An application of global Weyl modules of $\mathfrak{s l}_{n+1}[t]$ to invariant theory

Vyjayanthi Chari ${ }^{\mathrm{a}, *, 1}$, Sergey Loktev ${ }^{\mathrm{b}, 2}$
${ }^{\text {a }}$ University of California, Department of Mathematics, Riverside, CA, United States
${ }^{\mathrm{b}}$ Higher School of Economics, Faculty of Mathematics, National Research University, Moscow, Russia

A R T I C L E I N F O

Article history:

Received 12 July 2011
Available online 5 November 2011
Communicated by Shrawan Kumar

Keywords:

Current algebras
Global Weyl modules
Invariant theory

Abstract

We identify the $\mathfrak{s l}_{n+1}$ isotypical components of the global Weyl modules $W\left(k \omega_{1}\right)$ with certain natural subspaces of the polynomial ring in k variables. We then apply the representation theory of current algebras to classical problems in invariant theory.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Given a positive integer k, let A_{k} be the algebra of polynomials with complex coefficients in k variables t_{1}, \ldots, t_{k} and let S_{k} be the symmetric group on k letters. The group S_{k} acts naturally on A_{k} by permuting the variables. It is a classical result that A_{k} when regarded as a module for (the algebra of invariants) $A_{k}^{S_{k}}$ is free of rank k !.

In this paper, we are interested in certain variations of this problem. We regard A_{k} as being graded by the non-negative integers in the standard way with each generator having degree one and note that $A_{k}^{S_{k}}$ is a graded subalgebra. Suppose that we are given a partition $\xi=\left(\xi_{1} \geqslant \xi_{2} \geqslant \cdots \geqslant \xi_{n+1}>0\right)$ of k and an element $\mathbf{r} \in \mathbf{Z}_{+}^{\xi_{2}} \times \cdots \times \mathbf{Z}_{+}^{\xi_{n+1}}$, where \mathbf{Z}_{+}is the set of non-negative integers. We define a polynomial $\mathbf{p}(\mathbf{r}) \in A_{k}$ which can be thought of as being associated to Young symmetrizers of tableaux of

[^0]shape ξ where the filling in the first row is 1 . For instance, when $\xi=(k-\ell \geqslant \ell)>0$, the polynomials are indexed by elements $\mathbf{r}=\left(r_{1}, \ldots, r_{\ell}\right) \in \mathbf{Z}_{+}^{\ell}$ and are defined by,
\[

$$
\begin{equation*}
\mathbf{p}(\mathbf{r})=\sum_{\sigma \in S_{\ell}}\left(\prod_{i=1}^{\ell}\left(t_{2 i-1}^{r_{\sigma(i)}}-t_{2 i}^{r_{\sigma(i)}}\right)\right) . \tag{0.1}
\end{equation*}
$$

\]

Let $M_{k, \xi}$ be the $A_{k}^{S_{k}}$-submodule of A_{k} generated by the elements $\left\{\mathbf{p}(\mathbf{r}): \mathbf{r} \in \mathbf{Z}_{+}^{\xi_{2}} \times \cdots \times \mathbf{Z}_{+}^{\xi_{n+1}}\right\}$. We use the theory of global Weyl modules for the current algebra of $\mathfrak{s I}_{n+1}$ to prove that $M_{k, \xi}$ is free and has a graded basis. The number of elements of a given grade is the coefficient of the corresponding power of q in the Kostka polynomial $\kappa_{1^{k}, \xi t r}$. The partition ξ defines an irreducible representation of S_{k} and we show that $M_{k, \xi}$ can be identified with the corresponding multiplicity space in A_{k}.

The global Weyl modules we use, are indexed by multiples of the first fundamental weight of $\mathfrak{s l}_{n+1}$. These modules are well understood in the literature and many spanning sets and bases are known for them: a Poincare-Birkhoff-Witt type spanning set, a Gelfand-Tsetlin basis defined in [6] and a global canonical basis given in [12]. Our main result gives an explicit way to construct an $A_{k}^{S_{k}}$-generating set or basis of $M_{k, \xi}$ from a spanning set or basis of the appropriate global Weyl module. The special case described in (0.1) corresponds to taking a Poincare-Birkhoff-Witt spanning set for the global Weyl modules.

