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1. Introduction

In themiddle of the XIXth century, B. Riemann considered the problemof the construction of a linear differential equation

dpu
dzp

+ b1(z)
dp−1u
dzp−1

+ · · · + bp(z)u = 0 (1)

with the prescribed regular singularities a1, . . . , an ∈ C (which are the poles of the coefficients) and prescribedmonodromy.
Recall that a singular point ai of Eq. (1) is said to be regular if any solution of the equation is of nomore than a polynomial

(with respect to 1/|z − ai|) growth in any sectorial neighbourhood of the point ai.
By Fuchs’s theorem [1] (see also [2, Th. 12.1]), a singular point ai is regular if and only if the coefficient bj(z) has at this

point a pole of order j or lower (j = 1, . . . , p). Linear differential equations with regular singular points only are called
Fuchsian.

Poincaré [3] has established that the number of parameters determining a Fuchsian equation of order p with n singular
points is less than the dimension of the space M of monodromy representations, if p > 2, n > 2 or p = 2, n > 3 (see also
[4, pp. 158–159]). Hence in the construction of a Fuchsian equation with the given monodromy there arise (besides
a1, . . . , an) the so-called apparent singularities at which the coefficients of the equation have poles but the solutions are
single-valuedmeromorphic functions, i. e., themonodromymatrices at these points are identitymatrices. Belowby apparent
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singular points of an equation we mean these very singularities. Thus, in general case the Riemann problem has a negative
solution.

A similar problem for systems of linear differential equations is called the Riemann–Hilbert problem. This is the problem
of the construction of a Fuchsian system

dy
dz

=


n

i=1

Bi

z − ai


y, y(z) ∈ Cp, Bi ∈ Mat(p,C), (2)

with the given singularities a1, . . . , an (if ∞ is not a singular point of the system, then
n

i=1 Bi = 0) and monodromy

χ : π1(C \ {a1, . . . , an}, z0) −→ GL(p,C). (3)

A counterexample to the Riemann–Hilbert problem was obtained by Bolibrukh (see [4, Ch. 5]). The solution of this
problem has a more complicated history than that of the Riemann problem for scalar Fuchsian equations (before Bolibrukh
it had long been wrongly regarded as solved in the affirmative; for details see [5]).

Alongside Fuchsian equations consider the famous non-linear differential equations—the Painlevé VI equation (PVI) and
Garnier systems.

The equation PVI(α, β, γ , δ) is the non-linear differential equation

d2u
dt2

=
1
2


1
u

+
1

u − 1
+

1
u − t


du
dt

2

−


1
t

+
1

t − 1
+

1
u − t


du
dt

+
u(u − 1)(u − t)

t2(t − 1)2


α + β

t
u2

+ γ
t − 1
(u − 1)2

+ δ
t(t − 1)
(u − t)2


(4)

of secondorderwith respect to theunknown functionu(t), whereα, β, γ , δ are complexparameters. This equationhas three
fixed singular points, 0, 1,∞. Its movable singularities (which depend on the initial conditions) can be poles only. In such a
case one says that an equation satisfies the Painlevé property. The general PVI equation (4)was first written down by Fuchs [6]
and was added to the list of the equations now known as the Painlevé I–VI equations by Painlevé’s student Gambier [7].
Among the non-linear differential equations of second order satisfying the Painlevé property, only the equations of this list
in general case cannot be reduced to the known differential equations for elementary and classical special functions. The PVI
equation is the most general because all the other PI–V equations can be derived from it by certain limit processes after the
substitution of the independent variable t and parameters (see [8]).

The Garnier system Gn(θ) depending on n + 3 complex parameters θ1, . . . , θn+2, θ∞ is a completely integrable system
of non-linear partial differential equations of second order obtained by Garnier [9]. It was written down by Okamoto [8] in
an equivalent Hamiltonian form

∂ui

∂aj
=
∂Hj

∂vi
,

∂vi

∂aj
= −

∂Hj

∂ui
, i, j = 1, . . . , n, (5)

with certain Hamiltonians Hi = Hi(a, u, v, θ) rationally depending on a = (a1, . . . , an), u = (u1, . . . , un), v =

(v1, . . . , vn), θ = (θ1, . . . , θn+2, θ∞). In the case n = 1 the Garnier system G1(θ1, θ2, θ3, θ∞) is an equivalent (Hamiltonian)
form of PVI(α, β, γ , δ), where

α =
1
2
θ2
∞
, β = −

1
2
θ22 , γ =

1
2
θ23 , δ =

1
2
(1 − θ21 ).

There exist classical results [6,9] on the connection of scalar Fuchsian equations of second order with PVI equations and
Garnier systems. Let us consider a scalar Fuchsian equation of secondorderwith singular points a1, . . . , an, an+1 = 0, an+2 =

1, an+3 = ∞ and apparent singularities u1, . . . , un whose Riemann scheme has the formai ∞ uk
0 α 0
θi α + θ∞ 2


, i = 1, . . . , n + 2, k = 1, . . . , n, θi ∉ Z

(α depends on the parameters θi according to the classical Fuchs relation
n+2

i=1 θi+θ∞+2α+2n = 2n+1). There is freedom
of choice of such an equation. Its coefficients b1(z), b2(z) depend on a, u, θ and n arbitrary parameters v1, . . . , vn (vi =

resuib2(z)).
Fix a set θ (θi ∉ Z) and consider an (n-dimensional) integral manifold M of the system Gn(θ). Due to Okamoto’s

theorem [8], Fuchsian equations corresponding to points (a, u, v) ∈ M have the same monodromy.1 Inversely, points (a, u, v)
corresponding to Fuchsian equations with the same monodromy lie on the integral manifold of the system Gn(θ).

1 This property is defined precisely in Section 3.
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Using the above relationship between Fuchsian and non-linear differential equations one can deduce the known
properties of the latter as well as some new ones. In particular, we study movable singularities of Garnier systems and give
estimates for pole orders of the elementary symmetric polynomials σi(u1, . . . , un) depending on solutions to these systems
(see Theorem 3). For this end Bolibrukh’s estimate for orders of movable poles of solutions to the Schlesinger equation
are essentially used. We also consider the Riemann problem for some class of GL(2,C)-representations proving that any
element of this class for almost all locations of points a1, . . . , an (n > 4) is realized by a scalar Fuchsian equation of second
order that has (besides a1, . . . , an) exactly n − 3 apparent singularities (see Propositions 3 and 4) (earlier Ohtsuki [10] has
established that the number of apparent singularities is at most n − 3). This fact is based on Bolibrukh’s formula for the
number of apparent singularities arising in the construction of a scalar Fuchsian equation with the prescribed irreducible
monodromy.

2. Method of solution of the Riemann–Hilbert problem

In the study of problems related to the Riemann–Hilbert problem a very useful tool is provided by linear gauge
transformations of the form

y′
= Γ (z)y (6)

of the unknown function y(z). The transformation (6) is said to be holomorphically (meromorphically) invertible at some point
z = a, if the matrix Γ (z) is holomorphic (meromorphic) at this point and detΓ (a) ≠ 0 (detΓ (z) ≢ 0). This transformation
transforms system (2) into the system

dy′

dz
= B′(z)y′, B′(z) =

dΓ
dz
Γ −1

+ Γ


n

i=1

Bi

z − ai


Γ −1, (7)

which is said to be, respectively, holomorphically or meromorphically equivalent to the original system in a neighbourhood
of the point a.

An important property of meromorphic gauge transformations is the fact that they do not change themonodromy (being
meromorphic, the matrix Γ (z) is single-valued, therefore the ramification of the fundamental matrix Γ (z)Y (z) of the new
system coincides with the ramification of the matrix Y (z)).

Locally, in a neighbourhood of each point ak, it is not difficult to produce a system for which ak is a Fuchsian singularity
and the monodromy matrix at this point coincides with the corresponding generator Gk = χ([γk]) of the representation
(3). This system is

dy
dz

=
Ek

z − ak
y, Ek =

1
2π i

lnGk, (8)

with fundamental matrix (z − ak)Ek := eEk ln(z−ak). The branch of the logarithm of the matrix Gk is chosen such that the
eigenvalues ραk of the matrix Ek satisfy the condition

0 6 Re ραk < 1. (9)

Indeed,

d
dz
(z − ak)Ek =

Ek
z − ak

(z − ak)Ek ,

and a single circuit around the point ak counterclockwise transforms the matrix (z − ak)Ek into the matrix

eEk(ln(z−ak)+2π i)
= eEk ln(z−ak)e2π iEk = (z − ak)EkGk.

