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Introduction

In (non-commutative) geometry, a categorical resolution of a (potentially singular) variety
X is a full and faithful embedding of its derived category D

b(X) into a smooth and proper
triangulated category T [11, 12]. The notion generalises the situation of rational singularities,
where the geometric resolution functor F : X̃ → X induces the full and faithful functor
F ∗ : Db(X)→ Db(X̃) to the smooth and proper category Db(X̃).

Another example of a categorical resolution comes from considering a finite CW-complex
Y of homotopy type K(G, 1). The derived category of local systems over Y , which we denote
as Loc(Y, k), is the derived category of complexes of locally constant sheaves over some field
k. Denote by BG the fundamental groupoid of Y . We then see that Loc(Y, k) is exactly the
derived category D(BG, k) of functors from BG to the category of complexes of vector spaces
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DVectk, which is nothing else than the derived category of representations of G. Since Y
is of type K(G, 1), Loc(Y, k) is a full subcategory of the derived category of constructible
sheaves on Y .

Take I to be the partially ordered set associated to a chosen regular cellular decomposition
of Y and consider the derived category D(I, k) of functors from I to DVectk. Choosing a
point (say, the centre) in each cell of I and connecting them by paths when one cell is
included in the other defines a functor

F : I → BG. (i)

On the level of triangulated categories, F induces the pullback functor F ∗ : Loc(Y, k) →
D(I, k). One can then prove1 that this functor is full and faithful, with its image consisting
of those functors I → DVectk which are ’locally constant’, in the sense that they send all
morphisms of I to quasiisomorphisms. It is also seen that D(I, k) is indeed a good object:
it is the category of modules over a finite-dimensional algebra generated by I.

The functor F satisfies a technical condition (up to an equivalence, it is a Grothendieck
opfibration with contractible fibers, see Definition 3.21 for details). The functors with this
property are called resolutions in this paper and play an important role.

The examples considered above are all additive: the categories Db(X) and Loc(Y, k)
carry a triangulated structure. In this paper, we would like to develop the formalism of
categorical resolutions in the setting of homotopical algebra, that is, the setting of non-
linear algebraic structures, for example algebras that are associative, commutative or satisfy
any other identities only up to (coherent) homotopy. Because of this, one has to abandon
homological, linear methods in favour of homotopy-theoretic techniques. By the latter, we
mean the techniques of categorical homotopy theory [5, 16], so that the basic objects of study
are pairs (M,W) of a category M and a class of weak equivalences W, the pairs which should
be viewed as enhancements of the categories HoM obtained by localising M along W. In
the linear case, the derived categories like D(I, k) are localisations of the functor categories
Fun(I,DVectk) along the class W of natural transformations which are quasiisomorphisms
for each object i of I.

One of the approaches to homotopical algebraic structures goes back to Segal and consists,
in the case of commutative structures, of the following. Define Fin∗ to be the category of
finite sets and partially defined maps, i.e. a morphism from a finite set S to another finite
set T in Fin∗ is a map U → T defined on some subset U →֒ S. Take a symmetric monoidal
category M with the monoidal product operation denoted by ⊗. Define then M⊗ to be
the category with objects (S, {Xs}s∈S) where S ∈ Fin∗ and each Xs is an object of M. A
morphism (S, {Xs}s∈S) → (T, {Yt}t∈T ) consists of a partially defined map f : S → T , and
for each t ∈ T , of a morphism ⊗s∈f−1(t)Xs → Yt; when f−1(t) is empty, the monoidal product
over the empty set is the unit object. The compositions can be then defined with the help
of the coherence isomorphisms for the product ⊗.

There is an evident forgetful functor p : M⊗ → Fin∗; one can see that a monoid object
A ∈M gives a section of p, defined as S 7→ (S, {Xs}) with each Xs = A. Changing Fin∗ to
∆op, the opposite of the category of simplexes, one can, in a similar way, describe associative
monoids in (not necessarily symmetric) monoidal categories.

1We state this as a folklore result here in the introduction, although it can be obtained from the main
result of this paper
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The functor p : M⊗ → Fin∗ is a Grothendieck opfibration and also is the output of the
following procedure. Up to an equivalence, the symmetric monoidal structure on M can be
presented as a functor M : Fin∗ → Cat with M(1) ∼= M, and so that M satisfies a set of
special conditions. We then apply the Grothendieck construction (cf. Construction 2.6) to
M to obtain a functor

∫

M → Fin∗ with domain
∫

M ∼= M⊗.
To make this discussion homotopical, assume that the symmetric monoidal category M

has weak equivalences preserved by the monoidal product. Then in terms of the functor
M : Fin∗ → Cat, one would equip each value M(S) with weak equivalences preserved by
each M(f) : M(S) → M(T ); in terms of M⊗ → Fin∗, see Definition 2.15. One would then
take the category of sections Sect(Fin∗,M) and attempt to induce weak equivalences from
M⊗. However, while always possible, this may be not the right way to proceed. For example,
over a field k of positive characteristic, the category of commutative DG-algebras CDGAk is
a subcategory of Sect(Fin∗,DVect⊗k ). The homotopical structure induced on CDGAk from
the sections then matches the one induced by the forgetful functor U : CDGAk → DVectk,
and the latter homotopical structure is known to behave badly.

Sometimes [9] one can work with the category of sections and get reasonable results.
In those cases however, given a functor p : E → C which is a Grothendieck opfibration, we
assume that it can be reproduced as the Grothendieck construction of a functor E : C→ Cat,
with each E(c) being a (cofibrantly generated) model category, and for each f : c → c′, we
require that E(f) is a part of a Quillen adjunction. However, when E→ C does not have that
much structure, the methods of [9] are inapplicable. In the case of a symmetric monoidal
category, the functors M(f) : M(S)→ M(T ) are given, in essence, by tensor products, which
at best can be expected to preserve weak equivalences (what happens e.g. for DVectk), but
not to admit any adjoints. They do not even preserve (co)products.

This is where we propose our approach, which we call the formalism of derived sections.
Its roots can be traced back to [3]. For any small category C, there is another category,
called the simplicial replacement of C (Definition 3.1), which we denote by C. The objects

of C are sequences of morphisms c0
f1
→ ...

fn
→ cn of C, a morphism between c0

f1
→ ...

fn
→ cn and

c′0
f ′

1→ ...
f ′

n→ c′m consists of a map i : [m] → [n] in the category of simplexes ∆ (cf. Notation
1.1), such that ci(0) → ...→ ci(m) equals c′0 → ...→ c′m. A functor A : C→ N valued in any
category N supplies us in particular with spans of the form

A(c0)←− A(c0
f
→ c1) −→ A(c1), (ii)

for any morphism f : c0 → c1. If one requests that the morphism A(c0) ←− A(c0
f
→ c1)

is an isomorphism, we then can view this span as a morphism A(f) : A(c0) → A(c1) in N.
The functor A supplies other span diagrams for longer sequences of morphisms as well; and
one can see that imposing conditions like above on those spans permits to define a genuine
functor C→ N.

When N has weak equivalences W, one can instead require than in the spans like (ii),
the left map is a weak equivalence. This would provide us with the set of data which
would constitute a ’weak’ functor C → N in a rather natural sense. For example, from a
functor C → N satisfying the prescribed conditions, we easily obtain a functor from C to
the localisation HoN of N with respect to W. In good cases, the morphisms in HoN can be
described as fractions of the form X ← Y → Z with Y → X in W, thus C can be also seen
as the ’fraction replacement’ of the source C.
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When one works with opfibrations E→ C, we show that one can extend them to C using a

contravariant functor to C, defined by c0
f1
→ ...

fn
→ cn 7→ cn. The resulting lift E→ C will then

be a fibration (that is, it is equivalent to the Grothendieck construction of a contravariant
functor from C to Cat). Then a section A : C→ E of this fibration, acting on f : c0 → c1,
will supply the following span in E(c1) = E(c1)

E(f)A(c0)←− A(c0
f
→ c1) −→ A(c1), (iii)

where E(f) : E(c0) → E(c1) is the transition functor along f induced by the opfibration
structure. When there is a suitable homotopical structure on E, we can again require the
left map to be a weak equivalence. The category of such derived sections RSect(C,E) is thus
a subcategory of sections Sect(C,E) singled out by such conditions, and it can be equipped
with a homotopical structure.

When the opfibration in question is the symmetric monoidal homotopical category opfi-
bration M

⊗ → Fin∗, the span (iii) for a suitably normalised derived section A will, in effect,
lead to the following diagram in M⊗(1) = M for each fully defined map of finite sets S → 1:

A(1)⊗S ←− A(S → 1) −→ A(1).

The left map is moreover a weak equivalence; we thus see that, when inverting weak equiv-
alences, there are operations A(1)⊗S → A(1), which can be thought of equipping A(1) with
a weakly associative and commutative multiplication. A similar pattern occurs when one
studies factorisation algebras [1].

The authors of [3] introduced simplicial replacements to calculate homotopy colimits.
For similar reasons, the simplicial replacement technique is also useful if one studies the
base-change of derived sections along functors F : D → C. There is an induced functor
F : D→ C between the simplicial replacements, which induces a homotopical inverse image
functor F∗ : RSect(C,E) → RSect(D, F ∗E), where F ∗E → D is the pullback of E → C.
When F is a resolution, just like the functor (i) considered in the linear case, one would
like to see that F∗ is full and faithful on homotopy level, and ideally one would also like to
characterise its essential image. It turns out that the technique of simplicial replacements is
flexible enough as to allow to construct a homotopical ’direct image’ functor2

F! : Ho Sect(D,F
∗E)→ Ho Sect(C,E)

and a natural map ǫ : F!F
∗ → id. While ǫ is not in general a counit map (so that F! is

not a left adjoint to F∗), and while F! will not in general map RSect(D, F ∗E) to derived
sections over C, in the case of a resolution F : D → C, the functor F! and ǫ will ensure
the homotopical fullness and faithfulness of F∗. It will furthermore preserve those derived
sections which are locally constant (Definition 3.23), at least when E → C is good enough
(Definition 5.11), ensuring that the essential image of F∗ on homotopy level consists exactly
of locally constant derived sections. Thus our main results, Theorems 3.24 and 3.25, allow
us to homotopically embed RSect(C,E) into the category RSect(D, F ∗E) by the means of
the functor F∗ and have enough control over the essential image of this embedding.

