(|\mu|)}<\infty$, so the series converges in $L^{1}(|\mu|)$ and $f \in L^{1}(|\mu|)$. Moreover,

$$
\begin{aligned}
\int|f| d|\mu| & =\int\left|\sum_{k=1}^{\infty} f_{k} g_{k}\right| d|\mu| \leqslant \sum_{k=1}^{\infty}\left\|f_{k}\right\|_{L^{2}(|\mu|)} \cdot\left\|g_{k}\right\|_{L^{2}(|\mu|)} \\
& \leqslant c_{2} \sum_{k=1}^{\infty}\left\|f_{k}\right\|_{2} \cdot\left\|g_{k}\right\|_{2} \leqslant c_{1} c_{2}\|f\|_{1}
\end{aligned}
$$

and, thus, $\mu \in \mathcal{D}_{1}\left(\theta^{2} / z\right)$. Therefore, we have $\mathcal{D}_{2}(\theta) \subset \mathcal{D}_{1}\left(\theta^{2} / z\right)$ which implies $\mathcal{D}_{2}\left(\theta^{2}\right)=\mathcal{D}_{1}\left(\theta^{2}\right)$ (and, in particular, $\mathcal{C}_{2}\left(\theta^{2}\right)=\mathcal{C}_{1}\left(\theta^{2}\right)$).

The implication 2$) \Rightarrow 1$) follows directly from Theorems [2.1] and 2.2 (even with the weaker assumption $\left.\mathcal{C}_{1}\left(\theta^{2}\right)=\mathcal{C}_{2}\left(\theta^{2}\right)\right)$.

1) $\Rightarrow 3$). Condition 3) can be written in the form $X_{a}=K_{\theta^{2} / z}^{1}$ or, equivalently, as $X=z \bar{\theta} K_{\theta^{2} / z}^{1}$ (see Section 4). In the general case we have that X is a dense subset of $z \bar{\theta} K_{\theta^{2} / z}^{1}$. By the Closed Graph theorem, $X=z \bar{\theta} K_{\theta^{2} / z}^{1}$ if and only if the norms in the spaces X and $K_{\theta^{2} / z}^{1}$ are equivalent. Take an arbitrary function $h=\sum x_{k} \bar{y}_{k} \in X$. Clearly, we have $\|h\|_{1} \leqslant\|h\|_{X}$. On the other hand, it follows from Theorem 2.3 that

$$
\begin{equation*}
\|h\|_{X}=\sup \left\{\left|\sum\left(A x_{k}, y_{k}\right)\right|: A \in \mathcal{T}(\theta),\|A\| \leqslant 1\right\} \tag{12}
\end{equation*}
$$

The Closed Graph theorem and condition 1) guarantee the existence of a bounded symbol $f_{A} \in L^{\infty}$ for any operator $A \in \mathcal{T}(\theta)$ with $\left\|f_{A}\right\|_{\infty} \leqslant c\|A\|$. Therefore, the supremum in (12) does not exceed

$$
\sup \left\{\left|\sum\left(f x_{k}, y_{k}\right)\right|: f \in L^{\infty},\|f\|_{\infty} \leqslant c\right\}=c \sup _{\|f\|_{\infty} \leqslant 1}\left|\int f \cdot \sum x_{k} \bar{y}_{k} d m\right| .
$$

Thus, $\|h\|_{X} \leqslant c\|h\|_{1}, h \in X$, which proves the theorem.

7. One-component inner functions

As we have noted in Section 2, one-component inner functions satisfy the condition 2) of Theorem 2.4: $\mathcal{C}_{2}(\theta)=\mathcal{C}_{1}\left(\theta^{2}\right)$. It is also possible to show that one-component inner functions satisfy the factorization condition 1) in Theorem 2.4. We will start with a particular case of the Paley-Wiener spaces.