Of course, not any system with the Fuchsian singularity ak and the local monodromy matrix Gk is holomorphically
equivalent to the system (8) in a neighbourhood of this point.

Let Sk be a non-singular matrix reducing the matrix Ek to a block-diagonal form E ′

k = SkEkS−1
k = diag(E1

k , . . . , E
m
k ),

where each block E j
k is an upper-triangular matrix with the unique eigenvalue ρ j

k. Consider a diagonal integer-valuedmatrix
Λk = diag(Λ1

k, . . . ,Λ
m
k ) with the same block structure and such that the diagonal elements of each block Λj

k form a non-
increasing sequence. Then according to (7) the transformation

y′
= Γ (z)y, Γ (z) = (z − ak)ΛkSk,

transforms the system (8) into the system

dy′

dz
=


Λk

z − ak
+ (z − ak)Λk

E ′

k

z − ak
(z − ak)−Λk


y′, (10)
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for which the point ak is also a Fuchsian singularity2 and the matrix Gk is the monodromy matrix. We call a set
{Λ1, . . . ,Λn, S1, . . . , Sn} of matrices having the properties described above, a set of admissible matrices.

According to Levelt’s theorem [11], the Fuchsian system (2) is holomorphically equivalent to a system of form (10) (with
some matrixΛk) in a neighbourhood of the singular point ak, i.e., the system has a fundamental matrix

Yk(z) = Uk(z)(z − ak)Λk(z − ak)E
′
k ,

where the matrix Uk(z) is holomorphically invertible at z = ak. The matrix Yk(z) is called the Levelt fundamental matrix (its
columns form the Levelt basis).

The eigenvalues β j
k of the residue matrix Bk are said to be the exponents of the Fuchsian system (2) at the point ak. They

are invariants of the holomorphic equivalence class of this system. From (10) it follows that the exponents coincide with
the eigenvalues of the matrix Λk + E ′

k. The matrix Λk is said to be the valuation matrix of the Fuchsian system (2) at the
singularity ak. According to (9), its diagonal elements coincide with the integer parts of the numbers Reβ j

k.
The Riemann–Hilbert problem has a positive solution if one can pass from the local systems (10) to a global Fuchsian

system defined on thewhole Riemann sphere. The use of holomorphic vector bundles andmeromorphic connections proves
to be effective in the study of this question.

From the representation (3) one constructs over the Riemann sphere a family F of holomorphic vector bundles of
rank p with logarithmic (Fuchsian) connections having the prescribed singular points a1, . . . , an and monodromy (3). The
Riemann–Hilbert problem for the fixed representation (3) is solved in the affirmative if some bundle in the family F turns
out to be holomorphically trivial (then the corresponding logarithmic connection defines a Fuchsian system with the given
singularities a1, . . . , an and monodromy (3) on the whole Riemann sphere). We now briefly present the construction of the
family F (see details in [4, Sect. 3.1, 3.2 and 5.1]).

1. First, from the representation (3) over the punctured Riemann sphere B = C \ {a1, . . . , an} one constructs a
holomorphic vector bundle F of rank p with a holomorphic connection ∇ that has the given monodromy (3). The bundle
F over B is obtained from the holomorphically trivial bundleB × Cp over the universal coverB of the punctured Riemann
sphere after identifications of the form (z̃, y) ∼ (σ z̃, χ(σ )y), where z̃ ∈B, y ∈ Cp and σ is an element of the group of deck
transformations ofB which is identified with the fundamental group π1(B). Thus, F = B × Cp/ ∼ and π : F −→ B is the
natural projection. It is not difficult to show that a gluing cocycle {gαβ} of the bundle F is defined by constant matrices gαβ
after some choice of a covering {Uα} of the punctured Riemann sphere.

The holomorphic connection ∇ can now be given by the set {ωα} of matrix differential 1-formsωα ≡ 0, which obviously
satisfy the gluing conditions

ωα = (dgαβ)g−1
αβ + gαβωβg−1

αβ (11)
on the intersections Uα ∩Uβ ≠ ∅. Furthermore, it follows from the construction of the bundle F that the monodromy of the
connection ∇ coincides with χ .

2. Next, the pair (F ,∇) is extended to a bundle F 0 with a logarithmic connection ∇
0 over the whole Riemann sphere.

For this, the set {Uα} should be supplemented by small neighbourhoods O1, . . . ,On of the points a1, . . . , an, respectively.
An extension of the bundle F to each point ai looks as follows. For some non-empty intersection Oi ∩ Uα one takes
giα(z) = (z − ai)Ei on this intersection. For any other neighbourhood Uβ that intersects Oi one defines giβ(z) as the analytic
continuation of the matrix function giα(z) into Oi ∩ Uβ along a suitable path (so that the set {gαβ , giα(z)} defines a cocycle
for the covering {Uα,Oi} of the Riemann sphere). An extension of the connection ∇ to each point ai is given by the matrix
differential 1-form ωi = Eidz/(z − ai), which has a simple pole at this point. Then the set {ωα, ωi} defines a logarithmic
connection ∇

0 in the bundle F 0, since along with the conditions (11) for non-empty Uα ∩ Uβ , the conditions

(dgiα)g−1
iα + giαωαg−1

iα =
Ei

z − ai
dz = ωi, Oi ∩ Uα ≠ ∅,

also hold (see (8)). The pair (F 0,∇0) is called the canonical extension of the pair (F ,∇).
3. In a way similar to that for the construction of the pair (F 0,∇0), one can construct the family F of bundles FΛ with

logarithmic connections ∇
Λ having the given singularities a1, . . . , an and monodromy (3). For this, the matrices giα(z) in

the construction of the pair (F 0,∇0) should be replaced by the matrices
gΛiα(z) = (z − ai)ΛiSi(z − ai)Ei ,

and the forms ωi by the forms

ωΛi =

Λi + (z − ai)ΛiE ′

i (z − ai)−Λi
 dz
z − ai

,

where {Λ1, . . . ,Λn, S1, . . . , Sn} are all possible sets of admissible matrices. Then the conditions

(dgΛiα)(g
Λ
iα)

−1
+ gΛiαωα(g

Λ
iα)

−1
= ωΛi (12)

again hold on the non-empty intersections Oi ∩ Uα (see (10)).

2 As follows from the form of the matricesΛk and E ′

k , the matrix (z − ak)ΛkE ′

k(z − ak)−Λk is holomorphic.
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Remark 1. Strictly speaking, the bundle FΛ also depends on the set S = {S1, . . . , Sn} of the matrices Si reducing the
monodromy matrices Gi to an upper-triangular form. In view of this dependence the bundles of the family F should be
denoted by FΛ,S . But in the following two cases all bundles FΛ,S with a fixedΛ are holomorphically equivalent.

(i) All points ai are non-resonant, i. e., for each valuation matrixΛi all its blocksΛ
j
i are scalar matrices.

(ii) Resonant points exist, but each resonant point ai has the following property: for itsmonodromymatrix Gi and any λ ∈ C
one has the inequality rank(Gi − λI) > p − 1.

In particular, in the two-dimensional case (p = 2) if all monodromymatricesGi are non-scalar, then bundles of the family
F depend on setsΛ only.

The exponents β j
i of the local Fuchsian system dy = ωΛi y are called the exponents of the logarithmic connection ∇

Λ at the
point z = ai.

According to the Birkhoff–Grothendieck theorem, every holomorphic vector bundle E of rank p over the Riemann sphere
is equivalent to a direct sum

E ∼= O(k1)⊕ · · · ⊕ O(kp)

of line bundles which has a coordinate description of the form
U0 = C,U∞ = C \ {0}, g0∞ = zK


, K = diag(k1, . . . , kp),

where k1 > · · · > kp is a set of integers which is called the splitting type of the bundle E. The bundle E is holomorphically
trivial if and only if it has the zero splitting type.

The number deg E =
p

i=1 ki equals the degree of the bundle E. For the pair (FΛ,∇Λ) the degree of the bundle FΛ

coincides with the sum
n

i=1
p

j=1 β
j
i =

n
i=1 tr(Λi + Ei) of the exponents of the connection ∇

Λ.
If some bundle FΛ in the family F is holomorphically trivial then the corresponding logarithmic connection ∇

Λ defines
a global Fuchsian system (2) that solves the Riemann–Hilbert problem. On the other hand, in view of Levelt’s theorem
mentioned above, the existence of a Fuchsian system with the given singular points a1, . . . , an and monodromy (3) implies
the triviality of some bundle in the family F .