Organisation of the paper. In the first section, we introduce the formalism of homo-
topical ∆-categories. The content of this section is not new and is somehow present in the

2The pullback fibration F∗
E→ D coincides with the extension of F ∗E→ D to D.
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folklore. For instance, the geometric realisation functor for homotopical categories, in the
setting which goes beyond simplicial model categories, has been considered in [2, Appendix].

In the second section, we also introduce some of the basic notions and constructions
related to the theory of Grothendieck (op)fibrations. Since Grothendieck opfibrations are
natural tools for encoding the notion of families of categories, we introduce a class of suitably
structured opfibrations, called homotopical ∆-opfibrations, which formalise the notion of a
family of ∆-categories.

In the third section, we introduce simplicial replacements and then use them to define
derived sections. We then define resolutions and formulate our main results, Theorems 3.24
and 3.25. The fourth section deals with the construction of the pushforward functor F! and
the map ǫ : F!F

∗ → id, the data which one can use to verify if the ’right adjoint’ F∗ is full
and faithful.

Finally, the fifth section consists of the analysis of the case of a resolution, outlining
the proof of Theorems 3.24 and 3.25. It is proven that in this case, the inverse image on
the derived sections is full and faithful on the homotopy level. In addition, under mild
assumptions we can characterise the essential image of the inverse image.

Acknowledgements. The author is enormously grateful to his co-advisors, Dmitry
Kaledin and Carlos Simpson, for their immense support and patience. In particular, Dmitry’s
insights on the problem were and are of great importance for the project. In the course of
research, the author benefitted a lot from conversations with Michael Batanin, Clemens
Berger, Emily Riehl, Bruno Valette and Gabriele Vezzosi. This work has been carried out
in and with the help of University of Nice and Higher School of Economics, and the author
enjoyed the friendly atmosphere of quite a few conferences that took place in Paris, Nice,
Copenhagen and Yaroslavl. The author is grateful for the aid of TOFIGROU and HOGT
ANR grants, which helped to cover some of his travel expenses. This paper uses Paul Taylor’s
diagrams package.

1 Generalities on geometric realisation

1.1 Homotopy colimits

Notation 1.1. For any category C, x ∈ C means that x is an object of C. We also write
f ∈ C for morphisms f : x→ y of C if there is no confusion. The set of morphisms between
two objects x, y of C is denoted C(x, y). The category of functors Fun(I,M) between two
categories I and M is often denoted as MI . Sometimes, given an object x ∈ C, we denote
again by x the functor from the terminal category to C which picks out x.

From now on, ∆ denotes the usual category of simplexes, i.e. the full subcategory of the
category of categories Cat (we ignore the size issues in this paper) spanned, for n ≥ 0, by
categories [n] with n + 1 objects 0, ..., n and exactly one morphism from i to j whenever
i ≤ j.

By SSet = Fun(∆op,Set) we denote the category of simplicial sets. We often identify
∆ with its image in SSet by the Yoneda embedding

∆• : ∆→ SSet = Fun(∆op,Set), [n] 7→ ∆n := ∆•([n]) = ∆(−, [n]). (1.1 )

For a simplicial object X : ∆op →M in a category M, denote Xn := X([n]) for any [n] ∈
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∆, and similarly, for bisimplicial objects Y : ∆op ×∆op →M, we write Ynm = Y (([n], [m])).
We also write ∆op

M := Fun(∆op,M), (∆×∆op)M := Fun(∆×∆op,M) and so on.

Definition 1.2. A homotopical category is a pair (M,W) where M is a category and W is
a subcategory of M which contains all objects and isomorphisms. We moreover require that
for a composable pair of morphisms f, g of M, if any two elements of {f, g, gf} are in W,
then the third one is in W as well.

We call W the category of weak equivalences. A morphism f : x → y of M is a weak
equivalence if it belongs to W.

Definition 1.3. Given two homotopical categories (M,WM), (N,WN) a functor F : M→ N

is homotopical iff F (WM) ⊂ WN . Equivalently, F takes weak equivalences of M to weak
equivalences of N.

Definition 1.4. A subcategory W ⊂ M satisfies the two-out-of-six property, if given three
maps in M denoted f, g, h, so that they are composable with compositions gf, hg, hgf , if
any two maps of f, g, h, gf, hg, hgf are in W, then all maps in this list are in W.

The subcategory of isomorphisms in any category satisfies two-out-of-six. The subcate-
gory of weak equivalences in any model category satisfies two-out-of-six as well [5].

Example 1.5. Some well known examples of homotopical categories are

• the category SSet of simplicial sets which can be equipped with a homotopical struc-
ture by defining W to be the subcategory of weak homotopy equivalences [6] of sim-
plicial sets.

• the category DVectk of unbounded chain complexes over a field k, with W being the
subcategory of quasiisomorphisms [10].

For a homotopical category (M,W) its localisation3 [5, 10] W−1
M will be also denoted

by HoM. Any homotopical functor FM→ N descends to a functor F : HoM→ HoN.

Definition 1.6. For I ∈ Cat and a homotopical category (M,W), the standard homotopi-
cal structure (MI ,WI) on the category of functors A : I → M consists of those natural
transformations α : A→ B which are valued in the maps of W. That is, for each i ∈ I, the
map α(i) : A(i)→ B(i) is a weak equivalence.

1.2 Tensors and ∆-categories

Denote by δ : ∆→ ∆×∆ the diagonal functor for ∆.

Definition 1.7. A ∆-structure on a category M consists of

1. a functor
⊗ : ∆×M→M, ([n], x) 7→ ∆n ⊗ x,

3We ignore the size issues in the discussion.
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2. a natural transformation diag depicted as a 2-square

∆×M
⊗ ✲ M

⇓ diag

∆×∆×M

δ × id
❄

id×⊗
✲ ∆×M

⊗
✻

3. a natural isomorphism of M-endofunctors: ∆0 ⊗−
∼
→ idM.

These data should satisfy the obvious coassociativity and counitality identities. A cat-
egory M with a ∆-structure is called a ∆-category if M is cocomplete and the functor ⊗
preserves colimits in the second argument.

Remark 1.8. It is immediate that a ∆-category M has a SSet-enrichment given by the
mapping spaces

MapM(x, y)n := M(∆n ⊗ x, y).

Example 1.9. The terminal category [0] can be equipped with a (trivial) ∆-structure.

Example 1.10. The category DVectk is a ∆-category for ∆n⊗M := C•(∆
n)⊗k M , where

C• is the chain complex functor. The natural transformation diag comes from the Alexander-
Whitney map as follows:

diag : C•(∆
n)

C•(δ)
→ C•(∆

n ×∆n)→ C•(∆
n)⊗k C•(∆

n).

Example 1.11. Any simplicial model category M is a ∆-category in the obvious way.

Proposition 1.12. If M is a ∆-category then ⊗ : ∆×M→M can be extended uniquely to
a functor ⊗ : SSet ×M→M such that

1. ⊗ preserves colimits in each argument,

2. there is a family of maps

a(S, T, x) : (S × T )⊗ x→ S ⊗ (T ⊗ x) (1.2 )

natural in S, T ∈ SSet and x ∈M, associative in a suitable sense and so that for each
[n], the composition

∆n ⊗ x→ (∆n ×∆n)⊗ x→ ∆n ⊗ (∆n ⊗ x)

equals diag(n, x) of Definition 1.7. Moreover, a(S, T, x) is an isomorphism whenever
S or T is discrete.

We sometimes call the natural map a(S, T, x) the action map.

Proof. Recall that to each simplicial set S we can associate its category of simplexes ∆/S.
Its objects are all simplexes of S, represented as maps ∆n → S, and a morphism between
two such objects is given by a map [n] → [m] in ∆ compatible with morphisms to S. Let
s : ∆/S → ∆ denote the functor (∆n → S) 7→ [n], and define S ⊗ x := lim−→∆/S

s⊗ x. �
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Example 1.13. For any cocomplete category M, there is canonical ∆-structure on ∆opM =
Fun(∆op,M), which produces a strict associative action of simplicial sets. Given a simplicial
set K and a simplicial object X ∈ ∆opM, we define

(K ⊗X)n = Kn ⊗Xn =
∐

Kn

Xn.

Definition 1.14. Given two ∆-categories M,N, a ∆-functor F : M → N is a functor
between underlying categories together with a family of morphisms

mF ([n], x) : ∆
n ⊗ F (x)→ F (∆n ⊗ x)

natural in both [n] and x. It is required to be compatible with the diagonal maps and unit
isomorphisms.

Remark 1.15. Equivalently, a ∆-functor F : M→ N is a simplical functor for the simplicial
enrichment mentioned in Remark 1.8. It is evident that the composition of ∆-functors is
naturally a ∆-functor.

Example 1.16. The tensor product of chain complexes

⊗k : DVectk ×DVectk → DVectk,

or more generally, for any finite4 set S, the S-fold tensor product

⊗k : DVectSk → DVectk

can be naturally equipped with the structure of a ∆-functor.

Proposition 1.17. A ∆-functor on F : M → N between ∆-categories determines a family
of maps mF (S, x) : S ⊗ F (x) → F (S ⊗ x) natural in S ∈ SSet and x ∈ M, which restricts
to mF ([n], x) for S = ∆n and respects the action maps of Proposition 1.12.

Proof. Define mF (S, x) as

S ⊗ F (x) ∼= lim−→∆/S
s⊗ F (x)

mF−→ lim−→∆/S
F (s⊗ x)→ F (lim−→∆/S

s⊗ x) ∼= F (S ⊗ x).

Then the result follows. �

Recall that for a functor F : Iop× I →M, its coend [14, IX.6] is defined as the universal

object
∫ I

F in M together with maps F (i, i) →
∫ I

F for each i ∈ I, such that for any
morphism i→ i′, the induced diagram commutes:

F (i′, i) ✲ F (i, i)

F (i′, i′)
❄

✲
∫ I

F.

❄

Coends exist in M when M is cocomplete.

4S = ∗ corresponds to the identity functor, S = ∅ corresponds to the inclusion of k in DVectk.
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Definition 1.18. Let M be a ∆-category, and X : ∆op → M a simplicial object in M. Its
geometric realisation is defined as

|X| :=

∫ ∆op

∆• ⊗X

Where ∆• is the Yoneda functor (1.1 ). Varying X, we get a functor | − | : ∆opM→M.

For S ∈ SSet and A ∈ M, it is evident that the realisation of the simplicial object
[n] 7→ Sn ⊗ A is canonically isomorphic to S ⊗A.

