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INTRODUCTION

One of the basic challenges in image recognition is
the dependence of the recognition results on the image
recording conditions. To increase recognition perfor�
mance with respect to image acquisition conditions,
sign�based image representation can be used [5],
which is uniquely specified by the quasi�order rela�
tion; the latter describes differences in brightness of
neighboring pixels. Sign�based representation is
invariant under monotonically increasing brightness
transformations and may be useful in solving face rec�
ognition problems [2, 3] and retrieving of near�dupli�
cate images in large collections [4]. A theoretical study
of properties of sign�based representations is given in
[5–7]. It is assumed that the problem of classifying
sign�based representations of images can be solved by
introducing distance functions. When studying analy�
sis of expert information from a theoretical viewpoint,
B.G. Litvak proposed an axiomatic approach to con�
structing metrics with the aid of partial order relation;
this approach leads to the Hamming metric or the
Euclidean metric [10].

In this paper, we propose a new approach to intro�
ducing a distance function on sign�based representa�
tions. To do so we introduce descriptions of sign�based
representations by using a finite set of symbolic fea�
tures; from here on, the distance function is defined as
the amount of information lost in assuming that the
compared sign�based representations coincide. In a
particular case, this approach leads to the Hamming
metric, which was constructed by Litvak in [10].

1. SIGN�BASED REPRESENTATION
OF IMAGES

A nonnegative integer function f(x), x = (x1, x2)
given at nodes of a grid Ω = IN × IM = {1, …, N} × {1, …,
M} is called an image. The set of all images f : Ω  �+

is denoted by �.

Definition 1. A relation τ ⊆ Ω × Ω is called a sign�
based representation of an image f ∈ � provided that the
following conditions are satisfied [3]:

(1) if (x1, x2) ∈ τ, then f(x1) ≤ f(x2);

(2) if (x1, x2) ∈ τ, (x2, x1) ∉ τ, then f(x1) < f(x2).

As examples we consider complete and neighbor�
hood sign�based representations [6, 7]. A sign�based
representation is called complete if at least one of the
pairs (x1, x2) or (x2, x1) x2 ≠ x1 lies in τ:

If relation τ contains only pairs of adjacent pixels
in the sense of neighborhood Oε(x1) = {x2 ∈
Ω|  ≤ ε}, where  =  +

, then τ is a neighborhood sign�based represen�
tation:

Let us notice that any sign�based representation τ
defines on the set � a set of images with this sign�
based representation. We denote this class of images as
Cτ. From Definition 1 it follows that Cτ can be

τ x1 x2,( ) Ω2 f x1( ) f x2( ) x1, x2≠≤∈{ }.=

x1 x2– x1 x2– x1 y2–

x2 y2–

τ x1 x2,( ) Ω2 f x1( ) f x2( )≤ x2, Oε x1( )∈ ∈{ }.=
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regarded as a solution of the following system of linear
inequalities:

This system contains an inequality (equalities) for
all pairs of pixels (xi, xj) ∈ τ. One may also consider the
search problem of all sign�based representations that
generate the same class of images. It is easily shown
that  =  for sign�based representations τ1 and τ2

if and only if (τ1)
Tr = (τ2)

Tr, where “Tr” denotes the
transitive closure of a relation. So, two sign�based rep�
resentations τ1 and τ2 is considered to be equivalent if

 =  or (τ1)
Tr = (τ2)

Tr. In the latter case, any sign�

based representation τ is uniquely described by the
quasi�order relation τTr. Some subsequent results in
this direction may be found in [6], which contains, in
particular, necessary and sufficient conditions that a
relation τ be a neighborhood sign�based representa�
tion of a image.

2. DISTANCE FUNCTIONS ON SIGN�BASED 
REPRESENTATIONS

The application of a special kind of distance func�
tions was validated by many researches in the field of
computer vision. In particular, a special closeness
measure on images is proposed in [8]; it is based on
coefficients of wavelet transformations for which the
symmetry property and the triangle inequality do not
hold. Paper [9] concerns a face detection method
based on application of the Hausdorff distance for
comparison of images with a face pattern; this func�
tion does not have the symmetry property.

Let us introduce the concepts of distance function
and metric on sign�based representations.