Thus, the Riemann–Hilbert problem is soluble if and only if at least one of the bundles of the familyF is holomorphically trivial
(see [4, Th. 5.1.1]).

3. Isomonodromic deformations of Fuchsian systems

Let us include a Fuchsian system

dy
dz

=


n

i=1

B0
i

z − a0i


y,

n
i=1

B0
i = 0, (13)

of p equations into a family

dy
dz

=


n

i=1

Bi(a)
z − ai


y,

n
i=1

Bi(a) = 0, Bi(a0) = B0
i , (14)

of Fuchsian systems holomorphically depending on the parameter a = (a1, . . . , an) ∈ D(a0), where D(a0) is a disc of small
radius centred at the point a0 = (a01, . . . , a

0
n) of the space Cn

\


i≠j{ai = aj}.
One says that the family (14) is isomonodromic (or it is an isomonodromic deformation of the system (13)), if for all

a ∈ D(a0) the monodromies

χ : π1(C \ {a1, . . . , an}) −→ GL(p,C)

of the corresponding systems are the same. (Under small variations of the parameter a there exist canonical isomorphisms
of the fundamental groups π1(C \ {a1, . . . , an}) and π1(C \ {a01, . . . , a

0
n}) generating canonical isomorphisms

Hom

π1(C \ {a1, . . . , an}),GL(p,C)


/GL(p,C) ∼= Hom


π1(C \ {a01, . . . , a

0
n}),GL(p,C)


/GL(p,C)

of the spaces of conjugacy classes of representations for the above fundamental groups; this allows one to compare χ for
various a ∈ D(a0).) This means that for every value of a from D(a0) there exists a fundamental matrix Y (z, a) of the system
(14) that has the same monodromy matrices for all a ∈ D(a0). This matrix Y (z, a) is called an isomonodromic fundamental
matrix.

For any isomonodromic family (14) there exists an isomonodromic fundamentalmatrix that analytically depends on both
variables z and a. An isomonodromic deformation preserves not only the monodromy but also the exponents of the initial
system (thus, the eigenvalues of the residue matrices Bi(a) of the family (14) do not depend on the parameter a; see [12] on
the two latter statements).
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Is it always possible to include the system (13) into an isomonodromic family of Fuchsian systems? The answer is positive.
For instance, if the matrices Bi(a) satisfy the Schlesinger equation [13]

dBi(a) = −

n
j=1,j≠i

[Bi(a), Bj(a)]
ai − aj

d(ai − aj),

then the family (14) is isomonodromic (in this case it is called the Schlesinger isomonodromic family).
A Schlesinger isomonodromic family has the following property: connection matrices between some fixed isomon-

odromic fundamental matrix Y (z, a) and local Levelt’s bases at singular points do not depend on a. Among all isomon-
odromic deformations of Fuchsian systems with this property, the Schlesinger ones are distinguished by the condition
(daY (z, a)) Y−1(z, a)|z=∞ ≡ 0 (see [12]).

It is well known that for arbitrary initial conditions Bi(a0) = B0
i the Schlesinger equation has a unique solution

{B1(a), . . . , Bn(a)} in some disc D(a0), and thematrices Bi(a) can be extended to the universal cover Z of the spaceCn
\


i≠j{ai =

aj} as meromorphic functions (Malgrange’s theorem [14]). Thus, the Schlesinger equation satisfies the Painlevé property.
Recall, that a function f (a) ismeromorphic on Z , if it is holomorphic on Z \ P , it cannot be extended to P holomorphically

and is presented as a quotient f (a) = ϕ(a)/ψ(a) of holomorphic functions in a neighbourhood of every point a0 ∈ P (hence,
ψ(a0) = 0). Thus, P ⊂ Z is an analytic set of codimension one (it is defined locally by the equation ψ(a) = 0), which is
called the polar locus of the meromorphic function f . The points of this set is divided into poles (at which the function ϕ does
not vanish) and ambiguous points (at which ϕ = 0).

One can also define a divisor of a meromorphic function. Denote by A = N ∪ P the union of the set N of zeros and polar
locus P of the function f . Any regular point a0 of the set A can belong to only one irreducible component of N or P . Thus, one
can define the order of this component as the degree (takenwith ‘‘+’’, if a0 ∈ N , andwith ‘‘−’’, if a0 ∈ P) of the corresponding
factor in the decomposition of the function ϕ or ψ into irreducible factors. Then the divisor of the meromorphic function
f is the pair (A, κ), where κ = κ(a) is an integer-valued function on the set of regular points of A (which takes a constant
value on each its irreducible component, this value is equal to the order of a component). The pair (P, κ) is called the polar
divisor of the meromorphic function f . By (f )∞ we will mean the restriction of κ on regular points of P .

Notation. For the polar locus P of the function f , and a0 ∈ P , let us denote by Σa0(f ) the sum of orders of all irreducible
components of P ∩ D(a0).

Example. (a) The function f (a) = 1/a1a2 is meromorphic on C2. Its polar locus is P = {a1a2 = 0} (all points are poles), the
order of each component {ai = 0} is equal to −1 (thus, (f )∞ ≡ −1), andΣ0(f ) = −2.

(b) The function g(a) = a1/a2 is meromorphic on C2. Its polar locus is P = {a2 = 0} (0 is an ambiguous point, all the others
are poles), the set of zeros is N = {a1 = 0} \ {0}. The order of the component {a1 = 0} is equal to 1, the order of the
component {a2 = 0} is equal to −1 (thus, (g)∞ ≡ −1), andΣ0(g) = −1.

Let us return to the Schlesinger equation. The polar locus Θ ⊂ Z of the extended matrix functions B1(a), . . . , Bn(a) is
called the MalgrangeΘ-divisor3 (Θ depends on the initial conditions Bi(a0) = B0

i ). Near a point a∗
∈ Θ it is defined by the

equation τ ∗(a) = 0, where τ ∗(a) is a holomorphic function in a neighbourhood of the point a∗ called a local τ -function of
the Schlesinger equation. According to Miwa’s theorem [15] (see also [16]) there exists a function τ(a) holomorphic on the
whole space Z whose set of zeros coincides with Θ . In a neighbourhood of the point a∗

∈ Θ the global τ -function differs
from the local one by a holomorphic non-zero multiplier, and

d ln τ(a) =
1
2

n
i=1

n
j=1,j≠i

tr(Bi(a)Bj(a))
ai − aj

d(ai − aj).

If we consider system (13) as an equation for horizontal sections of the logarithmic connection ∇
Λ

a0
(with singularities

a01, . . . , a
0
n) in the trivial bundle FΛa0 (where Λ is a set of valuation matrices of the system), then the set Θ corresponds to

those points, where the bundle FΛa associated to the parameter a in the isomonodromic deformation of (FΛ
a0
,∇Λ

a0
) is not

holomorphically trivial.
In what follows, we will use the theorem describing a general solution of the Schlesinger equation near theΘ-divisor in

the case p = 2.

Theorem 1 (Bolibrukh [17,5]). If the monodromy of the two-dimensional family (14) is irreducible, thenΣa∗(Bi) > 2−n for any
a∗

∈ Θ (i = 1, . . . , n).

Further we present a simplified proof of this theorem based on the technique of the paper [16], but first we recall this
technique in the proof of Proposition 1.

3 In view of the above definition of a divisor, here the term ‘‘divisor’’ is not precise enough.
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Consider an irreducible two-dimensional representation

χa : π1(C \ {a1, . . . , an}) −→ GL(2,C),

a ∈ D(a0) ⊂ Cn
\


i≠j{ai = aj}, and the family (FΛa ,∇
Λ
a )a∈D(a0) of holomorphic vector bundles with logarithmic connections

constructed by the corresponding representations χa and a setΛ of admissible matrices.

Proposition 1. If deg FΛa = 0 (recall that the degree does not change along the isomonodromic deformation (FΛa ,∇
Λ
a )a∈D(a0)),

then for all a ∈ D(a0), may be, with the exception of an analytic subset of codimension one, the bundle FΛa is holomorphically
trivial (i.e., for almost all a ∈ D(a0) there exists a Fuchsian system with the given singular points a1, . . . , an, monodromy χa and
set Λ of valuation matrices).