Proposition 1.19. For a ∆-functor f : M→ N we have a canonical natural transformation

sf : |f(−)|N → f | − |M

between the corresponding geometric realisations, where f : ∆opM → ∆opN is the induced
functor. It is compatible with the composition in the following sense: the pasting of

∆op
M

f✲ ∆op
N

g✲ ∆op
K

sf

⇓
sg

⇓

M

❄

f
✲ N

❄

g
✲ K

❄

with vertical functors given by realisations, is equal to sgf .

Proof. A tedious but straightforward check. �

1.3 Homotopical ∆-categories

For any bisimplicial object X ∈ (∆op × ∆op)M denote by δ∗X ∈ ∆opM the diagonal
simplicial object, that is, the pullback of X along the diagonal map δ : ∆op → ∆op ×∆op.

Definition 1.20. A homotopical ∆-structure on a category M consists of

• a homotopical structure given by the subcategory W ⊂M,

• a ∆-structure with the functor ⊗ : ∆×M→M,

so that the following conditions are satisfied:

1. the subcategory W satisfies two-out-of-six (Definition 1.4),

2. M is a ∆-category and W is preserved by small coproducts,

3. the induced functor ⊗ : SSet×M→M respects weak equivalences in each variable,

4. the induced action map (1.2 ) a(S, T, x) : (S×T )⊗x→ S⊗(T⊗x) is a weak equivalence
for each x ∈M and S, T ∈ SSet,
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5. the geometric realisation functor | − | : ∆opM → M preserves pointwise weak equiv-
alences and for each bisimplicial object X ∈ (∆op × ∆op)M, the natural composite
map

∫ ∆op

∆• ⊗ δ∗X →

∫ ∆op

∆• ⊗ (∆• ⊗ δ∗X)→

∫ ∆op×∆op

∆• ⊗ (∆• ⊗X)

is a weak equivalence.

A category together with a homotopical ∆-structure is called a homotopical ∆-category.

Example 1.21. Some simplicial model categories M, for instance simplicial presheaves with
injective model structure or simplicial vector spaces, produce examples of homotopical ∆-
categories. The nontrivial point here is that the realisation functor ∆opM → M only pre-
serves weak equivalences between Reedy cofibrant objects [6, VII.3.6], but for the model
categories just mentioned, all objects of ∆opM are automatically cofibrant.

Example 1.22. The category DVectk is a homotopical ∆-category for the ∆-structure of
Example 1.10 and W being the class of quasiisomorphisms. In this case, all simplicial objects
are Reedy-cofibrant, and the functor of geometric realisation is known to be left Quillen for
the Reedy model structure on simplicial objects [2, Lemma 9.8].

We assemble together some of the properties of geometric realisation. Define the category
∆∗ as a subcategory of ∆ consisting of all objects and maps f : [m]→ [n] such that f(m) = n.
One has the adjunction

j : ∆ ⇋ ∆∗ : i

where j([n]) = [n + 1] should be thought as the inclusion of [n] as first n + 1 elements of
[n+ 1].

Definition 1.23. An augmented5 simplicial object is a functor X̄ : ∆op
∗ →M. A simplicial

object X : ∆op →M admits an augmentation iff X ∼= j∗X̄ for some X̄ : ∆op
∗ →M.

For a bisimplicial object X : ∆op×∆op →M, we denote by ||X|2|1 its repeated realisation,
that is the coend of the functor

([i], [j], [k], [l]) 7→ ∆i ⊗ (∆j ⊗Xkl)

and by ||X|1|2| its transpose realisation, which is just a repeated realisation of a transposed
bisimplicial object ([n], [m]) 7→ Xmn.

Proposition 1.24. For a homotopical ∆-category M, the following is true:

1. For any simplicial object X admitting an augmentation X̄, its realisation is weakly
equivalent to X−1 := X̄0. Precisely, there are weak equivalences

X−1 → |X| → X−1

with composition identity that come from the extra maps X−1 → Xn and Xn → X−1.

5In effect, that corresponds to what is usually called an augmented simplicial object together with a
choice of a contracting homotopy.
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2. Given a morphism X → Y of bisimplicial objects, we have

(||X|2|1 → ||Y |2|1) ∈W⇔ (||X|1|2 → ||Y |1|2) ∈W

To distinguish simplicial and bisimplicial objects, we write X• ([n] 7→ Xn) and X••

(([n], [m]) 7→ Xnm) for a simplicial and a bisimplicial object, correspondingly.

Proof. The first statement is proven in a few steps. Denote the tensoring of Example
1.13 by ⊛ : SSet × ∆opM → ∆opM. We now prove that the structure of a homotopical
∆-category on M gives rise to a family of weak equivalences |K ⊛X•| → K ⊗ |X•| natural
in K ∈ SSet and X• ∈ ∆opM. The maps are constructed as the following sequence:

K ⊗ |X•| =

(
∫ ∆op

∆• ⊗K•

)

⊗

(
∫ ∆op

∆• ⊗X•

)

∼=

∫ ∆op×∆op

∆• ⊗ (∆• ⊗
∐

K•

X•)

←

∫ ∆op

∆• ⊗ δ∗(
∐

K•

X•) ∼=

∫ ∆op

∆• ⊗ (K ⊛X•) = |K ⊛X•|.

The only non-invertible map in the chain above,

∫ ∆op×∆op

∆• ⊗ (∆• ⊗
∐

K•

X•)←

∫ ∆op

∆• ⊗ δ∗(
∐

K•

X•)

is a weak equivalence by Definition 1.20.
By definition, a simplicial homotopy equivalence in ∆opM consists of two maps f : X• →

Y• and g : Y• → X•, and two diagrams

X• Y•

∆1
⊛X•

❄ h✲ X•,

gf
✲

∆1
⊛ Y•

❄ h′

✲ Y•

fg
✲

X•

✻

id

✲

Y•

✻

id

✲

where the vertical maps are induced from the two inclusions [0] ⇒ [1] in ∆. The natural weak
equivalence |K ⊛X•| → K ⊗ |X•| then implies that, after the realisation, the compositions
|g||f | and |f ||g| are weak equivalences. By two-out-of-six we get that |g| and |f | are weak
equivalences as well.

It is known [16, Lemma 4.5.1] that X• admitting an augmentation X̄• in the sense of
Definition 1.23 leads to a retract6 diagram in ∆opM

X̄0 → X• → X̄0

naturally appearing from the extra morphisms in X̄•. In this diagram, both maps are sim-
plicial homotopy equivalences in ∆opM; they thus become weak equivalences after applying
geometric realisation.

6That is, the composition of two maps is the identity morphism.
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For the last statement of the proposition, observe that both maps in question are weakly
equivalent (that is, weakly equivalent as objects of the category M

[1] of maps in M) to the
map

∫ ∆op

∆• ⊗ δ∗(X••)→

∫ ∆op

∆• ⊗ δ∗(Y••)

which finishes the proof. �

2 Fibrations, opfibrations, sections

2.1 Basic notions

Definition 2.1. Let p : E→ C be a functor. A morphism α : x→ y in E is p-Cartesian, or
simply Cartesian, if, for every morphism β : z → y of E such that p(β) = p(α), there exists
a unique morphism γ : z → x such that β = αγ and p(γ) = idp(z).

A morphism α : x→ y in E is p-opCartesian if it is Cartesian for pop : Eop → Cop.

Definition 2.2. A functor p : E → C is called a Grothendieck fibration (or simply a fibra-
tion) of categories iff the following two conditions are satisfied:

• For every morphism f : a → b of C and y ∈ E such that p(y) = b there exists a
Cartesian morphism α : x→ y in E covering α, that is, p(α) = f .

• The composition of Cartesian morphisms is a Cartesian morphism.

Dually, p is called an opfibration of categories iff pop : Eop → Cop is a fibration of categories.

Example 2.3. From a symmetric monoidal category M, one can obtain an opfibration over
the category Fin∗ of finite sets and partially defined maps. The category M⊗ has objects
(S, {Xs}s∈S) where S ∈ Fin∗ and each Xs is an object of M; a morphism (S, {Xs}s∈S) →
(T, {Yt}t∈T ) is then a partially defined map f : S → T , and a morphism ⊗s∈f−1(t)Xs → Yt for
each t ∈ T . The forgetful functor M⊗ → Fin∗ is an opfibration. It is possible to characterise
exactly the opfibrations arising from symmetric monoidal categories; see [13, 17] for details.

Definition 2.4. Let p : E → C and q : F → C be two (op)fibrations. A lax morphism
between p and q is a functor F : E→ F such that q◦F = p. F is called a Cartesian morphism
if, in addition, F takes (op)Cartesian morphisms of E to (op)Cartesian morphisms of F. A
section of p is a lax morphism s from the (op)fibration idC : C→ C to p.

We denote by Sect(C,E) the category of sections. The morphisms in this category are
natural transformations α : F → F ′ such that pointwise αc projects to idc.

Example 2.5. Any algebra object A in a symmetric monoidal category M gives a section
A : Fin∗ → M⊗ by the rule S 7→ (A, ..., A) ∈ M⊗(S). In fact, consider any section S :
Fin∗ →M⊗ which is Cartesian along the inert [13] maps of Fin∗, that is, those morphisms
S → T which are partially defined identity maps. Then we can naturally extract from S a
commutative monoid structure on S(1).

The following is well known (see e.g. [18]):
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Construction 2.6. Let p : E → C be an opfibration. For a ∈ C, denote by E(a) = p−1(a)
the fiber of p over a. Let f : a→ b be a morphism in C and x ∈ E(a). Then we can choose
an opCartesian morphism α : x → y such that p(α) = f . This specifies an object y ∈ E(b).
It can then be shown that the prescription x 7→ y defines a functor f! : E(a) → E(b). One
can then check that g! ◦ f! ∼= (g ◦ f)! in a coherent way.

There is also an inverse construction, which, given a functor F from C to Cat, produces
an opfibration, which we denote7

∫

F → C (and call the Grothendieck construction of F ).
An object of

∫

F is a pair (c, x) of c ∈ C and x ∈ F (c), and a morphism (c, x) → (c′, x′)
consists of f : c→ c′ together with a map α : F (f)(x)→ x′ in F (x′).

An opfibration E → C is strictly cleavable, if, by a choice of opCartesian arrows, the
assignment c 7→ E(c) can be made into a strict functor C → Cat. Every opfibration is
equivalent to a strictly cleavable one via a Cartesian morphism of (op)fibrations.