Definition 2. A distance function on sign�based rep�
resentations is a mapping d: � × �  [0, ∞) satisfying
the following properties:

1. d( f1, f2) = d( f2, f1) for all f1, f2 ∈ �;
2. d( f1, f2) = d( f1, f3) if d( f2, f3) = 0 for all f1, f2,

f3 ∈ �;
3. to each equivalence class Cf = {g ∈ � |d( f, g) = 0}

there corresponds some sign�based representation of an
image; i.e., there exists a sign�based representation of τ
such that Cτ = Cf .

A particular case of a distance function is a metric
on sign�based representations, which will be defined
later.

Definition 3. A metric on sign�based representations
is a distance function d : � × �  [0, ∞) such that
d( f1, f2) + d( f2, f3) ≥ d( f1, f3) for all f1, f2, f3 ∈ �.

The triangle inequality d( f1, f2) + d( f2, f3) ≥
d( f1, f3), which is necessary for a metric, implies
property (2) of a distance function. Indeed, let us

f xi( ) f xj( ) if xi xj,( ) τ, xj xi,( ) τ,∉∈<

f xi( ) = f xj( ) if xi xj,( ) τ, xj xi,( ) τ.∈ ∈⎩
⎨
⎧

Cτ1
Cτ2

Cτ1
Cτ2

assume that d( f2, f3) = 0; then from the inequalities
d( f1, f2) + d( f2, f3) ≥ d( f1, f3), d( f1, f3) + d( f3, f2) ≥
d( f1, f2) imply d( f1, f2) = d( f1, f3).

Assume that f1, f2 ∈ Cf and g ∈ �. Then from prop�
erty (2) we see that d( f1, g) = d( f2, g). So, we may
assume that a metric is introduced on the classes of
equivalence and d(Cf, Cg) = d( f, g) for f, g ∈ �

Definition 2 also implies that the distance function
on sign�based representations determines some parti�
tion of set � into disjoint classes to which sign�based
representations correspond. In other words, a metrics
cannot be introduced on all possible sign�based repre�
sentations, but only on some subset of sign�based rep�
resentations that determine a partition of set �.
(In other words, a metrics may be introduced on some
subset of sign�based representations only, that deter�
mine a partition of set �.) Let us see how these parti�
tions are generated.

Let τ be a sign�based representation of an image f
and Cτ ⊂ � be a class of images corresponding to a
sign�based representation τ. Then we shall consider
elementary sign�based representations to which corre�
spond equivalence classes of the form Ci, j, 0 = { f ∈
� | f(xi) = f(xj)} and Ci, j, 1 = { f ∈ � | f(xi) < f(xj)} for
i ≠ j. Clearly, these classes correspond to elementary
quasi�order relations that provide information only on
intensity values of pixels xi and xj. The classes Ci, j, 0,
Ci, j, 1, and Cj,i, 1 for i ≠ j are elementary partitions of set
�; each class Cτ can be represented as a finite intersec�
tion of elementary classes. In order to obtain such a rep�
resentation, it is necessary to describe the class Cτ by a
system of linear inequalities: f(xi) < f(xj) if (xi, xj) ∈ τ,
(xj, xi) ∉ τ; f(xi) = f(xj) if (xi, xj) ∈ τ, (xj, xi) ∈ τ

Thus a sign�based representation τ of image f can
be regarded as a set of images Cτ ⊂ � defined by the
relation τ.

We point out that the sign of the expression f(xj) –
f(xi) can be regarded as some feature:

(2.1)

As a rule, a decision about membership of an image to
some class is made from the set of features. Taking this
into consideration, we shall assume below that we have
some set of features described by an antisymmetric
and antireflexive relation with α ∈ Ω × Ω, the features
being calculated for each pair of pixels (xi, xj) ∈ α. In

Cτ Ci j 0, ,

xi xj,( ) τ∈

xj xi,( ) τ∈

∩ Ci j 1, , .
xi xj,( ) τ∈

xj xi,( ) τ∉

∩∩=

π xi xj,( )

1, f xj( )– f xi( ),<

0, f xj( ) f xi( ),=

1, f xj( ) f xi( ).>⎩
⎪
⎨
⎪
⎧

=
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this case, as a partition of the set � we can take all
nonempty subsets of the form

where α1 ∪ α2 ∪ α3 = α and αi, i =1, 2, 3, are pairwise
disjoint sets. To choose the distance function on sign�
based representations, we consider an approach based
on measuring the amount of information. We assume
that, for any feature πf(xi, xj), its informativeness
w(xi, xj) > 0 can be specified (it is assumed that set α is
chosen so that the informativeness for each feature is
positive). Then, as the value of the distance between
sign�based representations of images f, g ∈ �, we can
take the amount of information lost in assuming that
the sign�based representations τf and τg are equal.