For $\xi=\ell \geqslant \ell$, the freeness of the module $M_{2 \ell, \xi}$ was first conjectured by Chari and Greenstein. It was motivated by their study [4,5] of the homological properties of the category of finite-dimensional representations of the current algebra of $\mathfrak{s l}_{2}$. In [1] the module $M_{k, k-\ell \geqslant \ell}$ is denoted as $\mathbf{M}_{k, \ell}$ and a more specific conjecture is given which identifies a natural basis for it and this conjecture remains open.

Our interest in this result stems from the fact that it plays a crucial role in [2] which establishes a BGG-type duality for locally finite-dimensional representations of the current algebra associated to $\mathfrak{s l}_{2}$. In Section 1, we give an elementary formulation of the results of this paper without using the notion of global Weyl modules. The definitions and necessary results on global Weyl modules are recalled in Section 2. In Section 3 we prove our main result which gives the isomorphism between the module $M_{k, \xi}$ and the appropriate space of invariants in the global Weyl module.

1. The modules $\boldsymbol{M}_{\boldsymbol{k}, \xi}$

1.1. Throughout this note we let \mathbf{Z}_{+}(resp. \mathbf{N}) denote the set of non-negative (resp. positive) integers and \mathbf{C} the set of complex numbers. For $k \in \mathbf{N}$, we let A_{k} be the polynomial ring in k-variables equipped with the standard grading. For $r \in \mathbf{Z}_{+}$the r-th graded piece is denoted as $A_{k}[r]$ and is the space of homogeneous polynomials of degree r. We shall use without further mention, the celebrated result of Quillen (see [13] for an exposition) that a projective module for A_{k} is free.
1.2. We begin with some standard results (see for instance [8]) on the representation theory of the symmetric group S_{k} on k letters. Let $\mathcal{P}[k]$ be the set of all partitions $\xi=\left(\xi_{1} \geqslant \cdots \geqslant \xi_{n+1} \geqslant 0\right)$ of k. The irreducible representations of S_{k} are parametrized by elements of $\mathcal{P}[k]$. By abuse of notation, we shall denote by ξ both a partition of k and an irreducible representation of S_{k} in the corresponding isomorphism class and set $d_{\xi}=\operatorname{dim} \xi$. Any representation V of S_{k} can be written as a sum of finitedimensional irreducible modules. If V^{ξ} denotes the isotypical component corresponding to $\xi \in \mathcal{P}[k]$, we have

$$
V=\bigoplus_{\xi \in \mathcal{P}[k]} V^{\xi},
$$

as S_{k}-modules. We shall also use the notation $V^{S_{r}}$ to denote the isotypical component corresponding to the trivial representation.
1.3. The group algebra $\mathbf{C}\left[S_{k}\right]$ of S_{k} is canonically an S_{k}-module and,

$$
\mathbf{C}\left[S_{k}\right]=\bigoplus_{\xi \mathcal{P}[k]} \mathbf{C}\left[S_{k}\right]^{\xi}, \quad \operatorname{dim}_{\mathbf{C}} \operatorname{Hom}_{S_{k}}\left(\xi, \mathbf{C}\left[S_{k}\right]^{\xi}\right)=d_{\xi}
$$

The following is well known but we isolate it as a lemma since it is used frequently. Recall that if V and V^{\prime} are two representations of S_{k} then one has the diagonal action of S_{k} on $V \otimes V^{\prime}$.