We should note that this proposition for connections with sl(2,C)-residues contains in Corollary 1 from the paper of
Heu [18]. She considers universal isomonodromic deformations of irreducible tracefree meromorphic rank 2 connections
over compact Riemann surfaces using a geometrical approach. Here we give an analytical proof.

Proof. Choose an arbitrary point a∗
= (a∗

1, . . . , a
∗
n) ∈ D(a0). Suppose the corresponding bundle FΛa∗ is not holomorphically

trivial:

FΛa∗ ∼= O(−k)⊕ O(k), k > 1.

Let us show that the set of points a, for which the corresponding bundle FΛa is not holomorphically trivial, is given by an
equation τ ∗(a) = 0 in a neighbourhood of the point a∗, where τ ∗(a) ≢ 0 is a holomorphic function.

Consider an auxiliary system

dy
dz

=


n

i=1

B∗

i

z − a∗

i


y

with the monodromy χa∗ , valuation matrices Λ1, . . . ,Λn at the points a∗

1, . . . , a
∗
n respectively but also with the apparent

Fuchsian singularity at the infinity.
As follows from Bolibrukh’s permutation lemma (Lemma 2 from [19]), a fundamental matrix of the constructed system

has the form Y (z) = U(z)zK near the infinity, where

U(z) = I + U1
1
z

+ U2
1
z2

+ · · · , K = diag(−k, k).

Therefore, the residue matrix at the infinity is equal to −K , and
n

i=1 B
∗

i = K .
We need the following proposition which will be also used further.

Proposition 2 (Bolibrukh [19]). Consider the Fuchsian system (2) with the singularities a1, . . . , an, apparent singularity ∞,
monodromy (3) and set Λ = {Λ1, . . . ,Λn} of valuation matrices; furthermore

n
i=1 Bi = K ′

= diag(k1, . . . , kp), where
k1 6 · · · 6 kp are integers.

The matrix K ′ defines the splitting type of the bundle FΛ if and only if the transformation y′
= z−K ′

y transforms this system
into the system that is holomorphic at the infinity.

Due to this proposition the transformation y′
= z−Ky transforms our auxiliary system into the system that is holomorphic

at the infinity, hence

U(z)zK = zKV (z)

for some matrix V (z) holomorphically invertible at the infinity. The latter relation implies that the upper-right element u12
1

of the matrix U1 equals zero.
Using the theorem of existence and uniqueness for the Schlesinger equation, the constructed Fuchsian system was

included into the Schlesinger isomonodromic family

dy
dz

=


n

i=1

Bi(a)
z − ai


y, Bi(a∗) = B∗

i ,

n
i=1

Bi(a) = K . (15)

As shown in [16], there exists an isomonodromic fundamental matrix Y (z, a) of this family of the form

Y (z, a) = U(z, a)zK , U(z, a) = I + U1(a)
1
z

+ U2(a)
1
z2

+ · · · , (16)

at the infinity, U(z, a∗) = U(z) and

∂U1(a)
∂ai

= −Bi(a), i = 1, . . . , n. (17)
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Since themonodromyχa is irreducible, among the upper-right elements b12i (a) of the correspondingmatrices Bi(a) there
exists at least one that is not identically zero. Hence, in view of (17), the similar element u12

1 (a) of the matrix U1(a) does not
equal zero identically (while u12

1 (a
∗) = u12

1 = 0).
Further, whereas

dY (z, a)
dz

Y−1(z, a) =

n
i=1

Bi(a)
z − ai

=
1
z

n
i=1

Bi(a)
1 −

ai
z

,

from (16) one gets the relation

−U1(a)
1
z2

+ o(z−2)+


I + U1(a)

1
z

+ o(z−1)


K
z

=


K
z

+


n

i=1

Bi(a)ai


1
z2

+ o(z−2)


I + U1(a)

1
z

+ o(z−1)


.

Hence,

−U1(a)+ [U1(a), K ] =

n
i=1

Bi(a)ai.

Therefore,

(2k − 1)u12
1 (a) =

n
i=1

b12i (a)ai.

Denote by b1(a) the sum
n

i=1 b
12
i (a)ai. Then

b1(a) = (2k − 1)u12
1 (a) ≢ 0, b1(a∗) = 0.

Consider the matrix

Γ ′

1(z, a) =

 1 0
1 − 2k
b1(a)

z 1

 ,
holomorphically invertible (in z) off the infinity. One can directly check that the matrix U ′(z, a) = Γ ′

1U(z, a) has the form

U ′(z, a) =


U ′

0(a)+ U ′

1(a)
1
z

+ · · ·


zdiag(1,−1), U ′

0(a) =

 0
b1(a)
2k − 1

1 − 2k
b1(a)

f (a)
b1(a)

 ,
where f (a) is a holomorphic function at the point a∗. Thus, the gauge transformation y1 = Γ1(z, a)y, Γ1(z, a) =

U ′

0(a)
−1Γ ′

1(z, a), transforms a system of the family (15) into the Fuchsian system with the fundamental matrix Y 1(z, a) =

Γ1(z, a)Y (z, a) of the form (16) at the infinity (and does not change valuations at the points a1, . . . , an), where all involved
matrices are equipped with the upper index 1, and K 1

= diag(−k+ 1, k− 1). This expansion is valid only in the exterior of
some analytic subset of codimension one which is the set of zeros of the function b1(a) ≢ 0.

Note also that the transformed family is a Schlesinger isomonodromic family. Indeed, its connection matrices do not
depend on a (the transformation does not change those of the Schlesinger family (15)), and (daY 1(z, a))Y 1(z, a)−1

|z=∞ =

(daU1(z, a))U1(z, a)−1
|z=∞ ≡ 0 according to the form of the matrix U1(z, a).

After k steps of the above procedure of Bolibrukh we will get a Fuchsian family holomorphic at the infinity. It is defined
in a neighbourhood of the point a∗ outside of the analytic subset {τ ∗(a) = 0}, τ ∗(a) = b1(a) . . . bk(a), where bj(a) appears
at the j-th step of the Bolibrukh procedure in the same way as b1(a) does. This means that for all a ∉ {τ ∗(a) = 0} from the
neighbourhood of the point a∗ there exists a Fuchsian system with the singularities a1, . . . , an, monodromy χa and setΛ of
valuation matrices. �

Definition. Recall that if all generators Gi of the two-dimensional representation χ are non-scalar matrices, then bundles
of the family F depend on setsΛ only (see Remark 1). One calls such representations non-smaller. In the opposite case, if l
monodromy matrices are scalar, χ is called l-smaller.

Corollary 1. If χa is an irreducible non-smaller SL(2,C)-representation with generators G1, . . . ,Gn, then for almost all a ∈

D(a0) there exists a family (depending on the parameter m = (m1, . . . ,mn) ∈ Zn
+
)

dy
dz

=


n

i=1

Bm
i (a)

z − ai


y,

n
i=1

Bm
i (a) = 0,
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of Fuchsian systemswith the singularities a1, . . . , an, monodromyχ and exponents±(mk+ρk), whereρk is one of the eigenvalues
of the matrix Ek = (1/2π i) lnGk(k = 1, . . . , n). Furthermore, Bm

n (a) = diag(mn + ρn,−mn − ρn) are diagonal matrices.

Proof. If a set Λ = {Λ1, . . . ,Λn} of admissible matrices satisfies the conditions tr(Λk + Ek) = 0, k = 1, . . . , n, then by
Proposition 1 for all a ∈ D(a0), may be, with the exception of an analytic subsetΘΛ of codimension one, the corresponding
bundle FΛa is holomorphically trivial and the logarithmic connection ∇

Λ
a defines a Fuchsian system with the singularities

a1, . . . , an, monodromy χa and setΛ of valuation matrices.
By the relations e2π iEk = Gk, detGk = 1, the sum ρ1

k + ρ2
k of the eigenvalues of the matrix Ek is an integer, and it equals

0 or 1 by condition (9). Fix an order of the eigenvalues ρ1
k , ρ

2
k and put ρk = ρ1

k .

(1) If ρ1
k + ρ2

k = 0, then one can takeΛk = diag(mk,−mk),mk ∈ Z+ (but if ρn = 0, thenmn ∈ N).
(2) If ρ1

k + ρ2
k = 1, then one can takeΛk = diag(mk,−mk − 1),mk ∈ Z+.