Example 2.7. The category ∆/S for a simplicial set S is exactly the domain of the fibration
∫

S → ∆, where we view S as a functor ∆op → Set ⊂ Cat.

When viewed as a functor C → Cat, any opfibration can be trivially viewed as a con-
travariant functor from Cop to Cat. This suggests the following:

Definition 2.8. Given an opfibration p : E → C, a transpose fibration of p is a fibration
p⊤ : E⊤ → Cop, equivalent in Fib(Cop) to the Grothendieck construction of the functor

E : (Cop)op → Cat, c 7→ E(c).

Construction 2.9. Fix an opfibration p : E→ C.
Define a category, again denoted as E⊤ as follows:

1. Ob(E⊤) = Ob(E)

2. A morphism from x→ z in E⊤ is an isomorphism class of cospans in E

x −→ y ←− z

such that the left arrow is fiberwise8 and the right arrow is opCartesian.

There is an evident functor p⊤ : E⊤ → C
op which sends maps x −→ y ←− z to p(y ←− z). A

morphism of E⊤ is p⊤-Cartesian iff it can be represented by a span of the form y
idy
−→ y ←− z.

Given a functor F : D → C, we can pull back (op)fibrations over C to D, with the
result again being (op)fibrations. The pullback operation (E → C) 7→ (F ∗

E → D) de-
fines pseudofunctors9 Fib and OpFib from Catop to Cat. Given a section A : C → E

of, say, an (op)fibration E → C we obtain from it the section F ∗A : D → F ∗E of the
pullback (op)fibration F ∗E → D. The operation on sections defines a pullback functor
F ∗ : Sect(C,E)→ Sect(D, F ∗E).

7The symbol
∫

was already used for coends; in fact,
∫

F can be reproduced as a certain coend.
8That is, p(x→ y) = idp(x).
9See [18] for a definition; this only means that the composition of morphisms is preserved up to a (coherent)

natural isomorphism.
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Proposition 2.10. Assume given a fibration E→ C and a natural transformation α : F →
G of functors F,G : D→ C. Then

• there is a natural Cartesian map of fibrations Rα : G∗E → F ∗E, which we call the
restriction map,

• given a section A : C→ E, there is a natural morphism of sections

F ∗A→ RαG
∗A.

Proof. A direct verification. �

Definition 2.11. Given a fibration p : F → C and an opfibration q : O → C, a power
fibration is a fibration F

O → C satisfying the following universal property: for any F : D→ C,
there is a natural equivalence of categories

Sect(D, F ∗
F

O) ∼= Sect(F ∗
O, q∗F ∗

F).

In functor terms, it corresponds to

C
op Oop × F✲ Catop ×Cat

(−)op × id✲ Catop ×Cat
Fun(−,−)✲ Cat.

We can think of FO as corresponding to an assignment c 7→ Fun(O(c),E(c)), with transition
functors being a combination of those for O and F.

Lemma 2.12. For a functor F : D→ C, and F,O as above, the natural Cartesian map

(F ∗
F)F

∗O → F ∗(FO)

is an equivalence over C.

Proof. Clear. �

Definition 2.13. Let p : E→ C be an opfibration and I ∈ Cat a category.

• A product of I and p : E→ C is the functor I × p : I × E→ C, (i, x) 7→ p(x).

• A powering of p with I is the functor EI → C defined as the powering (cf. Definition
2.11) of E→ C with respect to the trivial fibration I × C→ C.

The definitions of products and powers for fibrations are similar.

Proposition 2.14. Let E→ C be a fibration with cocomplete fibres, and

O
P ✲ I × C

C
✛

✲

be an opCartesian morphism of opfibrations. Then the obvious functor

P ∗ : Sect(C,EI)→ Sect(C,EO)

admits a left adjoint P!.
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Proof. The existence of an adjoint is preserved under equivalence and thus we assume
that E → C is strictly cleavable. Then, any object of EO can be represented as a functor
X : O(c) → E(c) for some c ∈ C. We define P! : E

O → EI by setting P!X to be the left Kan
extension [14] of X along the map Pc : O(c)→ I. One can then check it induces the functor
which we also denote as P! on sections left adjoint do P ∗. �

2.2 Homotopical ∆-opfibrations

Definition 2.15. A homotopical structure on an opfibration E→ C consists of a homotopi-
cal structure on E, given by a subcategory W ⊂ E of weak equivalences, compatible with the
opfibration in the following sense:

1. the image of W in C consists of identity morphisms,

2. in a commutative square

A
α✲ B

A′

f
❄ α′

✲ B′

f ′

❄

if we have f ∈W and α, α′ are opCartesian, then f ′ ∈W.

Definition 2.16. A ∆-structure on an opfibration E → C consists of a ∆-structure ⊗ :
∆× E→ E such that

1. ⊗ is the functor over C,

2. the natural transformation diag and unitality isomorphism (see Definition 1.7) are
fiberwise.

Definition 2.17. A homotopical ∆-opfibration is an opfibration E → C together with a
homotopical structure and a ∆-structure, such that for each c ∈ C, the induced structure on
the fiber E(c) is that of a homotopical ∆-category.

We often call an opfibration with a homotopical ∆-structure as simply a homotopical
∆-opfibration.

One can see that for an opfibration with homotopical structure, W =
∐

c∈CW(c), with
(E(c),W(c)) being a homotopical category for each c ∈ C. The transition functors of the
opfibration send W(c) to W(c′).

Definition 2.18. Given an opfibration E → C with a homotopical structure, a morphism
α : x → y of E is weakly opCartesian if it can be factored as an opCartesian morphism
x → α!x followed by a weak equivalence α!x → y. Dually, one has the notion of a weakly
Cartesian morphism for homotopical fibrations.
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Example 2.19. Chain complexes give us homotopical ∆-opfibration DVect⊗ → Fin∗. The
∆-structure on the opfibration is essentially explained in Examples 1.10 and 1.16, and the
weak equivalences are simply induced from the quasiisomorphisms of DVectk. In the same
way, those simplicial model categories which give us a homotopical ∆-structure (Example
1.21) can as well give us homotopical ∆-opfibrations. If such a category M in addition
possesses a compatible monoidal structure (this is true, for example, both for simplicial
presheaves and for simplicial vector spaces), then the associated opfibration M

⊗ → Fin∗ is
a homotopical ∆-opfibration.

Remark 2.20. We can think of a ∆-structure on an opfibration as of a collection of fiberwise
∆-structures ⊗c : ∆× E(c)→ E(c) together with 2-squares

∆× E(c)
⊗c ✲ E(c)

mf

⇒

∆× E(c′)

f!

❄ ⊗c′ ✲ E(c′)

f!

❄

so that each mf : −⊗c′ f!− → f!(−⊗c −) becomes a morphism of ∆-structures. Moreover,
f 7→ mf is suitably functorial in f .

3 Derived sections

3.1 Simplicial replacements

Definition 3.1 (Cf [3, 16]). Given a category C, its simplicial replacement, denoted C,
is the opposite of ∆/NC =

∫

NC, that is the opposite of the category of simplexes of the
simplicial set NC (cf. Example 2.7).

An object of C is a sequence c0 → ...→ cn of composable morphisms in C. Any functor
F : D→ C induces a functor F : D→ C : by the rule F(d0 → ...→ dn) = Fd0 → ...→ Fdn.
Observe that F commutes with the projections from D and C to ∆op. The following is then
evident:

Lemma 3.2. The assignment C 7→ C defines a functor from Cat to the full10 subcategory
of Cat/(∆op), consisting of opfibrations over ∆op with discrete fibers. �

Notation 3.3. We often denote by π : C → ∆op the natural projection. An object c0 →
...→ cn of C will be denoted as c[n] (so that π(c[n]) = [n]) or simply as c when its underlying
∆-object is not important. Given two objects c[n], c

′
[m], and a map α : cn → c′0, we denote

by c[n] ∗
α c′[m] the ’concatenated’ object

c0 → ...→ cn
α
→ c′0 → ...→ c′n.

10If two opfibrations have discrete fibers, every lax morphism of opfibrations is automatically Cartesian
and vice versa.
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Lemma 3.4. There are functors hC : C → C and tC : C → Cop given by c[n] 7→ c0 or
c[n] 7→ cn respectively. �

Definition 3.5. A map ζ : c[n] → c′[m] is anchor iff its projection in ∆, π(ζ) : [m]→ [n], is

an interval inclusion of [m] as first m+ 1 elements of [n], i.e. π(ζ)(i) = i for 0 ≤ i ≤ m. In
particular, m should be less or equal than n.

A map ζ : c[n] → c′[m] is structural iff its image under tC is an identity and the underlying

map in ∆op preserves the endpoints: π(ζ)(m) = n.
We denote by AC and SC the sets of all anchor and structure maps respectively.

Every map c → c′ can be uniquely factored as an anchor map c → c′′ followed by a
structural map c′′ → c.

Proposition 3.6 (Localisation property). The functor hC : C → C is a localisation of
C along the set of anchor maps AC, that is, any functor X : C → N which sends AC to
isomorphisms of N factors essentially uniquely as X = X̃ ◦ hC for X̃ : C→ N.

Proof. Is well known (see e.g. [16]). �

Given two functors D
F
→ C

G
← B, there is a useful categorical notion called the comma

category F/G [14]. Its objects are triples (d, b, α : F (d) → G(b)) for d ∈ D and b ∈ B. We
need the following adaptation of this notion:

Definition 3.7. Given two a diagram D
F
→ C

G
← B, the associated simplicial comma object

F//G is defined as the opposite of the category
∫

F//G, where F//G : ∆op×∆op → Set is the
bisimplicial set

F//G([n], [m]) = {d[n],b[m], α : F (dn)→ G(b0)}

viewed as a contravariant functor to Cat.

We often write D//G or F//C instead of F//G if F or G is the identity functor. Given an
object c ∈ C, we also consider F//c where we treat c as a functor [0] → C and denote its
simplicial replacement by the same letter. The canonical functor F//G → ∆op × ∆op is an
opfibration with discrete fibers F//G([n], [m]) = F//G([n], [m]).

There is a concatenation functor con : ∆×∆→ ∆, ([n], [m]) 7→ [n] ∗ [m] = [n +m+ 1],
and we think that [n] is included as first n+1 elements of [n+m+1] and [m] as last [m+1]
elements. The action of con on morphisms is then evident.