Lemma. Let $\xi, \xi^{\prime} \in \mathcal{P}[k]$. Then

$$
\operatorname{dim}\left(\xi \otimes \xi^{\prime}\right)^{S_{k}}= \begin{cases}0, & \xi \neq \xi^{\prime} \\ 1, & \xi=\xi^{\prime}\end{cases}
$$

In particular, given a basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d_{\xi}}$ of ξ there exists a dual basis $\left\{\mathbf{e}^{1}, \ldots, \mathbf{e}^{d_{\xi}}\right\}$ such that $(\xi \otimes \xi)^{S_{k}}$ is spanned by the element $\sum_{s=1}^{d_{\xi}} \mathbf{e}_{s} \otimes \mathbf{e}^{s}$.
1.4. Consider the natural right action of S_{k} on the ring A_{k} given by permuting the variables which clearly preserves the graded pieces of A_{k}. The subalgebra $A_{k}^{S_{k}}$ of invariants is a graded subalgebra of A_{k} and is a polynomial algebra in k homogeneous elements where the s-th element has degree s. We also regard A_{k} as a right module over the ring $A_{k}^{S_{k}}$ and note that it commutes with the action of S_{k}. Hence for any partition ξ of k, the S_{k}-isotypical component A_{k}^{ξ} is also a free module for $A_{k}^{S_{k}}$ of rank d_{ξ}^{2}. We have an isomorphism of $A_{k}^{S_{k}}$ and S_{k}-modules,

$$
A_{k} \cong \bigoplus_{\xi \in \mathcal{P}[k]} A_{k}^{\xi}
$$

If I_{k} is the augmentation ideal in $A_{k}^{S_{k}}$, then there exists an isomorphism of S_{k}-modules,

$$
A_{k} / I_{k} A_{k}^{S_{k}} \cong \mathbf{C}\left[S_{k}\right]
$$

The augmentation ideal I_{k} is graded and hence $\mathbf{C}\left[S_{k}\right]$ acquires a \mathbf{Z}_{+}-grading. It is known that the graded multiplicity of the irreducible representation ξ is given by the Kostka polynomial $\kappa_{1^{k}, \xi^{t r}}$.
1.5. Fix a partition $\xi=\left(\xi_{1} \geqslant \xi_{2} \geqslant \cdots \geqslant \xi_{n+1}>0\right)$ of k with $(n+1)$-parts and set $k_{i}=\xi_{i}-\xi_{i+1}$, $1 \leqslant i \leqslant n+1$ where we understand that $k_{n+1}=\xi_{n+1}$. It will be convenient to think of A_{k} as a tensor product of algebras

$$
A_{k}=A_{1}^{\otimes k_{1}} \otimes A_{2}^{\otimes k_{2}} \otimes \cdots \otimes A_{n+1}^{\otimes k_{n+1}}
$$

where we understand that $A_{\ell}^{\otimes k_{\ell}}=\mathbf{C}$ if $k_{\ell}=0$. Let

$$
S_{\xi}=S_{\xi_{1}} \times \cdots \times S_{\xi_{n+1}}
$$

be the corresponding Young subgroup of S_{k}. An element $\mathbf{r} \in \mathbf{Z}_{+}^{\xi_{1}} \times \cdots \times \mathbf{Z}_{+}^{\xi_{n+1}}$ defines a filling of the Young diagram of ξ in an obvious way. Namely, writing $\mathbf{r}=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n+1}\right)$ where $\mathbf{r}_{j}=\left(r_{j, 1}, \ldots, r_{j, \xi_{j}}\right)$ for $1 \leqslant j \leqslant n+1$, we fill the j-th row of the Young diagram of ξ with the integers $r_{j, 1}, \ldots, r_{j, \xi_{j}}$.

For each $1 \leqslant \ell \leqslant n+1$ with $k_{\ell} \neq 0$ define elements $\mathbf{a}_{\ell}(\mathbf{r}) \in A_{\ell}^{\otimes k_{\ell}}$ by

$$
\mathbf{a}_{\ell}(\mathbf{r})=\sum_{\tau \in S_{\ell}} \operatorname{sgn}(\tau) t_{\tau(1)}^{r_{1, \xi_{\ell+1}+1}} \cdots t_{\tau(\ell)}^{r_{\ell, \xi_{\ell+1}}} \otimes \cdots \otimes \sum_{\tau \in S_{\ell}} \operatorname{sgn}(\tau) t_{\tau(1)}^{r_{1, \xi_{\ell}}} \cdots t_{\tau(\ell)}^{r_{\ell, \xi_{\ell}}},
$$

and if $k_{\ell}=0$ set $\mathbf{a}_{\ell}(\mathbf{r})=1$. Finally, set

$$
\mathbf{p}(\mathbf{r})=\sum_{\sigma \in S_{\xi}} \mathbf{a}_{1}(\sigma \mathbf{r}) \otimes \cdots \otimes \mathbf{a}_{n+1}(\sigma \mathbf{r})
$$