Example 7.1. Let $\Theta_{a}(z)=\exp (i a z), a>0$, be an inner function in the upper half-plane. Then for the corresponding model subspace we have $K_{\Theta_{a}}^{p}=\mathcal{P} W_{a}^{p} \cap H^{p}$. Note, that the model subspaces in the half-plane case are defined as $K_{\Theta}^{p}=H^{p} \cap \Theta \overline{H^{p}}$, the involution is given by $f \mapsto \Theta \bar{f}$, and so $f g \in K_{\Theta^{2}}^{1}$ for any $f, g \in K_{\Theta}^{2}$. Thus, in view of Proposition 4.1, the factorization for the corresponding space X is equivalent to the following property: for any $f \in \mathcal{P} W_{2 a}^{1}$ which takes real values there exist $g \in \mathcal{P} W_{2 a}^{1}$ such that $|f| \leqslant g$. This can be easily achieved. Let $a=\pi / 2$. Put

$$
g(z)=\sum_{n \in \mathbb{Z}} c_{n} \frac{\sin ^{2} \frac{\pi}{2}(t-n)}{(t-n)^{2}},
$$

where $c_{n}=\max _{[n, n+1]}|f|$. By the Plancherel-Pólya inequality (see, e.g., [25. Lecture 20]), $\sum_{n} c_{n} \leqslant C\|f\|_{1}$, and so $g \in \mathcal{P} W_{\pi}^{1}$. Also, if $t \in[n, n+1]$,
then

$$
|f(t)| \leqslant c_{n} \leqslant c_{n} \frac{\sin ^{2} \frac{\pi}{2}(t-n)}{(t-n)^{2}} \leqslant g(t)
$$

An analogous argument works for general one-component inner function. Let θ be an inner function in the unit disk. In view of Proposition 4.1, the property 1) in Theorem 2.4 will be obtained as soon as we prove the following theorem:

Theorem 7.2. For any real-valued element f of X there exist $t_{n} \in \mathbb{T}$ and $c_{n}>0$ such that

$$
g=\sum c_{n}\left|k_{t_{n}}\right|^{2} \in X
$$

$\|g\|_{1} \leqslant C\|f\|_{1}$, and $|f| \leqslant g$ on \mathbb{R}.
First we collect some known properties of one-component inner functions.
(i) Let $\rho(\theta)$ be the so-called spectrum of the inner function θ, that is, the set of all $\zeta \in \overline{\mathbb{D}}$ such that $\liminf _{z \rightarrow \zeta, z \in \mathbb{D}}|\theta(z)|=0$. Then θ, as well as any element of K_{θ}^{p}, has an analytic extension across any subarc of the set $\mathbb{T} \backslash \sigma(\theta)$.

It is shown in [6] that for a one-component inner function $\sigma_{\alpha}(\rho(\theta))=0$ for any Clark measure σ_{α} defined by (8). Thus, all Clark measures are purely atomic and supported on the set $\mathbb{T} \backslash \rho(\theta)$.
(ii) On each arc of the set $\mathbb{T} \backslash \rho(\theta)$, there exists a smooth increasing branch of the argument of θ (denote it by ψ) and the change of the argument between two neighboring points t_{n} and t_{n+1} from the support of one Clark measure is exactly 2π.
(iii) By $\left(t_{n}, t_{n+1}\right)$ we denote the closed arc with endpoints t_{n}, t_{n+1}, which contains no other points from the Clark measure support. There exists a constant $A=A(\theta)$ such that for any two points t_{n} and t_{n+1} satisfying $\left|\psi\left(t_{n+1}\right)-\psi\left(t_{n}\right)\right|=2 \pi$ and for any s, t from the $\operatorname{arc}\left(t_{n}, t_{n+1}\right)$,

$$
\begin{equation*}
A^{-1} \leqslant \frac{\left|\theta^{\prime}(s)\right|}{\left|\theta^{\prime}(t)\right|} \leqslant A \tag{13}
\end{equation*}
$$

that is, $\left|\theta^{\prime}\right|$ is almost constant, when the change of the argument is small. This follows from the results of [6], a detailed proof may be found in [10, Lemma 5.1].
(iv) If θ is one-component, then $\mathcal{C}_{1}(\theta)=\mathcal{C}_{2}(\theta)$. The same holds for the function θ^{2} which is also one-component. By Lemma 6.1, $\mathcal{C}_{1}\left(\theta^{2}\right)=\mathcal{C}_{2}\left(\theta^{2}\right)=$ $\mathcal{C}_{2}(\theta)$, and so there is a constant B such that for any measure in $\mathcal{C}_{2}^{+}(\theta)$,

$$
\begin{equation*}
\sup _{f \in K_{\theta^{2}}^{1}} \frac{\|f\|_{L^{1}(\mu)}}{\|f\|_{1}} \leqslant B \sup _{f \in K_{\theta}^{2}} \frac{\|f\|_{L^{2}(\mu)}}{\|f\|_{2}} \tag{14}
\end{equation*}
$$