Let α*( f, g) = {(xi, xj) ∈ α|πf(xi, xj) ≠ πg(xi, xj)} be
a subset of pairs of pixels on which the sign�based rep�
resentations τf and τg are different.

In the first model, we assume that the features are
independent. Then,

The independence of features is a rather strict assump�
tion, which does not necessarily hold in practice. For
complete sign�based representations, it is clear that
the independence condition is violated, because fea�
tures are dependent due to the transitivity conditions
of the relations in question.

We assume that to any subset of features A ⊆ α there
corresponds an informativeness value μ(A) ≥ 0 that
satisfies the following properties of a nonadditive mea�
sure [13]:

(a) μ(∅) = 0;
(b) μ(A) ≤ μ(B) if A ⊆ B.
Then the distance function between sign�based

representations can be defined as follows:
(2.2)

The following proposition gives necessary and suf�
ficient conditions that a function dμ be a metric on
sign�based representations.

Proposition 1. The function dμ is a metric on sign�
based representations defined by a system of features
α ⊆ Ω × Ω if and only if

(1) μ(A) > 0 for all A ⊆ α for |A | > 0;
(2) μ(A) + μ(B) ≥ μ(A ∪ B) for all A, B ⊆ α for

A ∩ B = ∅.
Proof. Clearly, condition (1) is necessary, since the

value of function dμ must be greater than zero for sign�
based representations that differ from each other by a
value of at least one feature. Inequality (2) follows
from the triangle inequality. Indeed, consider sign�

C α1 α2 α3, ,( ) Ci j 0, ,

xi xj,( ) α1∈

∩=

∩ Ci j 1, , Cj i 1, , ,
xi xj,( ) α3∈

∩∩
xi xj,( ) α2∈

∩

dH f g,( ) w xi xj,( ).
xi xj,( ) α* f g,( )∈

∑=

dμ f g,( ) μ α* f g,( )( ).=

based representations τ1, τ2, τ3 of images f1, f2, f3 ∈ �.
Assume that τ1 and τ3 differ from each other by a set of
features C ⊆ α. If τ1 and τ2 differ from each other by a set
of features A ⊆ α, and if τ2 and τ3 differ from each other
by a set of features B ⊆ α, then, clearly, C ⊆ A ∪ B. So,
the following inequality must hold in view of the trian�
gle inequality: μ(A) + μ(B) ≥ μ(C) for any A, B, C ⊆ α
with C ⊆ A ∪ B. Due to the monotonicity of the non�
additive measure μ, this inequality is equivalent to the
following: μ(A) + μ(B) ≥ μ(A ∪ B) for all A, B ⊆ α for
A ∩ B = ∅.

Remark 1. It is noteworthy that condition (1) of
Proposition 1 in fact means that we should choose an
informative system of features. Condition (2) is the so�
called subadditivity property of information measure; its
fulfillment was validated by many researches in informa�
tion theory. In particular, if μ(A) + μ(B) = μ(A ∪ B) for
all A, B ∈ α with A ∩ B = 0, then the measure µ is addi�
tive; this corresponds to the case of independence of fea�
tures.

Remark 2. Assume that condition (1) of Proposition 1
is not satisfied. Then there exists a feature (xi, xj) ∈ α
such that μ({(xi, xj)}) = 0. Note that the subadditivity
condition µ implies that μ(A\{(xi, xj)}) = μ(A) for any
A ⊆ α. Taking this into account, noninformative features
can be eliminated from consideration. It also implies that
if condition (1) is not satisfied, then dμ is also a metric on
sign�based representations generated by a narrower sys�
tem of features.

In the simplest case, we can assume that features
are independent and the informativeness of all features
is the same; i.e., the information measure μ(A) = |A |
equals the cardinality of set A (this is clearly an additive
measure). In this case, metrics (2.2) is the Hamming
metrics:

(2.3)
Note that metrics (2.3) on sign�based representa�

tions, as constructed using our approach, agrees with
Litvak’s metrics based on the axiomatic approach
[10]; the latter metrics was introduced on partial order
relations for examining problems related to expert
information processing.

Let us now consider constructing, first, a metrics
based on the Shannon entropy, and second, a distance
function based on the relative entropy.

