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ABSTRACT SUPERPOSITION OPERATORS ON MAPPINGS
OF BOUNDED VARIATION OF TWO REAL VARIABLES. II
V. V. Chistyakov UDC 517.98

Abstract: We define and study the metric semigroup BV, (I b M ) of mappings of two real variables
of bounded total variation in the Vitali-Hardy-Krause sense on a rectangle I? with values in a metric
semigroup or abstract convex cone M. We give a complete description for the Lipschitzian Nemytskii
superposition operators from BVs (I b M ) to a similar semigroup BV, (I 5N ) and, as a consequence,
characterize set-valued superposition operators. We establish a connection between the mappings
in BV, (I b-M ) and the mappings of bounded iterated variation and study the iterated superposition
operators on the mappings of bounded iterated variation. The results of this article develop and gen-
eralize the recent results by Matkowski and Mi§ (1984), Zawadzka (1990), and the author (2002, 2003)
to the case of (set-valued) superposition operators on the mappings of two real variables.
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§ 4. Lipschitzian Superposition Operators. A Sufficient Condition

This article is a continuation of the author’s research [1] devoted to the complete description of
Lipschitzian Nemytskii superposition operators 5 from a metric semigroup BVs (I b N ) of mappings of
bounded variation of two real variables to a similar semigroup BV, (I ab; M ), where N and M are abstract
metric semigroups. In [1] we obtained a necessary condition for an operator # to be Lipschitzian. The
goal of this article is to establish a sufficient condition for the Lipschitz continuity of # (Theorems 2
and 3 in §4) and characterize the iterated superposition operators on BVy (Ig; N ) (Theorem 4 in §5).
The results of this article were announced in [2, 3].

We adhere below to the terminology and notations of [1] wherein a detailed motivation, bibliography,
and history of the problem are also given. However, for the reader’s convenience we stand with briefly
recalling the basic definitions of [1] we need for this part. Observe that the numeration of sections and
assertions of this article continues that of [1].

Let I, M, and N be nonempty sets and let M’ be the family of all mappings from I to M. Given
a mapping h : I x N — M, the operator # : NI — M! defined by the rule (s#g)(x) = h(z, g(x)) for
x €I and g € N7 is called an (abstract Nemytskii) superposition operator with generator h.

A metric semigroup is a triple (M, d, +), where (M, d) is a metric space with metric d, while (M, +) is
an abelian semigroup with addition operation +, and d is translation-invariant: d(u+ w,v+w) = d(u,v)
for all u,v,w € M. The following inequality holds in a metric semigroup M:

d(u+ a,v+0) < d(u,v) +d(u,v), wu,v,u,v€ M, (1)

in particular, the addition operation M x M 3> (u,v) — u+v € M is continuous. If M contains the zero
element 0 € M (so that u+ 0 =0+ u = u for all u € M) then we put |ulg = d(u,0) for u € M.

An abstract convexr cone is a quadruple (M,d,+,-), where (M,d,+) is a metric semigroup with
zero 0 € M and the operation - : R™ x M — M of multiplication of elements of M by nonnegative
numbers acting by the rule (\,u) — Au possesses the following properties for all A, u € R™ and u,v € M:
AMu~+v) = Au~+ Ao, (A + p)u = Au~+ pu, AM(pu) = Ap)u, 1-u = u, and d(Au, \v) = Ad(u,v).
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Numerous examples of metric semigroups and abstract convex cones are given in [1]. Here we are
mainly interested in the semigroups and cones of mappings of bounded variation of one and two variables.

Let (M, d) be a metric space and let [a,b] C R be a closed interval. The classical (Jordan) variation
of a mapping ¢ : [a,b] — M is the quantity

V2 (p) = Sup > d(p(ts), plti1)),
=1

where the supremum is taken over all partitions & = {t;}]", of the interval [a,b] (i.e., m € N and
a=tg <ty < <ty 1<tm=">0). If V’(p) < oo then we write ¢ € BV;([a, b]; M) and say that ¢ is
a mapping of bounded variation on [a,b]. If (M,d,+) is a (complete) metric semigroup (or an abstract
convex cone) then BV ([a, b]; M) as well is a (complete) metric semigroup (or an abstract convex cone),
where the addition operation (as well as multiplication by nonnegative numbers) is defined pointwise and
the translation-invariant metric d; is given by the rule

di(p, ) = d(p(a), $(a) + Wo(,9),  ¢,¢ € BV ([a, b; M),
and the semimetric W2 (¢, ) is defined as

Wa(p. ¥ —supzd i) + 9 (ti1), (ki) + p(ti-1))- (2)

Below we need the following inequality [1, Lemma 1(b)]:

d(p(t), (1)) < di(e, ), t€la,b]. (3)

The corresponding definitions for the mappings of two variables with values in a semigroup M are
as follows:

We write the coordinate representations of z,y € R? in the form x = (x1,22) and y = (y1,y2)
and assume that x < y or z < y (in R?) if these inequalities hold coordinatewise. Suppose that a =
(a1,a2) < b = (b1,bo) in R? and I? = IZ};Z’; = [a1,b1] X [ag2,bs] is a basic rectangle on the plane (the
domain of most mappings). Given a mapping f : I — M and points z1 € [a1,b1] and z2 € [ag, bo], define
the two mappings f(-,z2) : [a1,b1] — M and f(x1,-) : [ag,b2] — M of a single variable by the rules:
f( x2)(t) = f(t,x2) for t € [a1,b1] and f(z1,)(s) = f(z1,s) for s € [az, ba].

Suppose that (M, d,+) is a metric semigroup and I 3 is the basic rectangle.