Thus, for all a ∈ D(a0) \ Θm the representation χa can be realized by a Fuchsian system with the singular points
a1, . . . , an and exponents ±(m1 + ρ1), . . . ,±(mn + ρn). Moreover, the residue matrix at the point an is diagonalizable
(because its eigenvalues ±(mn + ρn) do not equal zero by the construction). Then the statement of the corollary is valid for
all a ∈ D(a0) \


mΘm. �

Proof of Theorem 1. For a∗
∈ Θ the corresponding vector bundle FΛa∗ ∼= O(−k) ⊕ O(k) is not holomorphically trivial

and, as shown in the proof of Proposition 1, the Θ-divisor of the family (14) in a neighbourhood of the point a∗ is the set
of zeros of the function τ ∗(a) = b1(a) . . . bk(a) constructed by the auxiliary family (15). Let us denote by B∗

i (a) the residue
matrices of the latter (to tell them from those Bi(a) of the initial family (14)). They are holomorphic in a neighbourhood of the
point a∗.

The functions bj(a) are irreducible at a∗, since dbj(a∗) ≢ 0. For instance,

db1(a) = (2k − 1)du12
1 (a) = (1 − 2k)

n
i=1

b12i (a)dai

in view of (17), and the equality db1(a∗) ≡ 0 implies b121 (a
∗) = · · · = b12n (a

∗) = 0, which contradicts the irreducibility of
the monodromy.

One can assume that τ ∗(a) = bm1
1 (a) . . . b

mr
r (a), m1 + · · · + mr = k (some factors are equal). Now let us show that

the order of each component {bj(a) = 0} is not less than −2mj. It is sufficient to consider the first step of the Bolibrukh
procedure. The transformation y1 = Γ1(z, a)y transforms the auxiliary family into the family with the coefficient matrix of
the form

dΓ1

dz
Γ −1
1 + Γ1


n

i=1

B∗

i (a)
z − ai


Γ −1
1 ,

where

Γ1(z, a) = U ′

0(a)
−1Γ ′

1(z, a) =


f (a)
b1(a)

b1(a)
1 − 2k

2k − 1
b1(a)

0


 1 0

1 − 2k
b1(a)

z 1

 =


f (a)
b1(a)

+ z
b1(a)
1 − 2k

2k − 1
b1(a)

0

 .
Thus, the residue matrices B1

i (a) of the transformed family have the form

B1
i (a) =


f (a)
b1(a)

+ ai
b1(a)
1 − 2k

2k − 1
b1(a)

0

 B∗

i (a)


f (a)
b1(a)

+ ai
b1(a)
1 − 2k

2k − 1
b1(a)

0


−1

,

i.e., the matrices b1(a)2B1
i (a) are holomorphic in D(a∗).

After the final (k-th) step of the procedure we get the Schlesinger isomonodromic family with the residue matrices Bk
i (a)

which are simultaneously conjugated to the corresponding Bi(a) of the initial family (14) by some constant matrix S (this
follows from theuniqueness of a solution to the Schlesinger equation). Therefore,Σa∗(Bi) > −2m1−· · ·−2mr = −2k > 2−n
(see (18)). �

In the case of dimension p > 2 one can also apply a similar procedure to find a local τ -function τ ∗(a) = b1(a) . . . bs(a).
We cannot assert that the functions bj(a) are irreducible at the point a∗. But if for each bj(a) all its irreducible factors are
distinct (this is the case when the discriminant of theWeierstrass polynomial of each bj(a) is not identically zero), then one
can estimate the order of each irreducible component of theΘ-divisor as follows (see [20]):

(Bi)∞ > −
(n − 2)p(p − 1)

2
,
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if the monodromy of the family is irreducible, and

(Bi)∞ > −

n
i=1

(Mi − µi)
p(p − 1)

2

in the case of reducible monodromy, where µi < Mi are integers that bound real parts of the eigenvalues of the residue
matrix Bi(a).

Conclude this section by the following auxiliary lemma.

Lemma 1. Consider a two-dimensional Schlesinger isomonodromic family of the form

dy
dz

=


n

i=1

Bi(a)
z − ai


y,

n
i=1

Bi(a) = K = diag(θ,−θ), θ ∈ C,

and the function b(a) =
n

i=1 b
12
i (a)ai, where b12i (a) are the upper-right elements of the matrices Bi(a), respectively. Then the

differential of the function b(a) is given by the formula

db(a) = (2θ + 1)
n

i=1

b12i (a)dai.

Note that we cannot directly apply calculations of Proposition 1, because an isomonodromic fundamental matrix of the
family not necessary has the form (16) (the monodromy at the infinity can be non-diagonal).

Proof. The differential db(a) has the form

db(a) =

n
i=1

aidb12i (a)+

n
i=1

b12i (a)dai.

To find the first of the two latter summands, let us use the Schlesinger equation

dBi(a) = −

n
j=1,j≠i

[Bi(a), Bj(a)]
ai − aj

d(ai − aj)

for the matrices Bi(a). Then we have
n

i=1

ai dBi(a) = −

n
i=1

n
j=1,j≠i

ai
[Bi(a), Bj(a)]

ai − aj
d(ai − aj) = −

n
i=1

n
j>i

[Bi(a), Bj(a)]d(ai − aj)

= −

n
i=1


Bi(a),

n
j=1,j≠i

Bj(a)


dai = −

n
i=1

[Bi(a), K ]dai.

The upper-right element of the latter matrix 1-form is equal to
n

i=1 2θb
12
i (a)dai, hence

n
i=1 aidb

12
i (a) = 2θn

i=1 b
12
i (a)dai, and db(a) = (2θ + 1)

n
i=1 b

12
i (a)dai. �

4. The Riemann–Hilbert problem and the Painlevé VI equation

As mentioned earlier, the problem of constructing a Fuchsian differential equation (1) with the given singularities
a1, . . . , an and monodromy (3) has a negative solution in general case. In the construction there arise apparent singular
points. In the case of irreducible representation Bolibrukh [19] obtained the formula for the minimal number of such
singularities. It is given below.

We consider the family F of holomorphic vector bundles FΛ with logarithmic connections ∇
Λ constructed from the

representation (3). The Fuchsian weight of the bundle FΛ is defined as the quantity

γ (FΛ) =

p
i=1

(k1 − ki),

where (k1, . . . , kp) is the splitting type of FΛ.
If the representation (3) is irreducible, then the splitting type of the bundle FΛ satisfies the inequalities

ki − ki+1 6 n − 2, i = 1, . . . , p − 1 (18)
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(see [19, Cor. 3]). Therefore, the quantity

γmax(χ) = max
FΛ∈F

γ (FΛ) 6
(n − 2)p(p − 1)

2

is defined for such a representation, and is called themaximal Fuchsian weight of the irreducible representation χ .
The minimal possible number m0 of apparent singular points emerging in the construction of a Fuchsian equation (1)

with the irreduciblemonodromy (3), is given by the formula

m0 =
(n − 2)p(p − 1)

2
− γmax(χ). (19)

In the case of reducible representation there exists the estimatem0 6 1 + (n + 1)p(p − 1)/2 obtained in [21].
In particular, it follows from the formula (19) that a set of singular points a1, a2, a3(n = 3) and irreducible two-

dimensional representation (p = 2) can always be realized by a Fuchsian differential equation of second order, since in
this case γ (FΛ) = 1 for any bundle FΛ of odd degree.

A PVI equation appears when one solves the problem of constructing a Fuchsian differential equation of second order with
four given singularities and an irreducible monodromy. Further we recall this fact.

Let us consider the four points t, 0, 1,∞ (t ∈ D(t∗), where D(t∗) ⊂ C \ {0, 1} is a disc of small radius centred at the
point t∗) and an irreducible non-smaller representation

χ∗
: π1(C \ {t, 0, 1}) −→ GL(2,C) (20)

generated by matrices G1,G2,G3 corresponding to the points t, 0, 1 (recall that in this case bundles of the family F depend
on setsΛ of valuation matrices only).

Depending on the location of the point t , there are two possible cases.

(1) Every vector bundle FΛ in the family F constructed with respect to the given four points and representation χ∗, such that
deg FΛ = 0, is holomorphically trivial (as follows from Proposition 1, this is the case for almost all values t ∈ D(t∗)).