2.1. Metric Based on the Shannon Entropy

Analysis of image collections involves the possibil�
ity that each image can be simulated as a realization of
a multivariate random variable f. It also assumes that
features of images are random variables and so the
Shannon entropy S may be useful in estimating their
informativity. In this case, the information measure of
a set of features A ⊆ α can be defined as the entropy of
a random vector ; namely, μS(A) =

S( ).

d f g,( ) α* f g,( ) .=

πf xi xj,( )( ) xi xj,( ) A∈

πf xi xj,( )( ) xi xj,( ) A∈
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It is easily verified that the set function μS satisfies
all the properties from Proposition 1. In addition, if
features πf(xi, xj), (xi, xj) ∈ α are independent, then

(2.4)

2.2. Distance Function Based on Relative Entropy

The above conventional entropy�based metric
(2.4) does not take into account the differences
between the classes Cll, l = 1, …, L. In constructing the
classification rule, it would be more advantageous to
assign larger informativeness to features in which class
Cll differs from the others.

Assume that Ω is a finite set, functions p, q: Ω  [0,
1] describe probability distributions on Ω, and distribu�
tion p is absolutely continuous with respect to q; i.e., the
condition q(x) = 0 implies that p(x) = 0 for all x ∈ Ω. Then
the functional SKL(p, q) = p(x) is

called the entropy
1
 of a distribution p with respect to

the distribution q.
The relative entropy may be useful as the information

measure of features. We shall denote by (xi, xj),

(xi, xj) ∈ α, the random variable that describes the
observation of a feature πf(xi, xj) in case we analyze an
image from the class Cll, l = 1, …, k. Consequently, the
informativeness of features A ⊆ α that is capable of
taking into account the differences in distribution of
features over the classes F and G can be estimated using
the following functionals:

where F and G are different classes from Cll,  =

 and CI = .

Let us discuss the particularities of the introduced
set functions and the corresponding distance func�
tions. The distance functions constructed from the
nonadditive measures  and  are the most

sensitive to differences between classes. A distance
function that is constructed from measure  must

be more regular. In particular, the probability distribu�
tion of features that corresponds to class Cll is always
absolutely continuous with respect to the probability
distribution of features that corresponds to the Cl;
hence  is always finite.

In general, the distance functions introduced above
are not metrics, inasmuch as the above nonadditive
measures are superadditive rather than subadditive.

1 The relative entropy is also referred to as the Kullback–Leibler
distance or divergence [11, 12].

μS A( ) S πf xi xj,( )( ).
xi xj,( ) A∈

∑=

p x( )/q x( )( )( )ln
x Ω∈∑

πf Cll

μF G, A( )

=  SKL πf F xi xj,( ){ } xi xj,( ) A∈ πf G xi xj,( ){ } xi xj,( ) A∈,( );

Cll

Clmm m l≠∪ Clll 1=
L∪

μ
Cll Cll,

μ
Cll Cll,

μCll Cl,

μCll Cl,

Indeed, consider a nonadditive measure μF, G, where F
and G are some classes; we also assume that features
corresponding to the class G are independent. In this
case, the relative entropy is superadditive [12], and
μF, G(A) + μF, G(B) ≤ μF, G(A ∪ B) for A ∩ B = ∅ and A,
B ⊆ α. If features from both classes F and G are inde�
pendent, then μF, G is an additive measure on subsets of
α, and hence, in this case the expression for dF, G is as
follows:

(2.5)

In the case in question dF, G is a metric on sign�based
representations.

Superadditivity of a nonadditive measure follows as
a corollary from the above approach to constructing
distance functions. This approach is as follows. We
introduce a nonnegative function v(p(1), p(2)) on prob�
ability distributions that are considered in one measur�
able space, in particular, on all subsets of the set Ω. We
have v(p(1), p(2)) = 0 if and only if p(1) = p(2). Assume

that Ω = X × Y and ,  are marginal distributions

of p(i), i = 1, 2. Using similar arguments as in the con�
struction of nonadditive information measures based
on the relative entropy, it can be inferred that the non�
additive measure, as constructed from v, is subadditive

if the inequality v( , ) + v( , ) ≥ v(p(1),

p(2)) always holds. It is known that marginal distribu�
tions do not define a joint distribution in a unique fash�
ion; hence, there exist probability distributions p(1) and

p(2) such that p(1) ≠ p(2). However,  = ,  = .