The (Vitali) mized difference of a mapping f : I? — M on a subrectangle I = [x1, y1] X [z2,y2] C I?,
where z,y € I°, x <y, is defined by [1, 4]

md(f, 1Y) = md(f, 1Y) = d(f(x1, 22) + f(y1, ¥2), f (@1, 92) + f(y1, 22)).

A pair (£,7) is called a (net) partition of IY if there exist m,n € N such that ¢ = {t;}, is a partition
of [a1,b1] and n = {s;}}_, is a partition of [ag, ba]. Then the mixed difference md(f, I;;) on the rectangles
I _Ithsj :[ti—17ti] X [Sj_l,Sj], izl,...,m, jzl,...,n, (4)

ti— 1,85j—1

constituting this partition, is calculated according to the equality
t'L’
md(f,1," s;_1) = A(f(timassj—1) + f(tissg), f(tioass5) + f(ti, s5-1))-

The double variation of a mapping f : I? — M is defined by the rule (Vitali [4] for M = R)
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where the supremum is taken over all partitions (£,7) of the rectangle I? of the above form. The total
variation (in the modification of Hardy and Krause, see [5,6] if M = R) of a mapping f is the quantity

TVy(f,10) = VI (f (- a2)) + V2 (f(a, ) + Va(f, ID), (5)

and the class of all mappings of finite total variation is called the space of mappings of bounded variation
(in the Vitali-Hardy—Krause sense) and denoted by BV (Ig; M ) The following inequality is valid for

f €BVy (I M) [7,8):
d(f(y),f($)) STVd(fvlczc/) STVd(falg) _TVd(f7[:)7 x,yefg, $§y (6)

If a metric semigroup (M, d, +) contains zero then we also put
Iflla =1 (@)la+TVa(f,12), | € BV2(Ip: M).

The main property of Vs is additivity: for every above-indicated partition (£,7) of the rectangle I?
into some subrectangles {I;;};/2, as in (4) we obtain

Va(fids) = Valf. Iiy). (7)

i=1 j=1

In the case when (M, d, +) is a (complete) metric semigroup (abstract convex cone) then the structure
of a (complete) metric semigroup (abstract convex cone) on BVy(I; M) is defined as follows [1]: Let
f,9 € BVy (Ig; M ) The addition operation + (multiplication by nonnegative numbers) in BVy (Ig; M )
is introduced pointwise and the translation-invariant metric ds is defined by the rule

dz(f,9) = d(f(a), 9(a) + TWa(f. 9, 13),
where
TWd(f,g,Ig) - ngl (f('?GQ)vg('aaQ)) + ng(f(aly ')7g(a1a )) + WQ(faQ?L?)'

Here the first summand on the right-hand side is the quantity (2) calculated in the metric d for the
mappings t — f(t,a2) and t — g(t,az) on the interval [aj,bi], the second summand has a similar
meaning, and Wy (f,g, Ig) is defined in the notations of (4) by the rule

Wa(f,g.10) = sup > Y mdy(f, g, Tij),
&m) = j=1
where the supremum is taken over all partitions § = {t;}]2, and n = {s;}7_, of the respective intervals
[a1,b1] and [ag,bo] (m,n € N) and the joint mized difference mds(f,g,1¥) on the subrectangle I¥ =
[z1,01] X [22,2] C I} is
mdy (f, g, I41%2) = d(f(z1,22) + f(y1,92) + 9(z1,92) + g(y1, 22),
g(@1,2) + g(y1,y2) + (@1, 52) + f(y1, 22)).
Observe that for f, g € BV (I8 M) we obtain [1, Lemma 2(b)]
TVa(£,12) = TVa(g, 12)| < TWa(f,9,12) < TVa(f, 1) + TVa(g, I7).- (8)

Let (N,p,+) and (M,d,+) be two metric semigroups (two abstract convex cones). An operator
T : N — M is called Lipschitzian if its (least) Lipschitz constant is finite:

L(T) = sup{d(Tu, Tv)/p(u,v) | u,v € N,u # v},

and the set of all these operators is denoted by Lip(N; M). An operator T : N — M is called additive if
it satisfies the Cauchy equation: T'(u 4+ v) = Tu + T for all u,v € N. Denote by L(N; M) the set of all
Lipschitzian additive operators from N to M.
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Henceforth we consider only the case when N and M contain zeros (denoted by the same symbol 0).
In this case if T € L(N;M) then T(0) = 0, for T(0) = T(0 + 0) = T(0) + T(0) and d(0,T(0)) =
d(T(0),T(0)+T(0)) = 0. The set L(N; M) is closed with respect to the pointwise addition (multiplication
by nonnegative numbers) by (1). The translation-invariant metric dy, on L(N; M) is defined by the rule [9]
dr(T,S) = sup{d(Tu + Sv,Su+ Tv)/p(u,v) | u,v € N, w #v}, T,S € L(N;M).
Thus, (L(N;M),dr,+) is a metric semigroup (abstract convex cone) which is complete if such is the
metric semigroup (X, d,+); moreover L(T) = dr(T,0) = |T|q,. For future reference, observe that [1,
Lemma 4(b)]
|L(T) — L(S)| <dp(T,S) < L(T)+ L(S), T,Se€L(N;M). 9)
In [1, Theorem 1] we proved the following necessary condition for Lipschitz continuity of a superpo-
sition operator .7 (we cite it under some additional assumptions which do not change the result much).
Suppose that (N, p,+,-) and (M,d,+,-) are two abstract convex cones such that M is complete and
a mapping h : I? x N — M which is continuous in the first argument is the generator of a superposition
operator S for I = IV. If # € Lip(BV2(1l; N); BV (1l M)) then h(z,-) € Lip(N; M) for all z € I}
and there exist two mappings f : I? — L(N; M) and hg : I} — M such that f(-)u, ho € BV (12 M) for
all u € N and the representation h(x,u) = f(x)u + ho(x) holds for all x € I? and u € N, where f(-)u
acts by the rule x — f(z)u.
The main results of this section are Theorem 2 in which we establish the Banach algebra type property
of the spaces BV (I%; M) (cf. [7]) and Theorem 3 which gives a sufficient condition for the Lipschitz

continuity of the superposition operator .7 which acts between metric semigroups BV, (I 2; M )