(v) Let $\left\{t_{n}\right\}$ be the support of some Clark measure for θ and let $s_{n} \in$ $\left(t_{n}, t_{n+1}\right)$. There exists a constant $C=C(\theta)$ which does not depend on $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ such that for any $f \in K_{\theta}^{2}$,

$$
\sum_{n} \frac{\left|f\left(s_{n}\right)\right|^{2}}{\left|\theta^{\prime}\left(s_{n}\right)\right|} \leqslant C\|f\|_{2}^{2}
$$

This follows from the stability result due to Cohn [19, Theorem 3].
So (v) means that for the measures of the form $\sum_{n}\left|\theta^{\prime}\left(s_{n}\right)\right|^{-1} \delta_{s_{n}}$ the supremum in the right-hand side of (14) is uniformly bounded. From this, (iii) and (iv) we have the following Plancherel-Polya type inequality:

Corollary 7.3. Let $\left\{t_{n}\right\}$ be the support of some Clark measure for θ and let $s_{n}, u_{n} \in\left(t_{n}, t_{n+1}\right)$. There exists a constant $C=C(\theta)$ which does not depend on $\left\{t_{n}\right\},\left\{s_{n}\right\},\left\{u_{n}\right\}$, such that for any $f \in X \subset K_{\theta^{2}}^{1}$,

$$
\begin{equation*}
\sum_{n} \frac{\left|f\left(s_{n}\right)\right|}{\left|\theta^{\prime}\left(u_{n}\right)\right|} \leqslant C\|f\|_{1} . \tag{15}
\end{equation*}
$$

Proof of Theorem 7.2, Let $f \in X$. Take two Clark bases corresponding to 1 and -1 , and let $\left\{t_{n}\right\}$ be the union of their supports. If t_{n} and t_{n+1} are two neighbor points from our set, then

$$
\int_{\left(t_{n}, t_{n+1}\right)}\left|\theta^{\prime}(t)\right| d m(t)=\pi .
$$

If we write $t_{n}=e^{i x_{n}}$ and take the branch of the argument ψ so that $\theta\left(e^{i x}\right)=$ $e^{2 i \psi(x)}$, then $\left|\psi\left(x_{n+1}\right)-\psi\left(x_{n}\right)\right|=\pi / 2$.

Let $c_{n}=\sup _{t \in\left(t_{n}, t_{n+1}\right)}|f(t)|$ and put, for some constant D whose value will be specified later,

$$
g(z)=D \sum c_{n} \frac{\left|k_{t_{n}}(z)\right|^{2}}{\left|\theta^{\prime}\left(t_{n}\right)\right|^{2}}
$$

Then $g \in L^{1}$ since the series converges in L^{1}-norm. Indeed, $c_{n}=\left|f\left(s_{n}\right)\right|$ for some $s_{n} \in\left(t_{n}, t_{n+1}\right)$ and

$$
\sum\left|c_{n}\right| \frac{\left\|k_{t_{n}}^{2}\right\|_{1}}{\left|\theta^{\prime}\left(t_{n}\right)\right|^{2}}=\sum \frac{\left|f\left(s_{n}\right)\right|}{\left|\theta^{\prime}\left(t_{n}\right)\right|} \leqslant C\|f\|_{1}
$$

by Corollary 7.3. Also $g \in X$ and $g \geqslant 0$.
It remains to show that $g \geqslant|f|$. Let $t=e^{i x} \in\left(t_{n}, t_{n+1}\right)$. We have

$$
\begin{equation*}
\left|k_{t_{n}}(t)\right|=\left|\frac{\theta(t)-\theta\left(t_{n}\right)}{t-t_{n}}\right|=\left|2 \frac{\sin \left(\psi(x)-\psi\left(x_{n}\right)\right)}{e^{i x}-e^{i x_{n}}}\right| . \tag{16}
\end{equation*}
$$