Hence, for the case in question, v( , ) = v( ,

) = 0 and v(p(1), p(2)) > 0; i.e., the subadditivity
property is not satisfied, The independence of features
inside a class is regarded as a rather strict requirement.
A weaker assumption is the independence of features
inside the entire collection of images; i.e., inside the
class Cl. In this case, the metric

is the best lower�bound approximation of ( f, g).

3. CLASSIFICATION OF SIGN�BASED 
REPRESENTATIONS ON THE BASIS

OF LIKELIHOOD FUNCTIONS

In this section, we assume that it is required to
divide images into Cl1, …, Clk classes using a training
sample; the images are taken from the images X =

 consisting of pairs of the form ( fi, ni),
where ni ∈ 1, …, k is the number of the class in which
the image f lies. Note that if the indicated sample is

dF G, f g,( ) μF G, xi xj,( ){ }( ).
xi xj,( ) α* f g,( )∈

∑=

pX
i( ) pY

i( )

pX
1( ) pX

2( ) pY
1( ) pY

2( )

pX
1( ) pX

2( ) pY
1( ) pY

2( )

pX
1( ) pX

2( ) pY
1( )

pY
2( )

d f g,( ) μCll Cl, xi xj,( ){ }( )
xi xj,( ) α* f g,( )∈

∑=

dCll Cl,

fi ni,( ){ }i 1=
N
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representative, then from it, it is possible to evaluate
the probability pl of occurrence of the class Cll:  =

/N, and, in a similar way, the
probability distribution of features πf(xi, xj) inside the
class Cll. However, it does not seem possible to obtain
reliable estimates of these characteristics from real sta�
tistical data.

Assume, for example, that these characteristics are
calculated using some collection of images; it is
required to divide images into two classes: “faces”
(first class) and “nonfaces” (second class). In this
case, the occurrence frequencies of classes are not
indicative of their frequencies in actual practice and so
to estimate pl, l = 1, 2, it is necessary to learn the rec�
ognition system under real conditions, which may vary
in time depending on the aims of recognition and so
on. Even more problematic is estimating the distribu�
tion of features for each class, since in this case the
number of features due to the use of sign�based repre�
sentations is linear and in some cases is quadratic in
the number of image pixels, so it does not seems trac�
table to obtain acceptable training samples. Hence, it
appears feasible to introduce plausible assumptions in
regard to the distribution of features inside, i.e., on the
dependence of features (in particular, one may assume
the independence of features for windowed neighbor�
hood sign�based representations).

Let us find out how a Bayes classifier is constructed
under the assumption that the features πf(xi, xj) are
independent. To do so we first estimate the probability
distribution of each feature from a training sample
inside the class Cll, l = 1, …, k. Let Pr{ (xi, xj) = c}

be the probability that the feature πf(xi, xj) takes the
value c ∈ {–1, 0, 1} for images from the class Cll. Then,
using the training sample X, this probability is esti�
mated as follows:

The independence of features implies that the like�
lihood function that an image f ∈ � lies in class Cll is
calculated by the formula:

This gives a Bayes classifier provided that the classifi�
cation is performed according to the following rule:

p̂l

fi ni,( ) X ni = l∈{ }

πf Cll

Pr̂ πf Cll
xi xj,( ) = c( )

=  
f n,( ) X n = l πf xi xj,( ) = c,∈{ }

f n,( ) X n = l∈{ }
��������������������������������������������������������������������.

Pr̂ f Cll∈( ) p̂l Pr̂ πf Cll
xi xj,( ){ }.

xi xj,( ) α∈

∏=

f Clm if Pr̂ f Clm∈( )∈ Pr̂ f Cll∈( ).
l  = 1 … k, ,

max=

Note that in the practical implementation of this
Bayes classifier, it is expedient to take the logarithm of
the likelihood function. For the logarithm, we have

(3.1)

Now let us consider the relation between the thus�
obtained Bayes classifier and the distance functions
considered in the previous section. Let us introduce a
somewhat more complicated system of features for
sign�based representations:

The features (xi, xj) and (xi, xj) contain the
same information as the feature πf(xi, xj); however,
they are more useful in the fine adjustment of the gen�
eralized distance function . In this case, the func�
tion μ is defined on all subsets of the set α × {1, 2}. For
the images f, g ∈ �, we have

Note that the features (xi, xj) and (xi, xj) are
always dependent. This follows, in particular, from the
fact that they cannot vanish simultaneously. If, how�
ever, we assume that the features πf(xi, xj) are indepen�
dent, we find that

It is seen that the distance function  makes it
possible to assign less informativeness to a case when
f(xi) = f(xj) and g(xi) < g(xj), as compared to the case
in which f(xi) > f(xj) and g(xi) < g(xi); these cases have
the same informativeness with respect to the distance
function dμ.