Theorem 2. Suppose that (N,p,+) and (M,d,+) are two metric semigroups with zeros. If f €
BVg(Iab;L(N; M)) and g € BVQ(IS;N) then the mapping fg : I® — M acting by the rule (fg)(x) =
f(x)g(z) for all z € I? lies in BVo(I%; M) and the inequality || fglla < 4||flla, |lgll, is valid.

PROOF. Since fg: I’ — M, by (5), we have

1fglla = 1(Fg)(@)la+ Ve (F9) (- a2) + Va2 ((f9)(ar, ) + Va(fg. Iq).- (10)
For the first summand from the definitions of the Lipschitz constant of the operator f(a) we obtain
[(f9)(a)la = d((f9)(a),0) = d(f(a)g(a), f(a)(0))
< L(f(a))p(g(a),0) = [f(a)la, - |9(a)l,. (11)
Let us estimate the remaining three terms in (10). To estimate the second summand, we use the definition
of the Lipschitz constant L(-) and the metric dr, so that if ¢, s € [a1, b] then

d((fg)(t)(m)v (fg)(sa a2)) < d(f(t,ag)g(t, aQ)a f(t7 a2)9(57a2))
+d(f(t, a2)g(s,az), f(s,a2)g(s, az))
< L(f(t,ag))p(g(t, a2)vg(57a2)) + dL(f(tv a2)’ f(S, ag))p(g(s, a2)a O)v

whence

Vo (f9)( a2)) < ([SUE}L(f(waz)))fo(g(w@)) + ch’f(f(-,aQ))([suf]p(g(-,az),O)).

Observing that (see, in particular, (9))

S ]L(f(t, a)) < L(f(a)) + V2 (f (- a2)),

up ]p(g(s, as),0) < p(g(a),0) + V2 (g(-, a2)),
s€la1,01

we find that
VA ((f9) (5 a2)) < |f(@)]a, VI (g(- az)) + Vi (£ a2))lg(a)l,
+2V(f (- a2)) Vit (g(-, a2)). (12)
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A similar estimate holds also for the third summand in (10):

Vaz(f9)(ar,)) < [ f(@)lay Vaz (g(ar, ) + Va2 (f (a1, )lg(a)l,
+2V2 (f(a1,)Va2 (g(ar, -)). (13)
To estimate the fourth summand Vs ( fo,1 2) in (10), we use the following observation concerning the

elements of the metric semigroup (M, d, +):

n

if €N, {Ig,rr Yoo C M, and Y Iy =Yy, then d(l,r0) < > _ d(ry, li). (14)
k=0 k=0 k=1
Indeed, from the translation invariance of d and (1) we obtain

d(lo,?“o) = d<lo + Zlk,ro + Zlk> = d<7“0 + ZTk,TO + Zlk>
k=1 k=1
= d(z T’mzlk) < Zd(m,lk)-
k=1 k=1

Let {t:}]Z, and {s;}]_q be respective partitions of the intervals [a1,b1] and [az,bo]. Note that, by

additivity of the operator f(z) forall x € I?, fori =1,...,mand j = 1,...,n the following equality holds
(the subscripts of brackets in this equality only establish enumeration and indicate the correspondence
between summands on the left- and right-hand sides to be used below):

[(fg)(tiz1,sj—1) + (fg)(tis sj)lo + [(f(ti-1,85) + f(Li, sj-1))g(ti-1, 85-1)]1
+[f (i, 55)(g(tim1,85) + g(tis sj—1)l2 + [fa1, sj-1)g(ti, a2) + f(a1, s5)g(ti-1, a2)]s
+[f(a1, sj-1)(g(ti-1,a2) + g(ti, sj-1)) + flar, s;)(g(ti-1, 8j-1) + g(ti, az))]4
+[(f(a1,85) + f(tis sj-1))g(ti, a2) + (flar, sj—1) + f(ti, 85))9(ti-1,a2)]5
+[(f(ar, s5) + f(tis sj-1))(9(ti-1, a2) + g(ti, s-1))
+(f(a1,85-1) + f(ti, 55))(g(ti—1,8j-1) + g(ti, a2))]e
+[f(tim1,a2)g(an, sj) + f(ti, a2)g(a1, sj-1)]7
+[f(ti-1,a2)(g(ar, sj-1) + g(ti-1,55)) + f(ti, a2)(g(a1, 55) + g(ti-1,5j-1))]s
+H(f(tim1,85) + f(ti, a2))g(ar, s;5) + (f(ti—1, a2) + f(Li, s5))9(a1, s5-1)]o
+[(f(tim1,85) + f(ti, a2))(g(a1, sj-1) + g(ti-1, 7))
+(f(tim1,a2) + f(ti,s5))(g(a1, s5) + g(ti—1,55-1))]10
= [(f9)(ti-1, 5;) + (f9)(ti, s5-1)]o + [(f (ti=1, 85-1) + f(ti, 85))9(ti=1, sj—1)]1
+1f(ti,55)(g(tiz1, 85-1) + g(ti, 55))]2 + [f(a1, 85)g9(ti, a2) + fla1, s5-1)g(ti-1,a2)]3
+[f(a1,55)(g(ti-1,a2) + g(ti, sj—1)) + far, sj-1)(g(ti-1, sj-1) + g(ti, a2))]a
+[(f(a1,s5-1) + f(ti, 85))9(ti, a2) + (f(a1, 85) + f(tiy 85-1))g(ti-1,a2)]5
+[(f(a1,s5-1) + f(ti, 55))(9(ti-1, a2) + g(ti, j-1))
+(f(a1,85) + f(tis sj—1))(g(ti—1,8j-1) + g(ti, a2))]e
+[f(ti,a2)g(a1, s5) + f(ti—1,a2)g(a1, sj-1)]7
f
(f