Then we observe the following. There is a diagram in Cat

F//G

D
F ✲

prD

✛
C

⇐

❄

⇒

✛ G
B

prB

✲

(3.1 )
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with the middle map denoted prF//G, covering the diagram

∆op ×∆op

∆op id ✲

π1

✛
∆op

⇐

❄

⇒

✛ id
∆op

π2

✲

(3.2 )

with the middle map acting as ([n], [m]) 7→ [n] ∗ [m]. Moreover,

• the left natural transformation prF//G → F ◦ prD is valued in anchor maps AC,

• the right natural transformation prF//G → G ◦ prB is valued in structural maps SC,

• prB is an opfibration whose classifying functor B→ Cat sends anchor maps to equiv-
alences of categories.

All this is evident from Definition 3.7: prD maps (d[n],b[m], α : F (dn) → G(b0)) to d[n],
prB maps it to b[m], and prF//G maps it to F(d[n]) ∗

α G(b[m]).

Definition 3.8. For an opfibration E → C, its simplicial extension is a fibration E → C

which is the pullback of a transpose fibration E
⊤ → C

op along tC : C→ C
op.

Remark 3.9. Given two functors k1, k2 : K → C and a natural transformation α : k1 → k2
valued in structural maps SC, we have that the induced Cartesian map of fibrations

α∗ : k∗
2E→ k∗

1E

is in fact an equivalence.

We can also pull back E→ C to C by the means of the functor hC : C→ C.

Proposition 3.10. Given an opfibration p : E → C, there is a morphism T : h∗
C
E → E

commuting with functors to C which sends opCartesian maps of h∗
C
E to Cartesian maps of

E and is universal, i.e. any other functor G : h∗
C
E→ E over C with such a property factors

through T up to a natural isomorphism.

Proof. To construct T without passing to cleavable opfibrations, consider the category X

defined as follows.

• An object of X is a pair (c[n], α) where c[n] = c0 → ... → cn is an object of C and
α : x→ y is an opCartesian map in E which covers the composition c0 → cn in C (i.e.
p(α) = c0 → cn),

• A morphism (c[n], α : x → y) → (c′[m], β : x′ → y′) is a map γ : x → x′ which covers
the induced map c0 → c′0.
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One can check that the natural functor X→ C is an opfibration, and it is easy to see that the
assignment (c, α : x → y) 7→ (c, x) defines an equivalence over C of opfibrations X

∼
→ h∗

C
E.

The assignment (c, α : x → y) 7→ (c, y), on the other hand, defines a functor X → E over
C which envoys opCartesian maps of X to Cartesian maps of E. Inverting the equivalence
X

∼
→ h∗

C
E, we obtain the desired functor T : h∗

C
E → E, and one can verify its universal

property. �

Proposition 3.11. Let E → C be a ∆-opfibration. There is a lax realisation morphism of
fibrations

E∆op | − | ✲ E

C
✛

✲

so that on each fiber, the functor ∆opE(c) → E(c) is the geometric realisation for the ∆-
category E(c) = E(tC(c)).

Proof. One can assume that E→ C is strictly cleavable. Any object of E∆op

is a functor11

X : ∆op → E(c) = E(t(c)) for some c ∈ C. Take its realisation |X| using the induced
∆-structure on E(t(c)).

Given a morphism α : X → Y in E∆op

covering f : c→ c′ in C, there is an induced map
f : t(c′)→ t(c) in C, and then we have a sequence of maps

f!|X| = f!

∫

∆• ⊗X ←

∫

f!(∆
• ⊗X)←

∫

∆• ⊗ f!X = |f!X|.

Here f! : E(c
′) → E(c) is the functor obtained by the choice of Cartesian arrows for E (or

opCartesian arrows of E), and we also used the maps f!(∆
•⊗X)← ∆•⊗ f!X which appear

as explained in Remark 2.20. That defines | − | on morphisms. Its associativity then follows
from Proposition 1.19. �

Let I be any category and denote by I its simplicial replacement.

Definition 3.12. For X : I → M, its realisation is defined as |ΠX|, where | − | is the
geometric realisation for M and Π : Fun(I,M) → ∆op

M is the functor left adjoint to the
pullback along the canonical projection π : I→ ∆op.

For any object i ∈ I, there is naturally a map X(i)→ |ΠX|.

Lemma 3.13. Let I be a category with a terminal object 1, and M be a homotopical ∆-
category. Then any X : I→M sending the anchor maps AI to maps in W, the natural map
X(1)→ |ΠX| is an equivalence.

Proof. Consider an ’augmented’ functor Xaug : i 7→ X(i ∗x 1) (here x corresponds to
the canonical map to the terminal object tI(i) → 1). It is then easy to see that there’s a
canonical equivalence Xaug → X coming from the maps X(i∗x1)→ X(i). It then becomes an

11We write t for tC in this proof.
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equivalence of realisations. The object ΠXaug, however, can be completed to an augmented
simplicial object X̃aug : ∆op

+ →M defined by the formula

X̃aug
n = ΠXaug

n−1, n > 0,

X̃aug
0 = X(1).

in particular, one augmentation map X(1) → X̃aug
1 =

∐

i X(i → 1) comes from the image
X(1)→ X(1→ 1) of the degeneracy map 1→ (1→ 1) and the other map

X̃aug
1 =

∐

i

X(i→ 1)→ X(1)

is just the coproduct of the natural maps X(i → 1) → X(1). By Proposition 1.24 we have
the equivalences

X(1)→ |ΠXaug| → X(1)

and we can see that the composite map X(1)→ |ΠXaug| → |ΠX|, which is an equivalence,
is equal to the map in question. �

Lemma 3.14. Let I be a category with contractible nerve and M be a homotopical ∆-
category. If a functor X : I → M takes all morphisms of I to isomorphisms, then the
natural map X(i)→ |ΠX| is an equivalence for any i ∈ I.

Proof. Fix i ∈ I. Proposition 3.6 implies that the functor X can be factored as X ◦ hI

with X : I → M. X moreover factors through the fundamental groupoid of I, which is
contractible. One can then see that

ΠXn =
∐

i[n]

X(i[n]) ∼=
∐

i[n]

(X ◦ hI)(i[n]) ∼=
∐

i[n]

X(i0) ∼=
∐

i[n]

X(i),

and so |ΠX| = NI ⊗ X(i), which is equivalent to X(i), and the map X(i) → |ΠX| in
question is a homotopy inverse of the projection NI ⊗X(i)→ X(i). �

3.2 Homotopical category of derived sections

Definition 3.15. Given an opfibration E→ C, its category of presections is the category

PSect(C,E) := SectC(C,E).

Recall the functors hC and T discussed before in Lemma 3.4 and Proposition 3.10.

Proposition 3.16. The assignment S 7→ T ◦ (h∗
C
S) defines a functor i : Sect(C,E) →

PSect(C,E). Its essential image consists of the presections sending the anchor maps AC to
Cartesian morphisms in E.

Proof. Note that for any anchor map a : c[n] → c[k] a map in h∗
C
E is opCartesian over a

iff it is an isomorphism x
∼
→ x in E(c0). On one hand, the functor T sends such maps to

Cartesian maps in E; on the other hand, the pullback section h∗
C
S : C → h∗

C
E sends anchor

maps AC precisely to identities in E. Further details are then clear. �
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Remark 3.17. If E → C is strictly cleavable, then S ∈ Sect(C,E) is sent by the functor

above to i(S) such that i(S)(c0
f1
→ ...

fn
→ cn) = (fn...f1)!S(c0).

Assume now that E→ C has a homotopical structure W.

Definition 3.18. The standard homotopical structure on PSect(C,E) is defined by the sub-
category of those morphisms A→ A′ for which the map A(c[n])→ A′(c[n]) is in W for each
c[n] ∈ C.

We henceforth assume this homotopical structure whenever dealing with PSect(C,E). We
denote by HoPSect(C,E) the corresponding localisation.

Definition 3.19. A presection A : C → E is a derived section iff A sends anchor maps to
weakly Cartesian moprhisms in E.

We denote by RSect(C,E) the full subcategory of PSect(C,E). We restrict the standard
homotopical structure from PSect(C,E) to RSect(C,E) and denote by HoRSect(C,E) the
corresponding localisation.

Lemma 3.20. Let A : C → E be a derived section and s : c[n] → c′[m] be such a map in

C that its underlying map s : [m] → [n] in ∆ is the surjective left inverse of the inclusion
i : [n]→ [m] of [n] as last n + 1 objects of [m]. Then A(s) is weakly Cartesian in E.

Proof. Clear. �

We can now formulate the main results of this paper.

Definition 3.21. A functor F : D→ C is a resolution if it is an opfibration and each fiber
D(c) is contractible (that is, its nerve ND(c) is contractible).

Remark 3.22. Resolutions F : D → C should properly be called partial resolutions since
we do not make the claim about the smoothness (in any sense) of categories defined over D.

Given a functor F : D→ C, there is an induced morphism

F
∗ : PSect(C,E) = Sect(C,E)→ Sect(D, F ∗E) = PSect(D, F ∗

E)

which restricts well to
F
∗ : RSect(C,E)→ RSect(D, F ∗

E)

and is moreover homotopical.
Denote by D(c) the simplicial replacement of D(c).

Definition 3.23. Let F : D → C be a resolution. A presection A : D → F∗E is locally
constant iff for any fibre D(c) over c ∈ C, the composite functor

D(c)→ D
A
→ E(c) = E(c)

sends all morphisms of the domain to weak equivalences. A derived presection is locally
constant if it is locally constant as a presection.
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We denote by PSect(D,E)lc and RSect(D,E)lc the corresponding full homotopical sub-
categories of locally constant (pre)sections. It is clear that any (pre)section of the form F∗A
is locally constant.

Theorem 3.24. Let E → C be a homotopical ∆-opfibration and F : D → C be a reso-
lution (see Definition 3.21). Then after passing to localisations, the pullback functor F∗ :
HoRSect(C,E)→ HoRSect(D,E) is full and faithful.

We can also characterise the homotopical essential image of F. Unfortunately, we only know
how to do it for F -special (cf. Definition 5.11) homotopical ∆-opfibrations:

Theorem 3.25. Let F : D → C be a resolution and E → C be a F -special homotopical
∆-opfibration. Then the functor F∗ : HoRSect(C,E)→ HoRSect(D,E)lc is an equivalence.