Now, for any class Cll, l = 1, …, k, we consider a etalon
sign�based representation of �l = 

satisfying the condition

(3.2)

Pr̂ f Cll∈( )( )ln

=  p̂l( ) Pr̂ πf Cll
xi xj,( ){ }( ).ln

xi xj,( ) α∈

∑+ln

πf
1( ) xi xj,( )

1, f xi( ) f xj( ),≥

0, f xi( ) f xj( );<⎩
⎨
⎧

=

πf
2( ) xi xj,( )

1, f xj( ) f xi( ),≥

0, f xj( ) f xi( ).<⎩
⎨
⎧

=

πf
1( ) πf

2( )

dμ
'

dμ
' f g,( ) μ xi xj k, ,( ) πf

k( ) xi xj,( ) πg
k( ) xi xj,( )≠{ }( ).=

πf
1( ) πf

2( )

dμ
' f g,( )

=  μ xi xj k, ,( ) πf
k( ) xi xj,( ) πg

k( ) xi xj,( )≠{ }( ).
xi xj,( ) α∈

∑

dμ
'

πl xi xj,( )( ) xi xj,( ) α∈

πl xi xj,( ) Pr̂ πf Cll
xi xj,( ) = c{ }.

c 1– 0 1, ,{ }∈
maxarg=



180

PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 23  No. 2  2013

BRONEVICH, GONCHAROV

We also introduce the features

(3.3)

Then, assuming that features πf(xi, xj), (xi, xj) ∈ α are
independent, we have

(3.4)

Proposition 2. Classification by the rule

(3.5)

where ( f, �n) is given by (3.4) for n = l, m and μ =

μm, μl, and also

(3.6)

(3.7)

is equivalent to the application of a Bayes classifier. Also,
distance function (3.4) is a metric on sign�based repre�
sentations if, for all (xi, xj) ∈ α, the following conditions
are satisfied:

(3.8)

(3.9)

Proof. Assume that classification rule (3.5) is satisfied
for some m ∈ {1, …, k}; i.e., f ∈ Clm in the given classi�
fier if

πl
1( ) xi xj,( )

0, πl xi xj,( ) 1,=

1, πl xi xj,( ) 1;≠⎩
⎨
⎧

=

πl
2( ) xi xj,( )

0, πl xi xj,( ) 1– ,=

1, πl xi xj,( ) 1– .≠⎩
⎨
⎧

=

dμ
' f �l,( )

=  μ xi xj k, ,( ) πf
k( ) xi xj,( ) πl

k( ) xi xj,( )≠{ }( ).
xi xj,( ) α∈

∑

f Clm if dμm
' f �m,( ) εm+∈

=  dμl
' f �l,( ) εl+( ),

l  = 1 … k, ,
min

dμm
'

μn xi xj k, ,( ) πf
k( ) xi xj,( ) πn

k( ) xi xj,( )≠{ }( )

=  Pr̂ πf xi xj,( ) = πn xi xj,( ){ }( )ln

– Pr̂ πf xi xj,( ) = πf Cln
xi xj,( ){ }( ),ln

εn p̂n( )ln–=

– Pr̂ πf xi xj,( ) = πn xi xj,( ){ }( ),ln

xi xj,( ) α∈

∑

Pr̂ πf Cll
xi xj,( ) = 0{ }

≤ Pr̂ πf Cll
xi xj,( ) = c{ };

c 1– 1,{ }∈
max

Pr̂ πf Cll
xi xj,( ) = 1{ }( )ln

– Pr̂ πf Cll
xi xj,( ) = –1{ }( )ln

≤ 2 Pr̂ πf Cll
xi xj,( ) = c{ }( )ln(

c 1– 1,{ }∈
max(( )

– Pr̂ πf Cll
xi xj,( ) = 0{ }( ) ) ).ln

dμ
' f �m,( ) p̂m( )ln– dμ

' f �l,( ) p̂l( )ln–≤

for all l ∈ {1, …, k}. Substituting expressions (3.6) into
(3.5), this gives

Putting (3.7) into the last inequality, we see that

or ( f ∈ Clm) ≥ ( f ∈ Cll) for all l ∈ {1, …, k}; i.e.,
classifier (3.5) is equivalent to a Bayes classifier. Due to
conditions for selection of a reference sign�based rep�

resentation (3.2), we have {πf(xi, xj) = πm(xi, xj)} ≥

{πf(xi, xj) = (xi, xj)}, whence it follows that the

proximity measure (3.6) is nonnegative.