+
+

+[f(ti, a2)(g(ar, sj-1) + g(ti-1, 55)) + f(ti=1,a2)(g(a1, 85) + g(ti—1,sj-1))]s
+H(f(tio1,a2) + f(ti,s5))g(a1, s5) (ti-1,55)

+[(f(ti=1,a2) + f(tis s5))(9(a1, 85-1) + g(ti-1,5;))

+(f(ti-1,55) + f(ti; a2))(g(a1, s;5) + g(ti-1,55-1))]10-

_l’_
+ + f(ti,a2))g(a1,85-1)]o
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For k =0,1,...,10 we denote by lij (rg '7) the kth summand in the brackets on the left (right) side of the
above equahty, so that we can rewrite it in the form Y,° 17 = 3232 77, By (4) and (14), we find that

md(fg, I;;) = d(I§ ,r§) Zdrk,l”

therefore,
10 m
szd 19, ZJ)SZZ Tkyll] Zsk

Estimate the expressions Sy = > /%, Z?:l d ('rl? , l?), k=1,...,10, separately. It follows from (6) that if
(t,s) € I? then

l9(,8)|o = p(g(t, ), 0) < p(g(a),0) + plg(t,s), 9(a)) < lg(a)l, +TV,(9,I3) = llgll;
similarly, it follows from (9) and (6) that

£t 8)la, = L(f(t, ) < L(f(a)) +dr(f(t,s), f(a))
< [f(@)a, +TVa, (£, 12) = I lla -

By the definition of dz, and the estimate for |g(t, s)|,, for S1 we have

d(r 17) < dp(f(tiot, sj1) + f(tio ), f(tio1,55) + f(ti 55-1))g(tiz1,55-1)],
<md(f, Iij)llgll o,

whence
S1 < Va(f, Ig) lgllp-

Using the definition of the Lipschitz constant and the estimate for |f(t, s)|q, , for Se we find that
d(ry 15) < L(f(ti, 5,))p(g(tio1, 8j-1) + 9(ti, 53), 9(tio1, 57) + g(ti, 55-1))
= |f(ti; 85)la, md(g, Lij) < || flla, md(g, Ls;);

consequently,
So < || £lla, V(9. 13)-

For the summand S3 (using again the definition of dj,) we obtain

d(r{ 1§) < dp(f(ay,s;), flar, s5-1))p(g(ti, a2), g(ti—1, az))

and hence
S < Vab;(f(ah '))fo (9(-,a2)).

By analogy with S3 we estimate the expression Sy:
d(rd 1) < dp(f(ts, a2), f(tio1,a2))p(g(as, s;), glay, sj-1));
7 <Vl (F(,a2)) Va2 (g(ar, ).
For S; we obtain
d(r{ 1) <dr(f(a1,s5), f(a1,85-1))p(g(ti-1, az) + g(ti, 5j-1), g(ti-1, 5j-1) + g(ts, az))
=dr(f(a1,s5), f(ar,s5-1)) md(g7 :Z’Slja;)<dL(f(a1, s5), f (a1, sj_l))Vg(g,IfZ’bf@)
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whence, by (monotonicity and) additivity of Va (see (7)), we find that

Sy < V2(f(a1,-)Va(g, IL).
By analogy with Sy, we obtain the following estimate for Ss:

d(rd 1§) < dp(f(ti, a2), f(tio1,a2)) md (g, o™
b1,
< dp(f(ti a2), f(tiz1,a2))Va(g, Lay)s) 1 );

Ss < V2L(f(-,a2))Va(g, 1L).

To estimate S5, observe that
d(re 1) < di(far, sj-1) + f(tiss7), flar, 55) + f(ti, 55-1))p(9(ti, az), g(ti-1, az2))
ti,85 by,s;
= md(f7 Ial,sjj71)p(g(ti7 (ZQ), g(ti—ly CLQ)) S V2 (fa Iai,s;,l)P(g(th (12), g(ti—la CLQ)),

whence, by monotonicity and additivity of the double variation Vs,

SS < ‘/Q(fv Iab)vabll (g(u CLQ)).