Since $\left|\psi(x)-\psi\left(x_{n}\right)\right| \leqslant \pi / 2$, we have $\left|\sin \left(\psi(x)-\psi\left(x_{n}\right)\right)\right| \geqslant 2\left|\psi(x)-\psi\left(x_{n}\right)\right| / \pi$. Of course we have $\left|e^{i x}-e^{i x_{n}}\right| \leqslant\left|x-x_{n}\right|$. Hence, the last quantity in (16) is

$$
\geqslant \frac{4}{\pi} \cdot\left|\frac{\psi(x)-\psi\left(x_{n}\right)}{x-x_{n}}\right|=\frac{4 \psi^{\prime}\left(y_{n}\right)}{\pi}
$$

for some $y_{n} \in\left[x_{n}, x\right]$. If we put $u_{n}=e^{i y_{n}}$ we have $\psi^{\prime}\left(y_{n}\right)=\left|\theta^{\prime}\left(u_{n}\right)\right| / 2$. Thus, we have shown that $\left|k_{t_{n}}(t)\right| \geqslant 2\left|\theta^{\prime}\left(u_{n}\right)\right| / \pi$ for some $u_{n} \in\left(t_{n}, t_{n+1}\right)$. Hence, if we take $D>\pi^{2} A^{2} / 4$, then

$$
g(t)>D c_{n} \frac{\left|k_{t_{n}}(t)\right|^{2}}{\left|\theta^{\prime}\left(t_{n}\right)\right|^{2}} \geqslant D \frac{4\left|\theta^{\prime}\left(u_{n}\right)\right|^{2}}{\pi^{2}\left|\theta^{\prime}\left(t_{n}\right)\right|^{2}} c_{n} \geqslant \frac{4 D}{\pi^{2} A^{2}} c_{n} \geqslant c_{n} \geqslant|f(t)| .
$$

The theorem is proved.