From (2.1), (3.3) and (3.4) it follows that if
πf(xi, x j) = 0, then the single�element set {(xi, xj, 1)} or
{(xi, xj, 2)} is the argument of function (3.6). If
πf(xi, xj) = –1 or πf(xi, xj) = 1, then the two�element
set {(xi, xj, 1), (xi, xj, 2)} is the argument of function
(3.6). Hence, (3.8) implies the condition μ({(xi, xj,
k)}) ≤ μ({(xi, xj, 1), (xi, xj, 2)}) k = 1, 2, and (3.9)
implies the condition μ({(xi, xj, 1), (xi, xj, 2)}) ≤
μ({(xi, xj, 1)}) + μ({(xi, xj, 2)}). This being so, by Prop�

osition 2 we see that  is a metric on sign�based rep�
resentations. 

Remark 3. We set { (xi, xj) = c} = pc, c ∈ {⎯1,

0, 1} and assume, for definiteness that p1 = .

Then condition (3.9) of Proposition 2 is equivalent to the

condition  ≤ p1p–1. Hence, due to the symmetry of the
last expression with respect to p1 and p

⎯1, it follows that
condition (3.9) implies condition (3.8). Note also that
condition (3.9) appears quite adequate for real data pro�
vided that the quantization step of images is significantly

smaller than the noise level, i.e., when p0 ≤ .

Pr̂ πf xi xj,( ) = πm xi xj,( ){ }( )ln(
xi xj,( ) α∈

∑

– Pr̂ πf xi xj,( ) = πf Clm
xi xj,( ){ }( ) ) εm+ln

≤ Pr̂ πf xi xj,( ) = πl xi xj,( ){ }( )ln(( )
xi xj,( ) α∈

∑

– Pr̂ πf xi xj,( ) = πf Cll
xi xj,( ){ }( ) ) εl.+( )ln

Pr̂ πf xi xj,( ) = πf Clm
xi xj,( ){ }( ) p̂m( )ln+ln

xi xj,( ) α∈

∑

≥ Pr̂ πf xi xj,( ) = πf Cll
xi xj,( )|Cll{ }( )ln

xi xj,( ) α∈

∑ p̂l( )ln+

Pr̂ Pr̂

Pr̂

Pr̂ πf Clm

dμ
'

Pr̂ πf Cll

pc
c 1– 0 1, ,{ }∈

max

p0
2

pc
c 1– 0 1, ,{ }∈

min
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4. CLASSIFICATION OF SIGN�BASED 
REPRESENTATIONS ON THE BASIS

OF DISTANCE FUNCTIONS

The Bayes classifier, which was constructed in the
previous section, is capable of ensuring a fairly general
approach to classifying sign�based representations
based on distance functions. This approach is as fol�
lows. For classes Cll, l = 1, …, k, it is required to deter�
mine the etalon sign�based representations �l in
accordance with (3.2), as well as distance function dl.
Then the classification rule is given by

(4.1)

note that the numerical parameters εl, l = 1, …, k in the
last expression make it possible to control errors of first
and second kind. Note that simplifications are possi�
ble in classification rule (4.1). In particular, we can set
εl = 0, l = 1, …, k, or assume that we are using the same
distance function for each class; i.e., dl = d, l = 1, …, k.
For example, as distance function d we can consider the
metric based on the Shannon entropy (see Remark 2),
which can be constructed either from system of features

 or .

There are many ways to specify etalon sets of fea�
tures. In particular, they can be chosen in the same way
as for the Bayes classifier based on the chosen metric.
It is noteworthy that in general the etalon sets of fea�
tures that correspond to a Bayes classifier cannot be
referred to any image; i.e., the set of images that cor�
responds to the reference sign�based representation
may be empty. This, however, is not critical in recogni�
tion, since such a choice of a reference sign�based rep�
resentation is in line with the optimal statistical test.

f Clm if dm f �m,( ) εm+∈

=  dl f �l,( ) εl+( )
l  = 1 … k, ,

min ;

πf xi xj,( ){ } xi xj,( ) α∈ πf
k( ) xi xj,( ){ } xi xj,( ) α k 1 2,{ }∈,∈

5. ESTIMATING CLASSIFICATION ERRORS 
OF SIGN�BASED REPRESENTATION

OF IMAGES

Let us consider the binary problem of classifying
sign�based representations of images and examine the
behavior of classification errors of the first and second
kind depending on the classifiers used. The following
formulation of the problem is assumed.