4 The pushforward functor

4.1 Main construction

Fix a functor F : D → C and a homotopical ∆-opfibration E → C. Recall the diagram
(3.1 ) for G = idC:

F//C

D
F ✲

prD

✛
C

⇐

❄

⇒

✛ idC
C.

prC

✲

(4.1 )

The middle map is prF//C. This diagram gives us in particular the restriction morphism of
Proposition 2.10

RF : (FprD)
∗E→ pr∗F//CE. (4.2 )

This is a map of fibrations over F//C.
Next, we observe there are equivalences

Sect(F//C, pr∗F//CE)
∼
← Sect(F//C, pr∗CE)

∼
→ Sect(C,EF//C) (4.3 )

where the right equivalence is just an instance of the universal property of Definition 2.11
(remember that prC is an opfibration). The left map comes from the equivalence

pr∗CE
∼
→ pr∗F//CE

provided by Remark 3.9. We denote by

DF : Sect(F//C, pr∗F//CE)
∼
→ Sect(C,EF//C) (4.4 )

the resulting equivalence constructed from (4.3 ).
There is a natural ’projection’ functor Π over C,

F//C
Π ✲ ∆op × C

C
✛prC ✲
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which acts as (d[n], c[m], α : F (dn) → c0) 7→ ([n], c[m]). Exponentiating and taking sections,
we obtain a functor Π∗ : Sect(C,E∆op

)→ Sect(C,EF//C).

Proposition 4.1. The functor

Π∗ : Sect(C,E∆op

)→ Sect(C,EF//C)

admits a homotopical left adjoint

Π! : Sect(C,E
F//C)→ Sect(C,E∆op

) (4.5 )

Proof. See Proposition 2.14 for the construction of Π!. To observe that it is homotopical,
note that for each c, the functor F//C(c)→ ∆op is a discrete opfibration, and the pushforward
along it amounts to taking coproducts, which are homotopical. �

Take a D-presection S : D→ F∗E. Then apply functors (4.2 ), (4.4 ) and (4.5 ) to obtain

B•(S) := Π!DF(RF ◦ pr
∗
DS) ∈ Sect(C,E∆). (4.6 )

Applying the realisation functor | − | from Proposition 3.11, we get the following:

Definition 4.2. The derived pushforward of a presection A : D→ F∗E is defined as

F!(S) := |B•(S)| = |Π!DF(RF ◦ pr
∗
DS)|.

this defines a homotopical functor F! : PSect(D,E)→ PSect(C,E).

Remark 4.3. Over an object c[m] = c0
f1
→ ...

fm
→ cm, we have

Bn(S)(c[m]) =
∐

d[n],α:F (dn)→c0

(fm...f1α)!S(d[n])

where (fm...f1α)! is the transition functor E(F (dn))→ E(cm). This expression is very similar
to the bar construction (cf. [3, 16]); the value F!S(c[m]) is just the realisation of this simplicial
object Bn(S)(c[m]).

4.2 Unit and counit correspondences

Given a C-presection A : C → E, use prF//C from the diagram (4.1 ) and functors (4.2 ),
(4.4 ) and (4.5 ) to obtain

BF

• (A) := Π!DF(pr
∗
F//CA) ∈ Sect(C,E∆). (4.7 )

Denote by AF the realisation of BF
• (A).

Remark 4.4. Again, one can see that explicitly

BF

n(A)(c[m]) =
∐

d[n],α:F (dn)→c0

A(F(d[n]) ∗
α c[m]).
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Lemma 4.5. There is a natural (in A) correspondence in PSect(C,E)

F!F
∗A← AF → A

coming from the realisation of the correspondence of simplicial presections

B•(F
∗A)← BF

• (A)→ A

where the rightmost term is a constant simplicial object. When A is a derived section, the
left morphsims in the correspondences above are weak equivalences.

Proof. First, the construction. Given a C-presection A : C → E, Proposition 2.10 and the
left triangle of the diagram (4.1 ) gives us a map of pr∗

F//CF
∗E-sections over F//C

pr∗F//CA→ RF(FprD)
∗A

which is an equivalence when A is a derived section. Indeed, over an object (d, c, α) of F//C
the map looks like

A(F(d) ∗α c)→ (fn...f1α)!A(F(d))

with c = c0
f1
→ ...

fn
→ cn, and this map is an equivalence precisely because of the derived

section condition for A. Applying the equivalence DF of (4.4 ) and then Π! of (4.5 ), we get
the map

BF

• (A)→ B•(F
∗A)

between (4.6 ) and (4.7 ) which is again a weak equivalence when A is a derived section.
Proposition 2.10 and the right triangle of the diagram (4.1 ) give us a map

pr∗F//CA→ pr∗CA

and we again apply Π!DF. Observe that Π!DFpr
∗
C
A is the following simplicial presection:

(Π!DFpr
∗
CA)n(c) =

∐

d[n],α:F (dn)→c0

A(c) ∼= N(F/c0)(n)⊗A(c).

There is thus a natural map Π!DFpr
∗
CA→ A to the constant simplicial presection A.

The realisation of Π!DFpr
∗
C
A is the presection given by the assignment c 7→ N(F/c0) ⊗

A(c). On this level as well, we get the map

AF → N(F/hC(−))⊗A→ A

which completes the construction. �

Lemma 4.6. For F = idC and a derived section A : C→ E both morphisims in the span

idC!id
∗
CA← AidC → A

of Lemma 4.5 are weak equivalences.
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Proof. Fix c ∈ C. In the case of the identity functor, we see that BidC
• A(c) can calculated

as the realisation (cf. Definition 3.12) of the functor X : C//c0 → E(c) defined by the
assignment

X((c′[k], α : c′k → c0)) = A(c′[k] ∗
α c).

The category C//c0 is the simplicial replacement of the category C/c0, and the latter has a
terminal object. By Lemma 3.13, the natural map A(c0 ∗

idc0 c) = X(c0)→ |Π!X| = AidC(c)
is an equivalence.

There is also an equivalence A(c) → A(c0 ∗
idc0 c) which comes from the degeneracy

c→ c0 ∗
idc0 c (cf. Lemma 3.20). One can then see that the composition

A(c)→ A(c0 ∗
idc0 c)→ AidC(c)→ A(c)

is the identity (it is such already on the level of corresponding simplicial objects; also note
that the composition c→ c0∗

idc0 c→ c in C is the identity idc). Thus the c-th component of
the map AidC → A is an equivalence as a right inverse of an equivalence A(c)→ A(c0∗

idc0c)→
AidC(c). �

Lemma 4.7. For a functor F : D → C and a D-presection A, there is a natural (in A)
morphism

idD!id
∗
DA ✲ F

∗
F!A.

Proof. By definition, idD!id
∗
DA is the realisation of the simplicially valued presection X

which at d0
g1
→ ...

gm
→ dm takes the value

[n] 7→ Xn =
∐

d′0→...→d′n
α:d′n→d0

(F (gm...g1α))!A(d
′
[n]).

In the case when we calculate F∗F!A at d0
g1
→ ...

gm
→ dm, we have the following simplicial

object Y :

[n] 7→ Yn =
∐

d′0→...→d′n
β:F (d′n)→F (d0)

(F (gm...g1)β)!A(d
′
[n]).

The assignment of α : d′n → d0 to Fα : F (d′n)→ F (d0) induces the map of sets

{d′0 → ...→ d′n, α : d′n → d0} → {d
′
0 → ...→ d′n, β : F (d′n)→ F (d0)} (4.8 )

and we obtain a map Xn → Yn as Xn and Yn are the coproducts indexed by the sets in (4.8 ).
Varying [n] ∈ ∆, we assemble a map X → Y of simplicial objects, which after realsiations
gives the map in question, idD!id

∗
DA −→ F∗F!A. �

We finally prove the main proposition of this section:

Proposition 4.8. Let F : D→ C, A ∈ RSect(C,E) and R ∈ RSect(D,E).
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1. There is a natural (in A) span

F!F
∗A← AF → A (4.9 )

which induces a natural transformation ǫ : F!F
∗ → id of endofunctors of HoPSect(C,E).

2. There is a natural (in R) sequence of morphisms

R← RidD → idD!id
∗
DR→ F

∗
F!R (4.10 )

which induces a natural transformation η : id→ F∗F! of endofunctors of HoPSect(D,E).

3. (Triangle identity) For each A ∈ HoRSect(C,E), the composition in HoPSect(D,E)

F
∗A

ηF∗

−→ F
∗
F!F

∗A
F∗ǫ
−→ F

∗A (4.11 )

is the identity.

Proof. We proved the first two claims in the preceding lemmas. Only the triangle identity
remains. Using the correspondences obtained before, we write a string of morphisms

F
∗A

∼
← (F∗A)idD

∼
→ idD!id

∗
DF

∗A→ F
∗
F!F

∗A
∼
← F

∗(AF)→ F
∗A

with all the weak equivalences drawn as
∼
→ or

∼
←. We can redraw this sequence, obtaining

the (potentially non-commutative) diagram

(F∗A)idD
∼✲ idD!id

∗
DF

∗A

F
∗A

✛

∼

F
∗(AF)

∼✲

✛

F
∗
F!F

∗A
❄

The third claim is then equivalent to the commutativity of this diagram. We proceed as
follows: writing down in components the simplicial object used to obtain (F∗A)idD, we see

(F∗A)idD ←→ BidD
n (F∗A)(d[m]) =

∐

d′

[n]
,α:d′n→d0

A(F(d′
[n] ∗

α d[m])).

In the same way,

F
∗(AF)←→ (F∗BF

n(A))(d[m]) =
∐

d′

[n]
,β:F (d′n)→F (d0)

A(F(d′
[n]) ∗

β
F(d[m])).
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Assigning α 7→ F (α), we see that there is a natural in A map (F∗A)idD → F∗(AF). Moreover,
a comparison with the construction of Lemma 4.7 reveals that in the resulting diagram

(F∗A)idD
∼✲ idD!id

∗
DF

∗A

F
∗A

✛

∼

F
∗(AF)

❄ ∼✲

✛

F
∗
F!F

∗A
❄

both the left-hand triangle and the right-hand square commute. �

Corollary 4.9. Assume that for a functor F : D → C, the map ǫ : F!F
∗ → id is an

equivalence. Then F∗ : HoRSect(C,E)→ HoRSect(D,E) is full and faithful.