References

[1] P.R. Ahern, D.N. Clark, Radial limits and invariant subspaces. Amer. J. Math. 92 (1970), 332-342.
[2] A.B. Aleksandrov, Invariant subspaces of shift operators. An axiomatic approach, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113 (1981), 726; English transl. in J. Soviet Math. 22 (1983), 1695-1708.
[3] A.B. Aleksandrov, A simple proof of the Volberg-Treil theorem on the embedding of coinvariant subspaces of the shift operator, Zap. Nauchn. Semin. POMI 217 (1994), 26-35; English transl. in J. Math. Sci. 85 (1997), 1773-1778.
[4] A.B. Aleksandrov, On the existence of nontangential boundary values of pseudocontinuable functions, Zap. Nauchn. Semin. POMI 222 (1995), 5-17; English transl. in J. Math. Sci. 87 (1997), 5, 3781-3787.
[5] A.B. Aleksandrov, On embedding theorems for coinvariant subspaces of the shift operator. I, Operator Theory: Advances and Applications, 113 (2000), 45-64.
[6] A.B. Aleksandrov, On embedding theorems for coinvariant subspaces of the shift operator. II, Zap. Nauchn. Semin. POMI 262 (1999), 5-48; English transl. in J. Math. Sci. 110 (2002), 5, 2907-2929.
[7] A.D. Baranov, Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings, J. Funct. Anal. 223 (2005), 1, 116-146.
[8] A.D. Baranov, Embeddings of model subspaces of the Hardy space: compactness and Schatten-von Neumann ideals, Izvestia RAN Ser. Matem. 73 (2009), 6, 3-28; English transl. in Izv. Math. 73 (2009), 6, 1077-1100.
[9] A. Baranov, I. Chalendar, E. Fricain, J. Mashreghi, D. Timotin, Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators, J. Funct. Anal., $\mathbf{2 5 9}$ (2010), 10, 2673-2701.
[10] A. Baranov, K. Dyakonov, The Feichtinger conjecture for reproducing kernels in model subspaces, J. Geom. Anal., to appear.
[11] H. Bercovici, C. Foias, A. Tannenbaum, On skew Toeplitz operators, I, Operator Theory: Advances and Applications, 29 (1988), 21-45.
[12] H. Bercovici, C. Foias, A. Tannenbaum, On skew Toeplitz operators, II, Operator Theory: Advances and Applications, 103 (1997).
[13] J.A. Cima, A.L. Matheson, W.T. Ross, The Cauchy Transform, AMS, Providence, RI, 2006.
[14] J.A. Cima, W.T. Ross, The Backward Shift on the Hardy Space, Math. Surveys Monogr., 79, AMS, Providence, RI, 2000.
[15] J. Cima, S. Garcia, W. Ross, W. Wogen, Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity, Indiana Univ. Math. J., to appear.
[16] J. Cima, W. Ross, W. Wogen, Truncated Toeplitz operators on finite dimensional spaces. Oper. Matrices 2 (2008), 3, 357-369.
[17] D.N. Clark, One-dimensional perturbations of restricted shifts, J. Anal. Math. 25 (1972), 169-191.
[18] B. Cohn, Carleson measures for functions orthogonal to invariant subspaces, Pacific J. Math. 103 (1982), 2, 347-364.
[19] W.S. Cohn, Carleson measures and operators on star-invariant subspaces, J. Oper. Theory 15 (1986), 1, 181-202.
[20] K.M. Dyakonov, Moduli and arguments of analytic functions from subspaces in H^{p} that are invariant under the backward shift operator, Sibirsk. Mat. Zh. 31 (1990), 6, 64-79; English transl. in Siberian Math. J. 31 (1990), 6, 926-939.
[21] S. Garcia, W. Ross, The norm of a truncated Toeplitz operator, CRM Proceedings and Monographs 51, 2010, 59-64.
[22] J. Garnett, Bounded Analytic Functions, Academic Press. New-York, 1981.
[23] V.V. Kapustin, Boundary values of Cauchy-type integrals, Algebra i Analiz 16 (2004), 4, 114-131; English transl. in St. Petersburg Math. J. 16 (2005), 4, 691-702.
[24] V.V. Kapustin, On wave operators on the singular spectrum, Zap. Nauchn. Semin. POMI 376 (2010), 48-63 (in Russian).
[25] B.Ya. Levin, Lectures on Entire Functions, Transl. Math. Monogr., Vol. 150, AMS, Providence, RI, 1996.
[26] F. Nazarov, A. Volberg, The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces K_{θ}, J. Anal. Math. 87 (2002), 385-414.
[27] N.K. Nikolski, Treatise on the Shift Operator, Springer-Verlag, Berlin-Heidelberg, 1986.
[28] N.K. Nikolski, Operators, Functions, and Systems: an Easy Reading. Vol. 2. Model Operators and Systems, Math. Surveys Monogr., Vol. 93, AMS, Providence, RI, 2002.
[29] A.G. Poltoratski, Boundary behavior of pseudocontinuable functions, Algebra i Analiz 5 (1993), 2, 189-210; English transl. in St. Petersburg Math. J. 5 (1994), 2, 389-406.
[30] R. Rochberg, Toeplitz and Hankel operators on the Paley-Wiener space, Integr. Equ. Oper. Theory 10 (1987), 2, 187-235.
[31] D. Sarason, Algebraic properties of truncated Toeplitz operators, Oper. Matrices 1 (2007), 4, 491-526.
[32] A.L. Volberg, Factorization of polynomials with estimates of norms, Operator Theory: Advances and Applications, 149 (2004), 277-295.
[33] A.L. Volberg, S.R. Treil, Embedding theorems for invariant subspaces of the inverse shift operator, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 149 (1986), 38-51; English transl. in J. Soviet Math. 42 (1988), 1562-1572.
(A. Baranov) Department of Mathematics and Mechanics, St. Petersburg

State University, 28, Universitetskil Pr., St. Petersburg, 198504, Russia
E-mail address: anton.d.baranov@gmail.com
(R. Bessonov and V. Kapustin) St.Petersburg Department of Steklov Mathematical Institute RAS, 27, Fontanka, St.Petersburg, 191023, Russia

E-mail address: bessonov@pdmi.ras.ru, kapustin@pdmi.ras.ru

[^0]: The authors are supported by the RFBR grant 08-01-00723. The first author is supported by grant MK-7656.2010.1 and by Federal Program of Ministry of Education 2010-1.1-111-128-033.