By analogy with S5, we estimate the summand Sy:

d(réj,léj) < md(f, Iziiij,ag)p(g(abSj)ag(alasjfl))
<Va(f. 1,7, plglar, 55), g(a, s5-1));
Sy < Va(f, Iab)fo(g(ala )

From the inequalities

d("f’é‘j, l%j) S dL(f(ah Sj—l) + f(tu Sj)7 f(a17 S]) + f(tu Sj—l))
xp(g(ti-1,a2) + g(ti, sj-1), 9(ti-1, 8j-1) + g(ti, az))
5] i,Sj— b1,s; i
=md(f, L%, ) md(g, ;") < Va(f davsl)Va(g. 1",,)
based on the definition of d;, and from additivity of V5 we obtain the following estimate for Sg:
So < Va(f,1q)Va(9, I2)-
The summand Sy is estimated by analogy with Sg:

d(rih, 1) < md(f, 1,7 ) md(g. Lo ™) < Va(f. "2, ) Va(g. davisd )

S0 < Va(f, IS)V2 (9, Ig)
Thus, we obtain the following estimate for V5 ( fg,1 2):

Va(fg,1a) < |f(a)la, Va(g, Ig) +2V7H(F(- a2))Va(g, 12)
+2Ve2 (f(ar))Va(g, 1) + Va (. 1) g (@)l
+2Va (£ 1) Vi (9( a2)) + 2Va (f, 1) Vaz (g, )
FVal (£ a2)) Va2 (glan, ) + Va2 (flar, Vil (9 a2) + 4Va (£, 1) Va(g. 12).
Recalling (10)—(13) and the last estimate, we obtain the desired inequality in Theorem 2. [

REMARK 1. If in Theorem 2 we put I? = [a,b] C R and replace BVy with BV; and L(N; M)
with Lipy(N; M) = {T € Lip(N; M) | T(0) = 0} then fg € BVy(Ig; M); moreover | fglla < 2[|flla, llgll,,

where || fglla = d((f9)(a),0) + Vi (f9), Iflla, = L(f(a)) + V2(f), and [lg]l, = p(g(a),0) + V;(9)-

By Theorem 2, Theorem 1 of [1] admits the following conversion:
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Theorem 3. Suppose that (N, p,+) and (M,d,+) are two metric semigroups with zeros and the
mapping h : I> x N — M defined by the rule h(z,u) = f(z)u + ho(x), where f € BVy(I%; L(N; M)) and
ho€ BV (I%; M), is the generator of a superposition operator 7. Then € Lip(BVa(I%; N); BVy(1%; M))
and the inequality L() < 4| f||4, holds.

PrOOF. First assume that hg = 0. Then the superposition operator # with such a generator acts
by the rule: (#g)(z) = f(z)g(z) = (fg)(z) for x € I} and g : I? — N. By Theorem 2, if g € BV, (I5; N)
then 57g € BV, (Ig; M), so that 7 acts from BV (Ig; N) to BVy (Ig; M) Show that .77 is Lipschitzian.
Let g1,92 € BV (Iab; N). From the definition of dy we obtain

dy(H g1, H g2) = d((H 91)(a), (# g2)(a)) + TWy(H g1, # g2, 1),

where the last summand is equal to

WA (A g1)(- a2), (A g2) (-, az))
+W2 (A q)(ar,-), (A ga)(ar, ) + Wa (g1, H g, I7).

Estimate each of the four summands in do (g1, 7 g2) separately. For the first summand we obtain

d((Hg1)(a), (# g2)(a)) = d(f(a)gi(a), f(a)g2(a)) < |f(a)la,p(g1(a), g2(a))-

To estimate the second summand, note that, by additivity of f(t,as), for all ¢, s € [a1,b1] we have

[(fg)(t, az) + (fg2) (s, az)lo + [f (L, a2)(g2(t, az) + g1 (s, a2))h
+[f(s,a2)91(s,a2) + f(t,a2)g2(s, a2)]2

= [(f92)(t, a2) + (fg1) (s, a2)]o + [f (¢, a2)(g1(¢, a2) + ga(s, a2))h
+[f(t,a2)g1(s, a2) + f(s,a2)g2(s, az)]a.

Hence, by (14) we find that

d((# g1)(t, a2) + (Hg2)(s, a2), (A g2) (L, az) + (# g1)(s, az))
=d((f91)(t, a2) + (fg2)(s,a2), (fg2) (¢, a2) + (fg1)(s, az))
< d(f(t,a2)(g1(t, a2) + g2(s, az2)), f(t, a2)(ga2(t, az) + g1(s, az)))
+d(f(t,a2)91(s, a2) + f(s,a2)92(s,az2), f(s,a2)g1(s,a2) + f(t,a2)g2(s, az))
< L(f(t,a2))p(g1(t, a2) + g2(s, az), g2(t, az) + g1(s, az))
+di(f(t,a2), f(s,a2))p(g1(s, a2), g2(s, a2))

and consequently

W (A 91) (-, a2), (Hg2)(,a2)) < ( sup  L(f(t,a2)))WeH(g1(-, az), ga2(-, az))

t€lar,b1]
+VI(f(,a2))( sup p(g1(s, az), ga(s, a2))).

s€az,ba]

As observed in the proof of Theorem 2, in this inequality we have

sup  L(f(t,a2)) < |f(a)la, + Vi (£(- a2))

te[al,bl}
and
S[Upb ]p(gl(sa as), g2(s, a2)) < p(g1(a), g2(a)) + W (g1(-, a2), g2(-, a2)).
s€la1,01
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By analogy with (12), we thus obtain

W2 (A1) (- a2), (Hg2) (- a2)) < |f(a)la, Wt (91(-, az), g2(-, az))
+VI(f (- a2)p(g1(a), g2(a)) + 2V (-, a2)) Wi (g1, a2), g2(+, a2)).

A similar estimate holds also for the third summand:

W2((A#g1)(ar,-), (Hg2)(a1,-) < | f(a)la, W (g1(as, ), g2(as,-))
+VE(f(a1,-))p(gi(a), g2(a)) + 2V2(f (a1, )W (g1(a1, ), g2(a1, ).