Definition. Let $M_{k, \xi}$ be the $A_{k}^{S_{k}}$-submodule of $A_{k}^{S_{\xi}}$ generated by the elements

$$
\left\{\mathbf{p}(\mathbf{r}): \mathbf{r}=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n+1}\right) \in\left\{0^{\xi_{1}}\right\} \times \mathbf{Z}_{+}^{\xi_{2}} \times \cdots \times \mathbf{Z}_{+}^{\xi_{n+1}}\right\}
$$

1.6. We compute an example to illustrate the preceding definitions and to relate it to the modules in the introduction. Suppose that $n=1$ and $\xi=(k-m \geqslant m>0)$ so that $k_{1}=k-2 m, k_{2}=m$. The polynomials we are interested in are indexed by elements $\mathbf{r}=\left(0^{k-m},\left(r_{1}, \ldots, r_{m}\right)\right) \in\left\{0^{k-m}\right\} \times \mathbf{Z}_{+}^{m}$ and live in $A_{1}^{\otimes k-2 m} \otimes A_{2}^{\otimes m}$. Then $\mathbf{a}_{1}(\mathbf{r})=1$ while

$$
\mathbf{a}_{2}(r)=\left(t_{2}^{r_{1}}-t_{1}^{r_{1}}\right) \otimes \cdots \otimes\left(t_{2}^{r_{m}}-t_{1}^{r_{m}}\right) \in A_{2}^{\otimes m} .
$$

1.7. We shall prove,

Theorem 1. Let $k \in \mathbf{N}$ and let $\xi=\left(\xi_{1} \geqslant \xi_{2} \geqslant \cdots \geqslant \xi_{n+1}>0\right)$ be a partition of k into $(n+1)$-parts. The $A_{k}^{S_{k}}$ module $M_{k, \xi}$ is graded free and the number of elements in the basis of degree s is the coefficient of q^{s} in the Kostka polynomial $\kappa_{1^{1}, \xi^{t r}}$. Moreover, we have an isomorphism of graded S_{k} and $A_{k}^{S_{k}}$-modules

$$
A_{k}^{\xi} \cong M_{k, \xi} \otimes \xi,
$$

where the action is given by,

$$
a(m \otimes v)=a m \otimes v, \quad \sigma(m \otimes v)=m \otimes \sigma v, \quad a \in A_{k}^{S_{k}}, \sigma \in S_{k}, m \in M_{k, \xi}, v \in \xi
$$

In particular, if I_{k} is the augmentation ideal in $A_{k}^{S_{k}}$, we have a \mathbf{Z}_{+}-graded isomorphism of vector spaces

$$
M_{k, \xi} / I_{k} M_{k, \xi} \cong \operatorname{Hom}_{S_{k}}\left(\xi, \mathbf{C}\left[S_{k}\right]\right)
$$

We deduce this theorem from the results of the next two sections.