Proof. This result can be proven as a particular case of the following categorical result:
Let f : M ⇄ N : u be two functors, and suppose N0 ⊂ N is a full subcategory such that

there are natural transformations ǫ : fu|N0

∼
→ idN0 and η : idM → uf defined over N0 and M

respectively such that the triangle identity is satisfied: u|N0 → ufu|N0 → u|N0 is the identity.
Then u|N0 is full and faithful.

In turn, the categorical result is proven as follows. The functoriality of u supplies us with
maps u(x, y) : N0(x, y) → M(ux, uy). Given a map α : ux → uy, we define v(x, y)α to be
the map fitting in the commutative square

fux
fα ✲ fuy

x

ǫx ∼
❄

v(x, y)α
✲ y.

∼ ǫy
❄

This defines the map v(x, y) : M(ux, uy)→ N0(x, y) which is inverse to u(x, y). �

Note in particular that in the situation like above, for A ∈ RSect(C,E), F!F
∗A is again a

derived section.

5 Case of a resolution

In this section, we prove our main results, Theorems 3.24 and 3.25. Recall the definition
of a resolution, Definition 3.21.

Lemma 5.1. For F : D → C a resolution, the functor F∗ reflects the condition of being a
derived section. That is, if F∗A is a derived section, then A is one as well.

Proof. If F∗A is a derived section for A ∈ PSect(C,E), then take any anchor map c′ → c

and find an anchor map d′ → d such that F(d′ → d) = c′ → c (this is possible due to F
being an opfibration with contractible, and hence nonempty, fibers). Then since F∗A(d′ →
d) = A(c′ → c), we get that A is a derived section. �
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5.1 Fullness and faithfullness

The main result of this section which we use to prove Theorem 3.24 is the following
proposition:

Proposition 5.2. Let F : D→ C be a resolution. Then for any homotopical ∆-opfibration
E→ C, the counit transformation

ǫ : F!F
∗A→ idHoPSect(C,E)A

is an isomorphism in HoPSect(C,E) for any derived section A.

The proof will be carried out in several steps. Note that for an opfibration F : D → C

and an object c ∈ C, we can take two categories F/c, the comma category of F and c (viewed
as a functor [0]→ C), and D(c), the fiber of F at c. There is a functor which sends d ∈ D(c)
to (d, idc : F (d)

=
→ c) ∈ F/c and it has a left adjoint given by choosing, for each object

(d, f : F (d) → c) ∈ F/c, an opCartesian morphism d → f!d covering f . A similar pattern
occurs a few times in this section, and this motivates us to introduce the following technical
notion:

Definition 5.3. For a category D, a functor F : D → C and an object c ∈ C, a (F, c)-
transition structure consists of

1. two categories I, J and functors I : I → D, J : J → D,

2. a functor R : J → I in Cat/D.

These data are subject to the following conditions:

• R admits a left adjoint L in Cat,

• J maps J to the fiber D(c), so that F J factors through c.

In the notation of this definition, we sometimes write (I , J ,R) to denote a given (F, c)-
transition structure.

Example 5.4. The transition structures of importance for us are the following:

1. For an opfibration F : D→ C and an object c ∈ C, there is a (F, c)-transition structure
given by I = F/c and J = D(c) outlined just before Definition 5.3.

2. If F : D → C is an opfibration and d ∈ D, one can have the following (F, F (d))-
transition structure: I = D/d and J = D(F (d))/d. The right adjoint R is the evident
inclusion; the left adjoint L is given by factoring any morphism d′ → d as ’opCartesian
followed by fiberwise’ pair of morphisms.

3. Any (F, c) structure (I , J ,R) induces a (F ◦ I , c) structure (idI ,R,R) with the same
right adjoint R. Thus the first example gives us a (Fc, c)-structure where Fc : D/c→ C

is the functor (d, f : Fd → c) 7→ Fd. For this structure, I = D/c, J = D(c) and R
acts in the same way as before.
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Remark 5.5. Consider the unit map η(i) : i → RLi for any i ∈ I. Apply F ◦ I to this
map and obtain η̄(i) : F I (i) → c. For any opfibration E → C we then have a well-defined
’restriction’ functor

Rc : I
∗
F
∗E→ E(c) = E(c)

where we denote by the same letter I the induced functor I → D. Concretely, this functor
sends (i[n], x ∈ E(F I (in))) to η̄(i)!x, using a (chosen) opCartesian lift x→ η̄(i)!x in E covering
η̄(i) : F I (in)→ c.

Construction 5.6. Assume given c0 → ... → cn = c ∈ C. Denote by c! the natural
transition functor

c! : E(c0) ∼= E(c0)→ E(cn) ∼= E(cn).

Consider also the simplicial comma object (Definition 3.7) I//R, where R : J → I is the
simplicial replacement of R. Using the diagram (3.1 ) and postcomposing with functors to
D we obtain a new diagram

I//R

I
I ✲

prI

✛
D

⇐

❄

⇒

✛ J
J

prJ

✲

(5.1 )

and we henceforth denote the middle map again by prI//R.
For B ∈ PSect(D,E) and a given (F, c0)-structure, we get the following diagram

I//R

I
c!Rc0I

∗B
✲

prI

✛
E(c)

⇐

❄

⇒

✛
c!J

∗B
J

prJ

✲

with the middle map c!pr
∗
I//RB. Thus we have the span

pr∗I c!Rc0I
∗B ←− c!pr

∗
I//RB −→ pr∗Jc!J

∗B.

Pushing this forward to the span given by projections,

∆op π1←− ∆op ×∆op π2−→ ∆op,

we obtain a span of bisimplicial objects in E(c):

π∗
1Π(c!Rc0I

∗B)←− Πc!pr
∗
I//RB −→ π∗

2Π(c!J
∗B). (5.2 )

Here Π is the pushforward functor, simplicial (along I→ ∆op and same for J) or bisimplicial
(along I//R → ∆op × ∆op). We implicitly used the Beck-Chevalley morphisms, such as
Πpr∗

I
→ π∗

1Π, for pullbacks and pushforwards; they arise from commutative squares like

I//R
prI✲ I

∆op ×∆op
❄ π1✲ ∆op

❄
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by taking associated pullback functors on functor categories and then replacing some of them
by left adjoints.

Remark 5.7. Let us write the terms of the span (5.2 ) explicitly. For c = c0
f1
→ ...

fn
→ cn,

we find that
Π(c!Rc0I

∗B)m =
∐

i[m]

(fn...f1η̄(im))!B(I i[m]),

where η̄(im) is induced from the unit of L ⊣ R (Remark 5.5). Next,

Π(c!J
∗B)l =

∐

j[l]

(fn...f1)!B(J j[l]),

and, finally,

(Πc!pr
∗
I//RB)ml =

∐

i[m], j[l], α:im→Rj0

(fn...f1)!B(I (i[m]) ∗
Iα

J (j[l])).

Proposition 5.8. For c0
f1
→ ...

fn
→ cn = c ∈ C, a (F : D → C, c0)-transition structure

(I , J ,R), and any B ∈ RSect(D, F ∗E) there is a natural (in B) span of weak equivalences
in E(c)

|Π(c!Rc0I
∗B)| ←− ||Πc!pr

∗
I//RB|| −→ |Π(c!J

∗B)| (5.3 )

which comes from a natural (in B) span (5.2) of bisimplicial objects in E(c).

Proof. We need to prove that after realisations, both arrows become equivalences. Consider
the bisimplicial object

Ππ∗
1(c!Rc0I

∗B)ml =
∐

i[m], j[l], α:im→Rj0

(fn...f1η̄(im))!B(I (i[m]))

Our left hand side map in (5.2 ) passes through this object, as it is equal to the compo-
sition

Πc!pr
∗
I//RB → Ππ∗

1(c!Rc0I
∗B)→ π∗

1Π(c!Rc0I
∗B). (5.4 )

Writing down the simplicial objects explicitly, we see that the first map in (5.4 ) arises from
the action of B on anchor maps and is a termwise weak equivalence of bisimplicial objects
because B is a derived section. Realising the second map Ππ∗

1(c!Rc0I
∗B)→ π∗

1Π(c!Rc0I
∗B)

in (5.4 ) along the second simplicial argument, we obtain a map in ∆opE(c), whose m-th
component is

|Ππ∗
1(c!Rc0I

∗B)|m ∼= N(im\R)⊗ Π(c!Rc0I
∗B)m → Π(c!Rc0I

∗B)m. (5.5 )

Observe that because of the adjunction L ⊣ R, the category im\R = (Rop/im)
op has an initial

object (the unit at im) and is thus contractible, so the map (5.5 ) and thus (5.4 ) and the
left-hand side map in (5.2 ) are all weak equivalences.

We now have to prove that the right-hand side map Πc!pr
∗
I//RB −→ π∗

2Π(c!J
∗B) in (5.2 )

becomes an equivalence after realisations. For each fixed j[l], we have a map of simplicial
objects, written in components as

∐

i[m], α:im→Rj0

(fn...f1)!B(I (i[m]) ∗
Iα

J (j[l])) −→ (fn...f1)!B(J (j[l])); (5.6 )
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because L/j0 has a terminal object, Lemma 3.13 and Lemma 3.20 imply that the map (5.6 )
is a weak equivalence after being realised. We conclude that the morphism

|Πc!pr
∗
I//RB| −→ |π

∗
2Π(c!J

∗B)| ∼= Π(c!J
∗B)

is an equivalence of simplicial objects in E(c), where we took the realisation of bisimplicial
objects along the first argument. Proposition 1.24 then implies that the double realisation

||Πc!pr
∗
I//RB|| −→ ||π

∗
2Π(c!J

∗B)| ∼= |Π(c!J
∗B)|,

taken in any order, is a weak equivalence. �

We are now ready to prove Proposition 5.2. Fix c[n] ∈ C. For A ∈ RSect(C,E) there are
functors Aaug

c and Ac (cf. the proof of Lemma 4.5):

Aaug
c : F//c0 → E(c[n]), (d[m], α : Fdm → c0) 7→ A(F(d[m]) ∗

α c[n]),

Ac : F//c0 → E(c[n]), (d[m], α : Fdm → c0) 7→ A(c[n]).

There is an obvious natural transformation Aaug
c → Ac. Pushing it forward to ∆op and

realising gives us a map AF(c)→ N(F/c0)⊗A(c) so that the obvious composition

AF(c)→ N(F/c0)⊗A(c)→ A(c)

is the c-th component of the right-hand map of the counit correspondence (4.9 ).