Let �0 be the etalon image of the class Cl0. An
image f is referred to class Cl0 if dμ( f, �0) < d0; other�
wise f lies in the alternative class Cl1.Under real cir�
cumstances, an image f to be classified can be regarded
as a realization of a multivariate random variable;
hence, the sign�based representation τ of an image f is
also a multivariate random variable. So, the value of
the distance function ξ = dμ( f, �0) can also be treated
as a random variable.

In order to assess the separating capacity of the clas�
sifiers constructed above, we statistically estimate clas�
sification errors of the first and second kind. To illus�
trate this, we consider a face detection problem. We
assume given a sample of images X = XF ∪ XN, XF ∩
XN = ∅, where XF is a sample of facial images and XN is
a sample of arbitrary images not containing faces. From
sample X it is necessary to estimate the probabilities α =
Pr{ξ < d0 | f ∈ Cl1} and β = Pr{ξ ≥ d0 | f ∈ Cl0}, which cor�
respond to errors of the first and second kinds. When
performing numerical experiments, we used the CBCL

Face database
2
 as sample X, the training subset of

images was used to build classifiers, and the test subset
[14] was used to estimate the separating capacity.

2 http://cbcl.mit.edu/software�datasets/heisele/facerecognition�
database.html
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Fig. 1. Statistical estimates of errors of first and second kind for classifiers based on Hamming metric (Hamming), Shannon
entropy (Shannon), relative entropy (Relative), and likelihood function (Likelihood).
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In order to estimate the probabilities  and , we
use the parametrical approach to estimate the density
function of the distribution of random variable ξ; the
parametrical approach consists in estimating parame�
ters of some distribution from a sample. Since the
value of ξ is formed as the sum of a large number of
random variables (see (2.3)– (2.5), (3.6)), we assume
that they are normally distributed.

From the plots in Fig. 1, one can see that the smallest
classification errors correspond to classifiers on the basis
of the relative entropy and the likelihood function. The
metric based on the Shannon entropy and Hamming
metric allows somewhat larger classification errors. This
is not unexpected, because the distance functions based
on the relative entropy take into account the distribution
of probabilities of values of features for both classes Cl0
and Cl1, whereas the Hamming metric and the metric
based on the Shannon entropy take into account only
the distribution of probability of values of features of the
class Cl0. Figure 2 shows an image of the reference face
and the normalized range maps for the information
measure of features of sign�based representation, as esti�
mated from the training sample. It is seen from the figure
that the most informative face areas are the eye area,
bridge of the nose, and cheekbones, which is in accor�
dance with intuition.

6. CONCLUSIONS

The paper proposes a new way to introduce distance
functions on sign�based representations described by a
set of features based on classical functionals of informa�
tion theory. The constructed metrics is equivalent to the
Hamming metrics in the simplest case when it is
assumed that features determining the sign�based rep�
resentation are independent and have the same infor�
mativeness. However, more statistically optimal dis�
tance functions are obtained if the informativeness of
features is measured using the Shannon entropy or
Kullback–Leibler distance. In the latter case, the dis�
tance function is capable of assigning larger informa�
tiveness to features from which the given class is differ�
ent from the other; this results in reduced classification
errors. The construction of a classifier of sign�based
representations based on likelihood functions is consid�
ered. We show that this classification is also based on a
special type of distance functions. In the concluding

α̂ β̂ part of the paper, we consider application of the con�
structed distance functions to the problem of classifying
images in two classes: “face” and “nonface.” We have
obtained statistical estimates of errors of the first and
second kinds to show that the classifier based on the rel�
ative entropy is the best among the constructed classifi�
ers. Classification based on likelihood functions pro�
duces nearly the same results. This is followed by the
classifier based on the metric with the Shannon entropy
and the classifier based on the Hamming metric.

The proposed approach to constructing distance
functions is quite general and can be applied to con�
struct distance functions between images described by
an arbitrary system of symbolic features.

This paper is a revised and expanded version of a
paper presented at the scientific conference IOI�8
(Intellectualization of Information Processing) [1].
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