2. Representations of $\mathfrak{s l}_{n+1}[t]$

In this section we first recall several results on the representation theory of $\mathfrak{s l}_{n+1}$ which can be found in any standard book (see $[8,11]$ for instance). We then define a family of representations (the global Weyl modules) of the infinite-dimensional Lie algebra $\mathfrak{s l}_{n+1} \otimes \mathbf{C}[t]$ and recall some of their properties which were first established in [7] and [9].
2.1. Let $\mathfrak{s l}_{n+1}$ be the Lie algebra of $(n+1) \times(n+1)$-matrices of trace zero and \mathfrak{h} (resp. $\left.\mathfrak{n}^{+}, \mathfrak{n}^{-}\right)$be the subalgebra of diagonal (resp. strictly upper, lower triangular) matrices. Let $e_{i, j}$ be the $(n+1) \times$ $(n+1)$-matrix with one in the (i, j)-th position and zero elsewhere. The elements

$$
x_{i}^{+}=e_{i, i+1}, \quad h_{i}=e_{i, i}-e_{i+1, i+1}, \quad x_{i}^{-}=e_{i+1, i}, \quad 1 \leqslant i \leqslant n,
$$

generate $\mathfrak{s l}_{n+1}$ as a Lie algebra. Let $\Omega: \mathfrak{s l}_{n+1} \rightarrow \mathfrak{s l}_{n+1}$ be the anti-automorphism satisfying

$$
\begin{equation*}
\Omega\left(x_{i}^{ \pm}\right)=x_{i}^{\mp}, \quad \Omega\left(h_{i}\right)=h_{i} . \tag{2.1}
\end{equation*}
$$

2.2. Let \mathcal{P}^{n} be the set of all partitions with at most $(n+1)$-parts and for $1 \leqslant i \leqslant n$, let $\omega_{i} \in \mathcal{P}^{n}$ be the partition 1^{i}. An element $\lambda=\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n+1} \geqslant 0\right)$ of \mathcal{P}^{n} defines a finite-dimensional irreducible representation $V(\lambda)$ of $\mathfrak{s l}_{n+1}$ and two partitions $\lambda, \lambda^{\prime} \in \mathcal{P}^{n}$ define isomorphic representations iff $\lambda_{i}-\lambda_{i+1}=\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}$ for all $1 \leqslant i \leqslant n$. The trivial representation of $\mathfrak{s l}_{n+1}$ corresponds to taking the empty partition.

It is well known that $V(\lambda)$ is generated as an $\mathfrak{s l}_{n+1}$-module by an element v_{λ} with defining relations:

$$
\mathfrak{n}^{+} v_{\lambda}=0, \quad h_{i} v_{\lambda}=\left(\lambda_{i}-\lambda_{i+1}\right) v_{\lambda}, \quad\left(x_{i}^{-}\right)^{\lambda_{i}-\lambda_{i+1}+1} v_{\lambda}=0, \quad 1 \leqslant i \leqslant n
$$

Further, any irreducible finite-dimensional representation of $\mathfrak{s l}_{n+1}$ is isomorphic to $V(\lambda)$ for some $\lambda \in \mathcal{P}^{n}$.
2.3. We say that a representation V of $\mathfrak{s l}_{n+1}$ is locally finite-dimensional if it is a direct sum of finite-dimensional representations. By Weyl's theorem, this is equivalent to requiring that V be isomorphic to a direct sum of modules $V(\lambda), \lambda \in \mathcal{P}^{n}$. The Lie algebra \mathfrak{h} acts diagonalizably on a locally finite-dimensional module V, and we have

$$
V=\bigoplus_{\mathbf{r} \in \mathbf{Z}^{n}} V_{\mathbf{r}}, \quad V_{\mathbf{r}}=\left\{v \in V: h_{i} v=r_{i} v\right\}, \quad \mathbf{r} \in \mathbf{Z}^{n}
$$

In the case when ξ is a partition, we also use the notation,

$$
V_{\xi}=\left\{v \in V: h_{i} v=\left(\xi_{i}-\xi_{i+1}\right) v, 1 \leqslant i \leqslant n\right\}, \quad V_{\xi}^{\mathfrak{n}^{+}}=\left\{v \in V_{\xi}: \mathfrak{n}^{+} v=0\right\}
$$

Note that $V(\lambda)^{\mathfrak{n}^{+}}=\mathbf{C} v_{\lambda}$ for all $\lambda \in \mathcal{P}^{n}$ and that a locally finite-dimensional representation is generated as an $\mathfrak{s l}_{n+1}$-module by the spaces $V_{\xi}^{\mathfrak{n}^{+}}, \xi \in \mathcal{P}^{n}$. The following is elementary.