To estimate the fourth summand Wa (g1, 5 g, 15) we proceed as follows: Let {t;}I, and {s; Yo
be respective partitions of [a1,b1] and [ag,b2]. Denote (a bit more exactly) by lfﬁj(g) and r,ij(g) the

expressions in the brackets Zg and r? in the proof of Theorem 2. Then we find that the following
equality is valid in M:

10 10
D (W a) +ri(92) =D (r(a1) + 1 (92))
k=0 k=0
(formally, it is a consequence of the equality 32, l” (9) =2 r,? (g) for g = g1 — g2 used in the proof

of Theorem 2), from which, by (4) and (14), we obtam
mdz(gl,gz, L) = d(1§ (g1) + 7§ (92),15 (92) + 7§ (91))
10
<Zd (1) + 1 (g ),T‘ZJ(QQ)—FZZ](QI))EZd;g.
k=1

Put

Sk:izn:dij, k=1,...,10.

i=1 j=1

To estimate the quantities Sy, observe that from (8) and the definition of po for all (¢, s) € I? we derive

pg1(t,5), 92(t, 5)) < plg1(a), g2(a)) + TWy (g1, 92, I2) = p2(g1. g2)-

As in the proof of Theorem 2, the estimate for S; follows from the definition of dy.:

A =d((f(ti—1,8j1) + f(ti;5;))g1(tic1, s5-1) + (f (tiz1, 55) + f(t, 55-1))92(ti1, 55-1);
(f(tiz1,85-1) + f(tirs))g2(tiz1, s5-1) + (f(tic1,55) + f(tiy55-1))g1(ti=1,8j-1))
< dp(f(ti1,sj—1) + f(ti, 85), f(tim1, 85) + (i, 85-1))p(91(Fim1s 85-1)5 92(ti-1, 85-1))
< md(f, Lij)p2(91, 92),

whence
S1 < Va(f, I2) p2(g1, g2)-
By analogy, we obtain estimates for Si similar to those in the proof of Theorem 2 in which we should
replace ‘/2711 (g(‘, a2)) with Wclb)ll (91('7 a’2)7 92('7 aQ))? Vang (g(ah )) with ng (91 (a17 ‘)7 92(a17 ))7 and V5 (97 Icln))
with W2 (gl, gz, Ig) .
Consequently, combining these estimates, we find that

do(H g1, 7€ g2) < 4| flla, p2(g1,92)-
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The general case for hg € BVy (Ig; M ) follows from that above by the translation invariance of ds
on BV, (I5;M). O

REMARK 2. Suppose that N and M are the same as in Theorem 3 and g € BVjy (IS;N ) Then
the operator H : BV (I8 L(N; M)) — BVy(I5; M) acting by the rule H(f) = fg is Lipschitzian with
a Lipschitz constant L(H) < 4|g||,.

REMARK 3. It is immediate from the Banach Fixed Point Theorem and Theorem 3 that if M is
a complete metric semigroup with zero, hg € BV (1% M), f € BV (I8 L(N; M)), and || f|lq, < 1/4 then
there is a unique mapping g € BV (I%; M) such that g(z) = f(z)g(z) 4 ho(z) for all z € I.

REMARK 4. In view of Remark 1 (see also Remark 6 in [1]), an analog of Theorem 3 holds also for
mappings of a single variable.

8§ 5. Lipschitzian Iterated Superposition Operators

Consider another approach to defining the space BVa (IS;M ), when (M,d,+) is a metric semi-
group. Take f € BV (12 M). Then f(-,s) € BVi(la1,b1]; M) for all s € [as, by] and similarly f(t,-) €
BVi([az,bs]; M) for all ¢ € [ay, b1]; moreover, the following inequalities hold [7, 8]:

nyll (f(a S)) < nyll (f(‘?a’?)) + Vg(f, I%i:ig)’ T1,Y1 € [alabl}v 1 < Y1, (15)

ny22 (f<t7 )) < ny;(f(alv )) + V2 (fa Iéf{?tg)? T2,Y2 € [a27 bﬂ? Z2 < Yo. (16)

Put I, = [ax, by], k = 1,2, so that I = I; x I,. By (16), f(t,-) € BV1(I2; M) for every t € Iy; therefore,
it #(t) = f(t,-) for t € I then the mapping .# : I — BV;(I3; M) acts by the rule .Z (t)(s) = f(t,s),
t € I, s € I5. As observed above, the space BV (I2; M) is a metric semigroup with the metric dy (¢, ) =
d(p(az), ¥(az)) + W2(p,9) and hence we can compute the variation of .# on the interval I;. To this
end, let & = {t;}1", be a partition of I;. Consider the expression

di(F (), 7 (tio1)) = d(F (t:) (az), F (ti1)(a2)) + We2 (F (i), F (ti-1))- (17)

It is clear that the first summand on the right-hand side is equal to d(f(t;, a2), f(ti—1,a2)). To estimate
the second summand, suppose that n = {s;}/_, is a partition of I>. Then (see (2) and (4))

d(Z (ti)(s5) + F (ti1)(sj-1), F (ti-1)(85) + F (ti)(sj-1)) = md(f, L;;) (18)

and from additivity of V5 we find that
D AT (t)(s)) + F(tim1)(sj1), F (tim1)(55) + F () (55-1))
j=1

= > md(f, 1) <Y Valf, Iiy) = Va (£, I;"2,,).
j=1 J=1

Consequently, in view of the arbitrariness of 7,

Wf;(ﬁ(ti),ﬂ(ti—l)) < Va(f [ib2 ), i=1,...,m. (19)