(2) Among the elements of the family F there exists a non-trivial holomorphic vector bundle FΛ of degree zero. (Denote by Θ
the set of values of the parameter t that correspond to this case.)

It follows from the inequalities (18) that γmax(χ
∗) 6 2; therefore, in the first case the splitting type of a non-trivial

holomorphic vector bundle FΛ (of non-zero degree) can be (k, k − 1) or (k, k) only. The case (k + 1, k − 1) is impossible,
since then the bundle FΛ⊗O(−k) constructedwith respect to the set of valuationmatricesΛ1−kI,Λ2,Λ3,Λ∞ has degree
zero, i.e., it is holomorphically trivial, but at the same time its splitting type is (1,−1). Consequently, γmax(χ

∗) = 1 in the
first case.

In the second case, the splitting type of the non-trivial holomorphic vector bundle of degree zero equals (1,−1), and
γmax(χ

∗) = 2 in this case.
Thus, in view of formula (19), for almost all values t ∈ D(t∗) the set of points t, 0, 1,∞ and representation χ∗ can

be realized by a Fuchsian differential equation of second order with one apparent singularity. We denote this singularity
by u(t) regarding it as a function of the parameter t . It turns out that the function u(t) satisfies Eq. (4) for some values of
the constants α, β, γ , δ, if χ∗ is an SL(2,C)-representation.4 Let us explain this interesting fact by using isomonodromic
deformations of Fuchsian systems.

By Corollary 1, we can choose a value t = t0 ∈ D(t∗) for which the representation χ∗ is realized by Fuchsian systems

dy
dz

=


Bm
1

z − t0
+

Bm
2

z
+

Bm
3

z − 1


y, m = (m1,m2,m3,m∞) ∈ Z4

+
, (21)

with the singular points t0, 0, 1,∞ (the eigenvalues of the matrices Bm
k are ±(mk + ρk), and the matrices Bm

∞
= −Bm

1 −

Bm
2 − Bm

3 are diagonal).
Any system of the form (21) can be included into the Schlesinger isomonodromic family

dy
dz

=


Bm
1 (t)
z − t

+
Bm
2 (t)
z

+
Bm
3 (t)

z − 1


y, Bm

k (t
0) = Bm

k , (22)

of Fuchsian systems with the singularities t, 0, 1,∞ which depends holomorphically on the parameter t ∈ D(t0).
Furthermore, Bm

1 (t)+ Bm
2 (t)+ Bm

3 (t) = −Bm
∞

= diag(−m∞ − ρ∞,m∞ + ρ∞).
Denote by Bm(z, t) = (bmij (z, t)) the coefficient matrix of the family (22). Since the upper-right element of the matrix

Bm
1 (t)+ Bm

2 (t)+ Bm
3 (t) = −Bm

∞
is equal to zero, for every fixed t the same element of the matrix z(z − 1)(z − t)Bm(z, t) is

a polynomial of first degree in z. We define ũm(t) as the unique root of this polynomial. Next we use the following theorem
(see, for instance, [15]).

4 The PVI equation was obtained by Fuchs precisely as a differential equation that is satisfied by the apparent (fifth) singularity λ(t) of some Fuchsian
equation of second order with the singular points 0, 1, t,∞ and SL(2,C)-monodromy independent of the parameter t .
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Theorem 2. The function ũm(t) satisfies Eq. (4), where the constants α, β, γ , δ are connected with the parameter m =

(m1,m2,m3,m∞) by the relations

α =
(2m∞ + 2ρ∞ − 1)2

2
, β = −2(m2 + ρ2)

2, γ = 2(m3 + ρ3)
2, δ =

1
2

− 2(m1 + ρ1)
2.

Let us consider the row vectors

hm
0 = (1, 0), hm

1 (z, t) =
dhm

0

dz
+ hm

0 Bm(z, t) = (bm11, b
m
12)

and the matrix composed from them,

Γm(z, t) =


hm
0

hm
1


=


1 0
bm11 bm12


,

which is meromorphically invertible on C × D(t0), since detΓm(z, t) = bm12(z, t) ≢ 0 by the irreducibility of the
representation χ∗. We define functions pm(z, t) and qm(z, t), meromorphic on C × D(t0), so that the relation

hm
2 (z, t) :=

dhm
1

dz
+ hm

1 Bm(z, t) = (−qm,−pm)Γm(z, t)

holds. Then
dΓm

dz
=

d
dz


hm
0

hm
1


=


hm
1

hm
2


−


hm
0

hm
1


Bm(z, t) =


0 1

−qm −pm


Γm − ΓmBm(z, t),

whence,
0 1

−qm −pm


=

dΓm

dz
Γ −1
m + ΓmBm(z, t)Γ −1

m .

The latter means that for every fixed t ∈ D(t0) the gauge transformation y′
= Γm(z, t)y transforms the corresponding

system of the family (22) into the system
dy′

dz
=


0 1

−qm −pm


y′,

the first coordinate of whose solution is the solution of the scalar equation

d2w

dz2
+ pm(z, t)

dw
dz

+ qm(z, t)w = 0. (23)

This (Fuchsian) equation has the singular points t, 0, 1,∞ andmonodromyχ∗, but it also has the apparent singularity um(t)
which is a zero of the function detΓm(z, t) = bm12(z, t), as follows from the construction of the functions pm(z, t), qm(z, t).
By Theorem 2, the function um(t) satisfies an equation PVI.

Thus, we can formulate the following statement.

Proposition 3. (i) The set of the points t, 0, 1,∞ and any irreducible non-smaller SL(2,C)-representation (20) can be realized
by the family (depending on the parameter m ∈ Z4

+
) of scalar Fuchsian equations (23) with one apparent singularity.5

(ii) The set Θ ⊃


m{t ∈ D(t∗)|um(t) = t, 0, 1, or ∞} is a countable set of parameter values for which the Riemann–Hilbert
problem for scalar Fuchsian equations under consideration is soluble without apparent singularities.

Being solutions of PVI equations, the functions um(t) have only poles as movable singularities (in other words, they can
be extended to the universal covering H of the space C \ {0, 1} as meromorphic functions). What one can say about their
pole orders?

Denote by bm1 (t), b
m
2 (t), b

m
3 (t) the upper-right elements of the matrices Bm

1 (t), B
m
2 (t), B

m
3 (t), respectively (recall that

bm1 (t)+ bm2 (t)+ bm3 (t) ≡ 0). Since

bm12(z, t) =
(tbm1 + bm3 )z + tbm2
z(z − 1)(z − t)

,

the function um(t) is given by the relation

(tbm1 + bm3 )um = −tbm2 ,

from which it follows that poles of the function um(t) are poles of the function bm2 (t) or zeros of the function tbm1 (t)
+ bm3 (t).

5 The apparent singular point um(t) of every equation from this family, as a function of the parameter t ∈ D(t∗), satisfies the equation PVI with the
constants α, β, γ , δ given by Theorem 2.
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By Theorem 1 (with n = 4), a pole order of the function bmi (t) does not exceed two. Applying Lemma 1 to the family (22),
where (a1, a2, a3) = (t, 0, 1), one gets

d
dt
(tbm1 (t)+ bm3 (t)) = (−2m∞ − 2ρ∞ + 1)bm1 (t).

If (m∞, ρ∞) ≠ (0, 1/2), then θ = −2m∞ − 2ρ∞ + 1 ≠ 0. In this case, a pole of the function bm2 (t) is also a pole for
tbm1 (t)+ bm3 (t), since

tbm1 (t)+ bm3 (t) = bm1 (t)+ bm3 (t)+ (t − 1)bm1 (t) = −bm2 (t)+
t − 1
θ

d
dt
(tbm1 (t)+ bm3 (t)).

From this relation it also follows that any zero t0 of the function tbm1 (t) + bm3 (t) can be simple only. Indeed, if t0bm1 (t0) +

bm3 (t0) = 0 and d
dt (tb

m
1 (t)+ bm3 (t))


t=t0

= 0, then bm2 (t0) = 0 and bm1 (t0) = bm3 (t0) = 0,which contradicts the irreducibility
of the representation (20).

If (m∞, ρ∞) = (0, 1/2), then −2m∞ − 2ρ∞ + 1 = 0 and tbm1 (t) + bm3 (t) ≡ c = const. Hence um(t) = −tbm2 (t)/c .
Note that c ≠ 0, since in the opposite case for all t ∈ D(t∗) the function bm12(z, t) has no zeros and the Riemann–Hilbert
problem for scalar Fuchsian equations under consideration is soluble without apparent singularities, and γmax(χ

∗) = 2 (but
this contradicts the above construction).