Lemma. Let V be a locally finite-dimensional $\mathfrak{s l}_{n+1}$-module and let $\xi \in \mathcal{P}^{n}$. Then

$$
V_{\xi}=V_{\xi}^{\mathfrak{n}^{+}} \oplus\left(\mathfrak{n}^{-} V \cap V_{\xi}\right)
$$

2.4. Recall that if U is any vector space there is a natural action of S_{k} on the k-fold tensor product $U^{\otimes k}$ which just permutes the factors. We will need the following result, the first two parts of which are elementary and the third part is the famous Schur-Weyl duality between representations of $\mathfrak{s l}_{n+1}$ and those of S_{k}

Proposition. Let $k, n \in \mathbf{N}$.

(i) The module $V\left(\omega_{1}\right)$ is isomorphic to the natural representation of $\mathfrak{s l}_{n+1}$ with standard basis e_{1}, \ldots, e_{n+1} and action given by $e_{i, j} e_{\ell}=\delta_{j, \ell} e_{i}$. The assignment $\left(e_{i}, e_{j}\right)=\delta_{i, j}$ defines a symmetric bilinear from $():, V\left(\omega_{1}\right) \otimes V\left(\omega_{1}\right) \rightarrow \mathbf{C}$ satisfying,

$$
\left(x v, v^{\prime}\right)=\left(v, \Omega(x) v^{\prime}\right), \quad v, v^{\prime} \in V\left(\omega_{1}\right), x \in \mathfrak{s l}_{n+1}
$$

(ii) For $1 \leqslant i \leqslant n+1$, we have

$$
\left(V\left(\omega_{1}\right)^{\otimes i}\right)_{\left(\omega_{i}\right)}^{\mathfrak{n}^{+}}=\mathbf{C}\left(e_{1} \wedge e_{2} \wedge \cdots \wedge e_{i}\right)
$$

and an isomorphism of $\mathfrak{s l}_{n+1}$-modules $\bigwedge^{i} V\left(\omega_{1}\right) \cong V\left(\omega_{i}\right)$ which maps $e_{1} \wedge \cdots \wedge e_{i}$ to $v_{\omega_{i}}$.
(iii) Let $k \in \mathbf{N}$. The natural right action of S_{k} on $V\left(\omega_{1}\right)^{\otimes k}$ commutes with the left action of $\mathfrak{s l}_{n+1}$ and as an $\left(\mathfrak{s l}_{n+1}, S_{k}\right)$-bimodule, we have

$$
V\left(\omega_{1}\right)^{\otimes k} \cong \bigoplus_{\xi \in \mathcal{P}^{n} \cap \mathcal{P}[k]} V(\xi) \otimes \xi
$$

Equivalently, the space $\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}}$is an irreducible S_{k}-submodule of $V\left(\omega_{1}\right)^{\otimes k}$ and we have an isomorphism of S_{k}-modules

$$
\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}} \cong \xi
$$

2.5. Denote by $(,)_{k}: V\left(\omega_{1}\right)^{\otimes k} \times V\left(\omega_{1}\right)^{\otimes k} \rightarrow \mathbf{C}$ the symmetric non-degenerate bilinear form given by extending linearly the assignment,

$$
\left(e_{i_{1}} \otimes \cdots \otimes e_{i_{k}}, e_{j_{1}} \otimes \cdots \otimes e_{j_{k}}\right)_{k}=\left(e_{i_{1}}, e_{j_{1}}\right) \cdots\left(e_{i_{k}}, e_{j_{k}}\right)
$$

where $i_{s}, j_{s} \in\{1, \ldots, n+1\}$ for $1 \leqslant s \leqslant k$. The form is clearly S_{k}-invariant and satisfies

$$
\left(x \mathbf{v}, \mathbf{v}^{\prime}\right)_{k}=\left(\mathbf{v}, \Omega(x) \mathbf{v}^{\prime}\right)_{k}, \quad \mathbf{v}, \mathbf{v}^{\prime} \in V\left(\omega_{1}\right)^{\otimes k}, x \in \mathfrak{g} .
$$