Lemma 5.9. The morphism N(F/c0)⊗ A(c)→ A(c) is a weak equivalence.

Proof. There is an adjunction F/c0 ⇋ D(c0) and D(c0) is contractible, thus F/c0 is
contractible as well because adjunctions of categories are known to induce homotopy equiv-
alences between the associated nerves [15]. �

Now recall Example 5.4(3) where we work over F/c0, with I = F/c0, J = D(c0) and
R : D(c0)→ F/c0 being the evident functor. Also take the trivial opfibration E(cn)×C→ C.
Both Ac and Aaug

c are then sections over F//c0 of the trivial fibration E(c[n])×F//c0 → F//c0.

Lemma 5.10. The map AF(c)→ N(F/c0)⊗A(c) is a weak equivalence.

Proof. The obvious natural transformation Aaug
c → Ac, when plugged in the left hand side

of the span (5.3 ) for the transition structure of the Example 5.4(3), gives us the map in
question, AF(c)→ N(F/c0)⊗ A(c). The right-hand side of span (5.3 ) gives the map

|Π(R∗Aaug
c )| → N(D(c0))⊗A(c) (5.7 )

so by Proposition 5.8 we are done if the map (5.7 ) is a weak equivalence. Observe however
that

Π(R∗Aaug
c )m =

∐

d[m]∈D(c0)

A(F(d[m]) ∗ c) =
∐

d∈D(c0)

A(idmc0 ∗ c)

with idmc0 being the degenerate m-simplex c0
idc0→ ...

idc0→ c0. Because A is a derived section,
Lemma 3.20 implies that the obvious map A(idmc0 ∗ c)→ A(c) is a weak equivalence, so that

Π(R∗Aaug
c )m → N(D(c0))m ⊗A(c) = Π(R∗Ac)m

is a weak equivalence as well. �

Varying c, we obtain the proof of Proposition 5.2. With Corollary 4.9, we get that F∗ is
fully faithful on homotopy level, which is exactly the contents of Theorem 3.24.
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5.2 Essential surjectivity

Our second main result, Theorem 3.25, needs a technical condition of speciality. To state
it, we need to define a few auxiliary things. First, take any opfibration F : D→ C. When F is
viewed as a functor C→ Cat, we can compose it with the endodfunctor Cat→ Cat which
is the simplicial replacement functor. On the level of opfibrations, define the category12

OC(D) as follows. An object of OC(D) is an object c ∈ C and d ∈ D(c). A morphism
(c,d[n]) → (c′,d′

[m]) consists of a map f : c → c′ and an equivalence class of pairs (β, γ)
where

• β : d[n] ⇒ d0
[n] is some natural transformation in Fun([n],D) with domain d[n] and so

that each βi : di → d0i is an opCartesian morphism in D lying over f : c→ c′,

• γ : d0
[n] → d′

[m] is a morphism in D(c′),

• and the equivalence relation is as follows. Two pairs (β0 : d[n] ⇒ d0
[n], γ

0 : d0
[n] → d′

[m])

and (β1 : d[n] ⇒ d1
[n], γ

1 : d1
[n] → d′

[m]) are equivalent if, after applying the functor

π : D(c′)→ ∆op, we have that πγ0 = πγ1.

In all, we obtain an opfibration OC(D) → C whose fibers are D(c) and whose transition
functors are given by the simplicial replacements of f!, the transition functors of F : D→ C

associated to f : c→ c′.
For any opfibration F : D → C, denote by F ∗F : F ∗D → D the pullback opfibration

of F along F . Then from F ∗F we obtain the opfibration OD(F
∗
D) → D constructed as

above, and denote its pullback along the first element map hD : D→ D (see Lemma 3.4) by
O(F ∗D)→ D. Finally, take the power fibration

(F∗E)O(F ∗D) → D.

The ∆-structure, as usual, gives us the lax realisation morphism

(F∗E)O(F ∗D) | − | ✲ F
∗E

D
✛

✲

defined by taking X ∈ (F∗E)O(F ∗D), which is a functor D(F (d0))→ E(d[n]) for some d[n] ∈ D,
and realising it (cf. Definition 3.12). There is also, however, the ’evaluation’ map

(F∗E)O(F ∗D) ev ✲ F
∗E

D
✛

✲

given by sending the same X to X(d0), since d0 ∈ D(F (d0)). The inclusion X(d0) →
∐

d∈D(F (d0))
X(d) defines a natural transformation i : ev ⇒ | − |.

12The dependence of the definition of OC(D) on F is implicit in the notation.
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Definition 5.11. Given a resolution F : D → C, a homotopical ∆-opfibration E → C is
F -special iff for each X ∈ (F∗E)O(F ∗D), which, when viewed as a functor D(F (d0))→ E(d[n]),
sends all maps of D(F (d0)) to weak equivalences in E(d), the X-th component of the natural
transformation i,

iX : ev(X)→ |X|.

is a weak equivalence

The condition of speciality is satisfied when, for example, each fiber of the fibration
E→ C is a model category, and taking a realisation of any simplicial object X : ∆op → E(c)
amounts to calculating its homotopy colimit (see [4] for the discussion of locally constant
functors in this setting).

The result of this section is the following. Let F : D→ C be a resolution.

Proposition 5.12. For a F -special (Definition 5.11) homotopical ∆-opfibration E→ C and
a locally constant B ∈ RSect(D,E), the map

idD!id
∗
DB → F

∗
F!B

is a weak equivalence.

We will prove that for each d, the map idD!id
∗
DB(d)→ F∗F!B(d) is an equivalence.

Definition 5.13. Given a (F : D → C, c)-structure (I , J ,R) and a (F ′ : D → C′, c′)-
structure (I ′, J

′,R′), a morphism from the first to the second one consists of

• a functor G : C→ C′ in D\Cat with G(c) = c′.

• a commutative square in Cat/D

I ✛ R
J

I ′

λ
❄
✛R′

J ′.

µ
❄

Example 5.14. In Example 5.4, there is a morphism from the second to the first example
as soon as c = F (d). In detail: we have a (F, F (d)) transition structure L : D/d ⇋

D(F (d))/d : R and (F, c = F (d)) transition structure L′ : F/c ⇋ D(c) : R′. In the notation
of the definition, G is simply given by idC (this works because F (d) = c), λ is given by
mapping α : d′ → d to (d′, F (α) : F (d′) → c) and µ is the evident functor D(c)/d → D(c).
In this case, even more is true: the square with left adjoints

D/d
L✲ D(c)/d

F/c

λ
❄ L′

✲ D(c).

µ
❄

commutes up to isomorphism.
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Remark 5.15. Given functors p : A→ B, q : A′ → B and r : A′ → A such that pr = q, for
any other functor X : A→M to a cocomplete category, there is a natural map q!r

∗X → p!X
where as usual, r∗ denotes pullback and p!, q! denote pushforward functors (left adjoint to
pullbacks p∗ and q∗).

Lemma 5.16. Fix c ∈ C and c′ ∈ C′. Let (I , J ,R) be a (F : D → C, c0)-structure and
(I ′, J

′,R′) be a (F ′ : D → C′, c′0)-structure. For any morphism (G : C′ → C, λ, µ) of these
transition structures such that G(c′) = c, a homotopical ∆-opfibration E→ C and a presec-
tion B : D→ F∗E, there is an induced morphism of spans

π∗
1Π(c

′
!Rc′0

I
′∗B) ✛ Πc′!pr

∗
I′//R′B ✲ π∗

2Π(c
′
!J

′∗B)

π∗
1Π(c!Rc0I

∗B)
❄

✛ Πc!pr
∗
I//RB
❄

✲ π∗
2Π(c!J

∗B).
❄

(5.8 )

Proof. The maps exist due to Remark 5.15. To get the rightmost map of (5.8 ), apply π∗
2

to
Π(c′!J

′∗B)→ Π(c!J
∗B)

which we get due to the fact that µ∗c!J
∗B = c′!J

′∗B. The middle map of (5.8 ) is obtained
in this way as well, and so is the leftmost map (observe that due to the conditions imposed,
both restriction functors Rc0 and Rc′0

agree).
One can then check the commutativity of the squares obtained through a direct compu-

tation. For example, observe that the middle map, in components
∐

i′
[m]

, j′
[l]
,

α′:i′m→Rj′0

c′!B(I ′(i′[m]) ∗
I ′α′

J
′(j′[l]))→

∐

i[m], j[l],

α:im→Rj0

c!B(I (i[m]) ∗
Iα

J (j[l]))

is induced by the maps of sets indexing the coproducts, given by (i′, j′, α′) 7→ (λ(i′), µ(j′), λα′)
(cf. the proof of Lemma 4.7). �

Corollary 5.17. Given a map of two transition structures and a derived section B, the
following are equivalent

1. |Π(c′!Rc′0
I
′∗B)| → |Π(c!Rc0I

∗B)| is a weak equivalence,

2. |Π(c′!J
′∗B)| → |Π(c!J

∗B)| is a weak equivalence.

Proof. Evident. �

We now apply that to Example 5.14. Observe that for d ∈ D with c = F(d), the map

idD!id
∗
DB(d)→ F

∗
F!B(d)

exactly corresponds to the first morphism in Corollary 5.17. Writing d instead of c′, observe
that the objects in the second map of Corollary 5.17 are

Π(d!J
′∗B)m =

∐

d′

m∈D(F (d0)), d′m→d0

F(d)!B(d′
[m]),
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Π(c!J
∗B)m =

∐

d′

m∈D(F (d0))

F(d)!B(d′
[m]).

The realisation of the first object is equivalent to F(d)!B(d0). It is easy to check that for a
F -special homotopical ∆-opfibration the functor

D(F (d0))→ E(F(d)), d′ 7→ F(d)!B(d′)

which sends all morphisms to weak equivalences has its realisation equivalent to F(d)!B(d0)
and this implies that the map |Π(d!J

′∗B)| → |Π(c!J
∗B)| is an equivalence.

Corollary 5.18 (proof of Theorem 3.25). F! sends locally constant sections to derived
sections, and

F! : HoRSectlc(D,E) ⇄ HoRSect(C,E) : F∗

is an equivalence of categories for a special homotopical ∆-fibration E→ C.

Proof. We proved that the unit correspondence gives an isomorphism id → F∗F! of func-
tors on HoPSectlc(D,E). Using Lemma 5.1, we see that then F! preserves derived section
condition for locally constant sections. This allows us to restrict the unit id → F∗F! to the
derived sections. �
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