Thus, if (m∞, ρ∞) ≠ (0, 1/2), then the poles of the function um(t) can be simple only, and if (m∞, ρ∞) = (0, 1/2), then
pole orders of the function um(t) do not exceed two.

Remark 2. Alongside formulae for the transition from a two-dimensional Schlesinger isomonodromic family with sl(2,C)-
residues to an equation PVI, there also exist formulae for the inverse transition (see [15] or [22]).

Hence, the latter reasonings prove the well known statement about movable poles of the equation PVI(α, β, γ , δ). In the
case α ≠ 0 they can be simple only, and in the case α = 0 their orders do not exceed two or u(t) ≡ ∞.

Indeed, if a solution u(t) of Eq. (4) corresponds to a two-dimensional Schlesinger isomonodromic family with irreducible
monodromy, then the statement follows from the above construction (α ≠ 0 H⇒ (m∞, ρ∞) ≠ (0, 1/2); α = 0 H⇒

(m∞, ρ∞) = (0, 1/2), furthermore the caseα = 0, u(t) ≡ ∞ is possible, if themonodromy is 1-smaller). If themonodromy
of the corresponding family is reducible, then u(t) satisfies a Riccati equation (as shown by Mazzocco [23]), whose movable
poles are simple.

5. The Riemann–Hilbert problem and Garnier systems

The arguments given above can be extended to a general case of n + 3 singular points a1, . . . , an, an+1 = 0, an+2 = 1,
an+3 = ∞ and an irreducible non-smaller representation

χ∗

a : π1(C \ {a1, . . . , an, 0, 1}) −→ GL(2,C), (24)

a = (a1, . . . , an) ∈ D(a∗), whereD(a∗) is a disc of small radius centred at the point a∗ of the space (C\{0, 1})n\


i≠j{ai = aj}.
(Continuing investigations of Fuchs) Garnier [9] obtained for n > 1 the system of non-linear partial differential equations

of second order that must be satisfied by apparent singularities λ1(a), . . . , λn(a) of some Fuchsian differential equation of
second order with singular points a1, . . . , an, 0, 1,∞ and SL(2,C)-monodromy not depending on the parameter a. We
supplement these results by the reasonings following after Lemma 2.

Lemma 2. One has γmax(χ
∗
a ) = 1 for almost all a ∈ D(a∗).

Proof. For an arbitrary set Λ of admissible matrices consider the family FΛa of holomorphic vector bundles constructed by
the corresponding representations χ∗

a and the setΛ. It is sufficient to prove that γ (FΛa ) 6 1 for all a ∈ D(a∗), may be, with
the exception of an analytic subset of codimension one.

If FΛa0
∼= O(k1)⊕ O(k2), k1 − k2 > 1, for some a0 ∈ D(a∗), then we can apply Bolibrukh’s procedure (which was used in

the proof of Proposition 1) to get a Schlesinger isomonodromic family of the form (15) with an isomonodromic fundamental
matrix Y (z, a) of the form (16), where

K = diag(k′

1, k
′

2), k′

1 − k′

2 6 1.

This family is defined in the exterior of some analytic subsetΘΛ ⊂ D(a∗) of codimension one.
In view of the form of the matrix Y (z, a), the transformation y′

= z−Ky transforms this family into the family that
is holomorphic at the infinity. Hence, due to Proposition 2, the matrix K defines the splitting type of the bundles FΛa for
a ∈ D(a∗) \ΘΛ (and γ (FΛa ) 6 1 for these values of a). �

Thus, in view of the formula (19), for almost all a ∈ D(a∗) the set of points a1, . . . , an, 0, 1,∞ and representation χ∗
a can

be realized by a Fuchsian differential equation of second order with n apparent singularities u1(a), . . . , un(a). Let us recall
how they are connected with a Garnier system in the case when χ∗

a is an SL(2,C)-representation.



Author's personal copy

2432 R.R. Gontsov, I.V. Vyugin / Journal of Geometry and Physics 61 (2011) 2419–2435

Applying again Corollary 1, let us choose a value of the parameter a = a0 = (a01, . . . , a
0
n) ∈ D(a∗) for which the

representation χ∗

a0
is realized by Fuchsian systems

dy
dz

=


n+2
i=1

Bm
i

z − a0i


y, m = (m1, . . . ,mn+2,m∞) ∈ Zn+3

+
, (25)

with the singular points a01, . . . , a
0
n, a

0
n+1 = 0, a0n+2 = 1, a0n+3 = ∞ (here the eigenvalues of the matrices Bm

i are ±(mi +ρi),
and the matrices Bm

∞
= −

n+2
i=1 Bm

i are diagonal).
Every system of the form (25) can be included into the Schlesinger isomonodromic family

dy
dz

=


n+2
i=1

Bm
i (a)

z − ai


y, Bm

i (a
0) = Bm

i , (26)

of Fuchsian systems with singularities a1, . . . , an, 0, 1,∞ which depends holomorphically on the parameter a = (a1, . . . ,
an) ∈ D(a0); furthermore,

n+2
i=1 Bm

i (a) = −Bm
∞

= diag(−m∞ − ρ∞,m∞ + ρ∞).
By Malgrange’s theorem the matrix functions

Bm
i (a) =


cmi (a) bmi (a)
dmi (a) −cmi (a)


can be extended to the universal covering Z of the space (C\{0, 1})n\


i≠j{ai = aj} asmeromorphic functions (holomorphic

off the analytic subset of codimension one).
Denote by Bm(z, a) the coefficient matrix of the family (26). Since the upper-right element of the matrix Bm

∞
equals zero,

for every fixed a the same element of the matrix z(z − 1)(z − a1) . . . (z − an)Bm(z, a) is a polynomial Pm(z, a) of degree n
in z. We denote by um

1 (a), . . . , u
m
n (a) the roots of this polynomial and define the functions vm1 (a), . . . , v

m
n (a):

vmj (a) =

n+2
i=1

cmi (a)+ mi + ρi

um
j (a)− ai

, j = 1, . . . , n.

Then the following statement takes place: the pair (um, vm) = (um
1 , . . . , u

m
n , v

m
1 , . . . , v

m
n ) satisfies the Garnier system (5)with

the parameters 2m1 + 2ρ1, . . . , 2mn+2 + 2ρn+2, 2m∞ + 2ρ∞ − 1 (see proof of Proposition 3.1 from [8], or [24, Cor. 6.2.2
(p. 207)]).

Thus, using arguments analogous to those given in the case n = 1, we get the following statement.

Proposition 4. The set of the points a1, . . . , an, 0, 1,∞ and any irreducible non-smaller SL(2,C)-representation (24) can be
realized by the family (depending on the parameter m ∈ Zn+3

+ ) of scalar Fuchsian equations

d2w

dz2
+ pm(z, a)

dw
dz

+ qm(z, a)w = 0

with n apparent singularities.

Recall that, due to Okamoto’s theorem, the apparent singular points um
1 (a), . . . , u

m
n (a) of every equation from the

above family and the functions vm1 (a) = res qm(z, a)|z=um1
, . . . , vmn (a) = res qm(z, a)|z=umn , a ∈ D(a∗), form a solution

(um(a), vm(a)) of the Garnier system (5) with the parameters 2m1 + 2ρ1, . . . , 2mn+2 + 2ρn+2, 2m∞ + 2ρ∞ − 1.
One can express the coefficients of the polynomial Pm(z, a) in terms of the upper-right elements bmi (a) of the matrices

Bm
i (a). Let

σ1(a) =

n+2
i=1

ai, σ2(a) =


16i<j6n+2

aiaj, . . . , σn+1(a) = a1 . . . an

be the elementary symmetric polynomials in a1, . . . , an, an+1 = 0, an+2 = 1, and Q (z) =
n+2

i=1 (z − ai). Then

Pm(z, a) =

n+2
i=1

bmi (a)
Q (z)
z − ai

=: bm(a)zn + fm1 (a)z
n−1

+ · · · + fmn (a)

(recall that
n+2

i=1 bmi (a) = 0). By the Viète theorem one has

bm(a) =

n+2
i=1

bmi (a)(−σ1(a)+ ai) =

n+2
i=1

bmi (a)ai =

n
i=1

bmi (a)ai + bmn+2(a),

fm1 (a) =

n+2
i=1

bmi (a)


σ2(a)−

n+2
j=1,j≠i

aiaj


= −


16i<j6n+2

(bmi (a)+ bmj (a))aiaj.
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In the similar way,

fmk (a) = (−1)k


16i1<···<ik+16n+2

(bmi1 (a)+ · · · + bmik+1
(a))ai1 . . . aik+1

for each k = 1, . . . , n.
It immediately follows from the above formulae and Malgrange’s theorem that the elementary symmetric polynomials

σk(um
1 , . . . , u

m
n ) = (−1)kfmk (a)/bm(a), depending on solutions of the Garnier system extended to Z , are meromorphic functions.