) Tti—1,02
Then from (17) we obtain

m

Y h(F(H), F(tic) <Y
=1 =1

< VE(f(a2)) + Va(f, I2),

d(f(ti,az), f(ti1,a2) + 3 Va(f, 15 ,.)
=1
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whence (in view of the arbitrariness of the partition &)
Vaf)ll (y) < Vabll (f(a a2)) + V2 (fa Ig) .
Returning again to the partitions £ and 7, from (18) we also find that
szd £, Iij) < Zwb2 t:), F(ti_1)) (20)
1=1 j5=1

and therefore Va(f, D) < Vaf’ll (ZF; Wé’g), where Vabll (Z; Wé’g ) is the variation of .% over the interval I
calculated in the semimetric ng The last inequality together with (19) gives

Va(f. 1) = Vol (73 Wg2).
Moreover, using the first summand of (17), from (20) we find that

m n

S d(f(ti,az), f(tiora2))+ Y > md(f V)
=1

i=1 j=1

<> d(F k), F (i) < V().
1=1

and since the sums on the left-hand side do not decrease upon refining of the partition &, we have
Vil (f(a2)) + Va(f 1g) < VIH(F).
We have thus shown that % € BVy(I1; BVy(I2; M)) and
VI(F) = VE(f( a2) + Va(f. ID).
Similarly, if g(s)(t) = f(t, S), tel, s€ Iy, then 9 € BV1<IQ;BV1(11;M)),
Va2 (@) = Vo2 (flar, ) + Va(f. 1) and Va(f,1g) = Vo2 (45 Wg)).

Indicating the dependence of the mappings .# and ¢ on f, i.e., writing them in the form .#; and ¥;, we
arrive at the equality

BVo (I M) = {f: 10 — M | F; € BV1(11;BV1(I; M)) and 9y € BV1(Iy; BV (I1; M)},
which can be written in the following symbolic form:
BV, (I5; M) = BV (I1;BVy (Iz; M) N BV (Ig; BV1(I1; M)).

Henceforth we put f(t,s) = f(t)(s), t € I1, s € I, for f € BV 1(I1;BVi(l2; M)).
To study iterated superposition operators (see below), we need the following lemma:

Lemma 1. If (M,d,+) is a metric semigroup then the metric di; = (d1); on the metric semigroup
BVi(11; BV (Iy; M) is given by the equality di; = da.

PrOOF. Let d; be the above-introduced metric on BV, (Ig; M) Suppose that mappings f and g lie
in BV1 (Il; Bvl(Ig; M)) Then

di1(f,9) = di(f(ar), g(a1)) +51§p2d1 i) +g(tiz1),9(t:) + f(ti-1)),
i=1
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where the supremum is taken over all partitions { = {¢;}I", of the interval [a;,b1]. We have

di(f(a1),g(a1)) = d(f(a1)(az), g(a1)(az))
+sup Y d(f(a1)(s;) + g(a1)(sj-1), 9(a1)(s;) + f(a1)(s;-1))

L)
= d(f(a),g(a)) + W2(f(a1,-), g(a1,")),

where the supremum is taken over all partitions n = {s;}"_, of the interval [az, bs]. Now,
B (8) + gt 1), 906 + F(ti-) = d(F () (a2) + g(ti-1) (@), 9(6) az) + F(ti-1)(e2)
N s%pjildmti)(sj) b glti1)(s) + 9(6)5j-1) + S (1) (s5-1),
9(8)(53) + Flti-1)(55) + F(8)(55-1) + 9lti-1)(55-1))
= A7) (a2) + glts 1) az), (1) a2) + F(ti1)(a2)) + sup’S meda(f, . Ty,

where (4) is used. It follows from additivity of W5 that

ZmdQ(faga[ij) < ZW2(f,9Jz‘j) =Ws (f,g,fttjibi@),

Jj=1 J=1

and therefore
sup Y di(f(t:) + g(tio1), g(ti) + f(tio1)) < WE(f(- a2), 9+ az)) + Wa(f. g, I7). (21)

Observing that

d(f (t:)(az) + g(ti-1)(as), g(t:)(az) + f(ti-1)(az)) + Y _ mda(f, g, Iij)

=1
< dy(f(t;) +g(ti—1),9(t;) + f(ti-1))

and that the summands on the left-hand side of the above inequality do not decrease as we add points to
the partition & = {¢;}I" ), we arrive at the reverse inequality in (21). We are left with using the expression
for dao(f,g9). O

Although, as demonstrated above, the mappings in BVy (Ig; M ) are of bounded iterated variation
and the equality di; = ds2 holds for the metrics, the Lipschitzian superposition operators ¢ on the
latter have a somewhat different structure (see Theorem 4 below). The point here is that the left-left
regularization may fail to exist for mappings of bounded iterated variation.

Given g € (N2)' (ie., g: I, - N2) or g € N (ie., g : I' — N), we put g(t,s) = g(t)(s) for all
t € I and s € I. Given a mapping h : I> x N — M, the operator J# : (N2)t — (M!2)!t acting by the
rule

(H9)(1)(s) = (H9)(t,5) = hit,5,9(t, 9)) = h(t, 5,9(£)(5)) (22)
for (t,5) € Iy x Iy and g € (N'2)1 is called the Nemytskii iterated superposition operator with generator h.