In particular since $\Omega\left(h_{i}\right)=h_{i}$ for all $1 \leqslant i \leqslant n$, we have

$$
\left(V\left(\omega_{1}\right)_{\xi}^{\otimes k}, V\left(\omega_{1}\right)_{\xi^{\prime}}^{\otimes k}\right)_{k}=0, \quad \xi, \xi^{\prime} \in \mathcal{P}^{n}, \xi \neq \xi^{\prime}
$$

and so the restriction of the form to $V\left(\omega_{1}\right)_{\xi}^{\otimes k}$ is non-degenerate.
Lemma. For all $\xi \in \mathcal{P}^{n} \cap \mathcal{P}[k]$ the restriction of the form $(,)_{k}$ to $\left(V\left(\omega_{1}\right)^{\otimes k}\right) \xi_{\xi}^{\mathfrak{n}^{+}} \times\left(V\left(\omega_{1}\right)^{\otimes k}\right) \xi^{\mathfrak{n}^{+}}$is nondegenerate.

Proof. Let $\mathbf{v}, \mathbf{v}^{\prime} \in V\left(\omega_{1}\right)_{\xi}^{\otimes k}$ be such that $\left(\mathbf{v}, \mathbf{v}^{\prime}\right)_{k} \neq 0$ and assume that $\mathfrak{n}^{+} \mathbf{v}=0$. By Lemma 2.3, we may write $\mathbf{v}^{\prime}=\mathbf{v}_{1}+\mathbf{v}_{2}$, where $\mathbf{v}_{1} \in V_{\xi}^{\mathfrak{n}^{+}}$and $\mathbf{v}_{2}=\sum_{i=1}^{n} e_{i+1, i} \mathbf{u}_{i}$ for some $\mathbf{u}_{i} \in V\left(\omega_{1}\right)^{\otimes k}$. Hence we get

$$
\left(\mathbf{v}, \mathbf{v}_{2}\right)_{k}=\left(\mathbf{v}, \sum_{i=1}^{n} e_{i+1, i} \mathbf{u}_{i}\right)_{k}=\sum_{i=1}^{n}\left(e_{i, i+1} \mathbf{v}, \mathbf{u}_{i}\right)_{k}=0
$$

i.e., $\left(\mathbf{v}, \mathbf{v}_{1}\right)_{k}=\left(\mathbf{v}, \mathbf{v}^{\prime}\right)_{k} \neq 0$ and the lemma is proved.
2.6. Given $k \in \mathbf{N}$ and a partition $\xi=\left(\xi_{1} \geqslant \cdots \geqslant \xi_{n+1}>0\right)$ of k set $k_{i}=\xi_{i}-\xi_{i+1}$, and let

$$
\mathbf{e}(\xi)=e_{1}^{\otimes k_{1}} \otimes\left(e_{1} \wedge e_{2}\right)^{\otimes k_{2}} \otimes \cdots \otimes\left(e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n+1}\right)^{\otimes k_{n+1}} \in\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}} .
$$

We note the following consequence of Proposition 2.4.
Lemma. The set $\left\{\mathbf{e}(\xi) \sigma: \sigma \in S_{k}\right\}$ spans $\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}}$.

From now on, we fix elements $\sigma_{\ell} \in S_{k}, 1 \leqslant \ell \leqslant d_{\xi}-1$ with $\sigma_{1}=$ id such that the set $\left\{\mathbf{e}(\xi) \sigma_{\ell}: 1 \leqslant\right.$ $\left.\ell \leqslant d_{\xi}\right\}$ is a basis of $\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}}$. We also use Lemma 2.5 and fix a dual basis $\left\{\mathbf{e}_{\ell}: 1 \leqslant \ell \leqslant d_{\xi}\right\}$ of $\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}}$satisfying

$$
\begin{equation*}
\left(\mathbf{e}_{j}, \mathbf{e}(\xi) \sigma_{m}\right)_{k}=0, \quad 1 \leqslant j \neq m \leqslant d_{\xi}, \quad\left(\mathbf{e}_{m}, \mathbf{e}(\xi) \sigma_{m}\right)_{k}=1 \tag{2.2}
\end{equation*}
$$