For n > 1, a Garnier system generically does not satisfy the Painlevé property (coordinates (u1, . . . , un) are defined
as roots of a polynomial of degree n), but it can be transformed by a certain (symplectic) transformation (u, v, a,H) →

(q, p, s, K),
n

i=1(pidqi − Kidsi) =
n

i=1(vidui − Hidai), into a Hamiltonian system satisfying the Painlevé property (see
[24, Ch. III, Section 7]).

By Theorem 1, for each function fmk (a) extended to Z and any point a∗ of the Θ-divisor of the family (26) one has
Σa∗(fmk ) > −n − 1. Similarly to the case n = 1, here we can tell something about the behaviour of the function bm(a)
alongΘ .

Lemma 3. Consider the family (26) with the irreducible non-smaller monodromy (24), and the function bm(a) constructed by
the residue matrices Bm

i (a). Then

(i) in the case (m∞, ρ∞) = (0, 1/2) one has bm(a) ≡ const ≠ 0;
(ii) in the case (m∞, ρ∞) ≠ (0, 1/2) the set {a ∈ Z | bm(a) = 0} is an analytic submanifold of codimension one in Z, and if the

function bm(a) is holomorphic at a point a0 ∈ Z, so are the functions fmk (a).

Proof. By Lemma 1, we have dbm(a) = (−2m∞ − 2ρ∞ + 1)
n

i=1 b
m
i (a)dai.

(i) In the case (m∞, ρ∞) = (0, 1/2) one has dbm(a) ≡ 0 for all a ∈ D(a∗), hence bm(a) ≡ const ≠ 0. Indeed, if bm(a) ≡ 0,
then Pm(z, a) is a polynomial of degree n−1 in z. Therefore, for every a ∈ D(a∗) the representation χ∗

a is realized by a scalar
Fuchsian equation with at most n − 1 apparent singularities (which are the roots of Pm(z, a)) and γmax(χ

∗
a ) > 1, which

contradicts Lemma 2.
(ii) In the case (m∞, ρ∞) ≠ (0, 1/2) one has θ = −2m∞ − 2ρ∞ + 1 ≠ 0, and

bmi (a) =
1
θ

∂bm(a)
∂ai

, i = 1, . . . , n;

bmn+2(a) = bm(a)−

n
i=1

bmi (a)ai, bmn+1(a) = −bmn+2(a)−

n
i=1

bmi (a). (27)

Thus, if the function bm(a) is holomorphic at some point a0 ∈ Z , so are the functions bmi (a), i = 1, . . . , n + 2, and hence,
the functions fmk (a).

If for some a0 ∈ {bm(a) = 0} one has dbm(a0) ≡ 0, then
n

i=1 b
m
i (a

0)dai ≡ 0 and bm1 (a
0) = · · · = bmn (a

0) = 0. Taking
into consideration the relations (27), one gets also bmn+2(a

0) = 0 and bmn+1(a
0) = 0. This contradicts the irreducibility of the

representation χ∗

a0
. �

As a consequence of Theorem 1 and Lemma 3, one gets the following statement.

Proposition 5. Denote by∆i the polar loci of the functions σi(um
1 (a), . . . , u

m
n (a)) extended to Z, respectively (in the conditions

of Proposition 4). Then

(a) in the case (m∞, ρ∞) = (0, 1/2) one hasΣa∗(σi) > −n − 1 for any point a∗
∈ ∆i;

(b) in the case (m∞, ρ∞) ≠ (0, 1/2) one has Σa∗(σi) > −n for any point a∗
∈ ∆i \ ∆0, where ∆0

⊂ ∆i is some subset of
positive codimension (or the empty set);

(c) in the case (m∞, ρ∞) ≠ (0, 1/2), a∗
∈ ∆0, one can estimate the order κ of each irreducible component of ∆i ∩ D(a∗) as

follows: κ > −n.

Proof. Recall that σi(um
1 , . . . , u

m
n ) = (−1)ifmi (a)/bm(a) and Σa∗(fmi ) > −n − 1 for any point a∗ of the Θ-divisor of the

family (26).
Therefore, the statement (a) of the proposition is a consequence of Lemma 3, (i).
(b) As follows from Lemma 3, (ii), the points a∗

∈ ∆i can be of two types: such that bm(a∗) = 0 (thenΣa∗(σi) > −1) or
that belong to the polar locus∆ ⊂ Θ of the function bm(a).

Denote by∆0
⊂ ∆ the set of ambiguous points of bm(a). Then in a neighbourhood of any point a∗

∈ ∆\∆0 each function
fmi (a) can be presented in the form
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fmi (a) =
g(a)

τ
k1
1 (a) . . . τ

kr
r (a)

, k1 + · · · + kr 6 n + 1, (28)

where τi(a), g(a) are holomorphic near a∗; furthermore, τi(a) are irreducible at a∗, just as

bm(a) =
h(a)

τ
j1
1 (a) . . . τ

jr
r (a)

, j1 + · · · + jr > 1, (29)

where h(a) is holomorphic near a∗, h(a∗) ≠ 0. Thus,

fmi (a)
bm(a)

=
g(a)

τ
k1
1 (a) . . . τ

kr
r (a)

:
h(a)

τ
j1
1 (a) . . . τ

jr
r (a)

=
g(a)/h(a)

τ
k1−j1
1 (a) . . . τ kr−jr

r (a)
,

therefore,

Σa∗(σi) = −(k1 − j1)− · · · − (kr − jr) > −n.

(c) In a neighbourhood of a point a∗
∈ ∆0 the decompositions (28), (29) take place for the functions fmi (a), bm(a),

respectively, but h(a∗) = 0. However, due to Lemma 3, (ii), all irreducible factors of h(a) in its decomposition h(a) =

h1(a) . . . hs(a) near a∗ are distinct (we can assume also that none of hi coincides with some of τj). One also has ki = 0, if
ji = 0 (bm(a) is holomorphic along {τi(a) = 0} H⇒ fmi (a) is holomorphic along {τi(a) = 0}). Therefore, ki − ji 6 n, and the
statement (c) follows from the decomposition

fmi (a)
bm(a)

=
g(a)

h1(a) . . . hs(a)τ
k1−j1
1 (a) . . . τ kr−jr

r (a)
. �

Alongside formulae for the transition from a two-dimensional Schlesinger isomonodromic family with sl(2,C)-residues
to a Garnier system, there also exist formulae for the inverse transition (see [8, Prop. 3.2]). Hence, the latter proposition
implies some addition to Garnier’s theorem [9] (which claims that the elementary symmetric polynomials of solutions of a
Garnier system are meromorphic on Z).

Theorem 3. Consider a solution (u(a), v(a)) of the Garnier system (5), that corresponds to a two-dimensional Schlesinger
isomonodromic family with irreducible monodromy, and the polar loci ∆i of the functions σi(u1(a), . . . , un(a)) meromorphic
on Z. Then

(a) in the case θ∞ = 0 and the non-smaller monodromy one hasΣa∗(σi) > −n − 1 for any point a∗
∈ ∆i;

(b) in the case θ∞ ≠ 0 one has (σi)∞ > −n; moreover,Σa∗(σi) > −n for any point a∗
∈ ∆i, may be, with the exception of some

subset ∆0
⊂ ∆i of positive codimension.

Remark 3. Mazzocco [25] has shown that the solutions of the Garnier system (5), that correspond to two-dimensional
Schlesinger isomonodromic families with reducible monodromy, are classical functions (in each variable, in sense of
Umemura [26]) and can be expressed via Lauricella hypergeometric equations (see [24, Ch. III, Section 9]). Thus, Theorem 3
can be applied, for example, to non-classical solutions of Garnier systems.
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