In the theorem below we use the following notation for the left regularization h~ (in the one-
dimensional sense, see [1, Remark 6]) of a mapping h € BV([a,b]; M), when (M,d,+) is a complete
metric semigroup: h™(t) = lims—;_oh(s) for a < t < b and h™(a) = limy_qyoh™(t) in M. If we
denote by BV ([a,b]; M) the set of mappings in BVy([a,b]; M) that are left continuous on (a,b] then
h~ € BV{ ([a,b]; M) and V2(h™) < V2(h).
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Theorem 4. Suppose that (N,p,+,-) and (M,d,+,-) are two abstract convex cones, where M is
complete and h : I’ x N — M is the generator of an iterated superposition operator S in (22). If
H takes BV1(I1;BV1(I2; N)) to BVy(11;BVi(I3; M)) and is Lipschitzian then h(z,-) € Lip(N; M) for
all x € I and there exist two mappings f : I — L(N; M) and hg : I? — M such that f(-)(-)u,ho €
BV (I1;BVi(Ia; M)) for allu € N and h™(t,s,u) = f(t,8)u+ ho(t,s) in M for all (t,s) € I and u € N,
where h™ (t, s,u) is the left regularization (in the one-dimensional sense) of the mapping T — h(, s, u)
at t € [a1,by] for all fixed s € Iy and uw € N (observe that the mappings 7 — f(1,s)u and T +— hy(T, s)
are left continuous on (a1,b1] for all s € Iy and u € N).

PrROOF. Put Ny = BVi(I3; N) and M; = BVi(Iz; M). Then the quadruples (Ni,p1,+,:) and
(My,dy,+,-) are also abstract convex cones; moreover, Mj is complete. Define the mapping hy : I; X
N2 — M2 by the rule

hi(t,ur)(s) = h(t,s,u1(s)), tel, s€lp, uy € N2, (23)
With this in mind, we define the superposition operator s : (N2)1t — (M'2)1 as follows:
H(9)(t) = ha(t,g(1)), telr, ge (N=)I (24)
Observe that if t € I} and s € Is then
H(9)(t)(s) = M (L, 9(1))(s) = h(t,s,9(t)(s)) = (Hg)(t,s). (25)

Show that hy : Iy x Ny — M;. Indeed, let t € I} and u; € Ny. Put g(t)(s) = ui(s) for t € I; and
s € Iy, so that g € BVy(I1; N1). By assumption, g lies in BV (I1; My); therefore, (#g)(t) € My,
however

Batu1)(s) = h(t, 5,u1()) = h(t, 5, 9(0)(5)) = (H9)(D)(s), 5 € I

whence hi(t,u1) = (#g)(t) € M;. Hence, 54 : (N1)'t — (M;)"* and (24) is valid for t € I; and
g € (N1)'; i.e., the mapping hy : I} x Ny — M is the generator of the superposition operator .4 :
(N1)It — (My)"r. Moreover, 4 : BV1(I1; N1) — BVy(Iy; M), since, by (25) and the conditions of the
theorem, g € BV (I1; N1) implies .#1(g) = #°g € BV1(I1; M;). From the Lipschitz continuity of J# we
obtain do(Hg1, 7 g2) < L()p2(g1, g2) for all g1, g2 € BV1(I1; N1), however do = (d1)1 and p2 = (p1)1
by Lemma 1; therefore, by (25), we find that & € Lip(BV1(I1; N1); BVi({1; M1)). By Remark 6 of [1],

hi(t,-) € Lip(Ny; My) forallt e I (26)

and there exist two mappings fi : Iy — L(Ny; M7) and hg : [; — M; such that the mappings fi(-)uq
and hg lie in BV (I1; M) for all u; € Ny; moreover,

h;(t,ul) = fl(t)ul + ho(t) in M, tel, uy € Ny, (27)

where hy (-, u;) is the left regularization of hq (-, u1), u1 € Nj.
In the proof below, given u,v € N, we put ui(s) = u and v1(s) = v for all s € I,. Using (23), (3),
and (26), for u,v € N we find that

d(h(t,s,u),h(t,s,v)) = d(hi(t,u1)(s), hi(t,v1)(s)) < di(h1(t,u1), hi(t,v1))
< L(hl(t7 '))Pl (ulv vl) = L(hl (t7 -))p(u, ’U),

whence h(z,-) € Lip(N; M) for all x = (t,s) € I”.
Given (t,s) € I%, we define the mapping f(t,s) = f(t)(s) : N — M by the rule

ft,s)u=[fr{t)m](s), weN.
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Then from (27) we derive the following equality in M:

hy (t,u1)(s) = [fi(t)ua)(s) + ho(t)(s) = f(t, s)u + ho(t, s). (28)

Show that, in fact, the mapping f(t, s) is additive and Lipschitzian; i.e., f(¢,s) € L(N; M). By additivity
of fi(t), for u,v € N we obtain

f@t,8)(u+v) = [fi(t)(u+v))(s) = [f1(t)(ur +01)l(s) = [fi(t)ur + fr{t)v1](s)
= [1®ul(s) + [fr(®)vi](s) = f(E, s)u+ f(E, s)v;

moreover, (3) and the Lipschitz continuity of fi(¢) imply that

d(f(t, s)u, f(t, 5)v) = d([f1(t)ua](s), [fr(E)v 1](8)) 1(f1( Jui, fi(t)v1)

IN
h
—~
=
=
~—
s
=
S
fn
<
iy
~
h
/\
’@
~—
P\
\_/

Since f(t)() = fi(t)uy € My, we have f : I; — M;. Moreover, f(-)(-)u = fi(-)u; belongs to BV (Iy; M)
and

di(f(1)()u, fF@) () = di(fr(T)ur, fr(t)ur) = 0 as T —t —0;

therefore, 7 +— f(7)(-)u is left continuous, so that f(-)(-)u € BV] ({1; M;). It remains to calculate the
left-hand side of (28). From (23) and (3) we obtain

d(h(T, s,u), hy (8, u1)(s)) = d(ha (7, u1)(s), by (¢, u1)(s))
<dj(hi(1,u1),hy (t,u1)) = 0 asT—1t—0,

and it remains to put A~ (¢, s,u) = hy (t,u1)(s) = lim,; ;o h(7,s,u). O
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