2.7. We now introduce the main tools to prove Theorem 1 and we begin with some general definitions. Given a complex Lie algebra \mathfrak{a} and an indeterminate t, let $\mathfrak{a}[t]=\mathfrak{a} \otimes \mathbf{C}[t]$ be the Lie algebra with commutator given by,

$$
[a \otimes f, b \otimes g]=[a, b] \otimes f g, \quad a, b \in \mathfrak{a}, f, g, \in \mathbf{C}[t]
$$

We identify without further comment the Lie algebra \mathfrak{a} with the subalgebra $\mathfrak{a} \otimes 1$ of $\mathfrak{a}[t]$. Clearly, $\mathfrak{a}[t]$ has a natural \mathbf{Z}_{+}-grading given by the powers of t and this also induces a \mathbf{Z}_{+}-grading on $\mathbf{U}(\mathfrak{a}[t])$. A \mathbf{Z}_{+}-graded bimodule for the pair ($\mathfrak{a}[t], A_{k}$) is a complex vector space $V=\bigoplus_{s \in \mathbf{Z}_{+}} V_{s}$ which admits a left action of $\mathfrak{a}[t]$ and a commuting right action of A_{k} such that both actions are compatible with the grading, i.e.,

$$
\left(\mathfrak{a} \otimes t^{r}\right) V[s] \subset V[s+r], \quad V[s] A_{k}[r] \subset V[s+r], \quad s, r \in \mathbf{Z}_{+} .
$$

An elementary way to construct such modules is as follows: let $U_{s}, 1 \leqslant s \leqslant k$ be \mathfrak{a}-modules and define on ($U_{1} \otimes \cdots \otimes U_{k} \otimes A_{k}$) the structure of a bimodule for the pair ($\mathfrak{a}[t], A_{k}$) by:

$$
\begin{gather*}
\left(u_{1} \otimes \cdots \otimes u_{k} \otimes a\right) b=u_{1} \otimes \cdots \otimes u_{k} \otimes a b, \tag{2.3}\\
\left(x \otimes t^{r}\right)\left(u_{1} \otimes \cdots \otimes u_{k} \otimes a\right)=\sum_{s=1}^{k}\left(\bigotimes_{j=1}^{s-1} u_{j}\right) \otimes x u_{s}\left(\bigotimes_{j=s+1}^{k} u_{j}\right) \otimes t_{s}^{r} a, \tag{2.4}
\end{gather*}
$$

where $a, b \in A_{k}, u_{s} \in U_{s}, 1 \leqslant s \leqslant k, r \in \mathbf{Z}_{+}$and $x \in \mathfrak{a}$. The grading on $\left(U_{1} \otimes \cdots \otimes U_{k} \otimes A_{k}\right)$ is induced by the grading on A_{k}, i.e., for an integer r, the r-th-graded piece is $\left(U_{1} \otimes \cdots \otimes U_{k}\right) \otimes A_{k}[r]$. These modules are clearly free as right A_{k} (and so also as right $A_{k}^{S_{k}}$) modules.
2.8. Consider the special case when all the U_{i} 's are the same, say $U_{i}=U$ for $1 \leqslant i \leqslant k$. The induced diagonal (right) action of S_{k} on $U^{\otimes k} \otimes A_{k}$ commutes with the right action of A_{k} and hence for each $\xi \in \mathcal{P}[k]$, the isotypical component $\left(U^{\otimes k} \otimes A_{k}\right)^{\xi}$ is a $A_{k}^{S_{k}}$-module and we have an isomorphism of $A_{k}^{S_{k}}$-modules

$$
U^{\otimes k} \otimes A_{k} \cong \bigoplus_{\xi \in \mathcal{P}[k]}\left(U^{\otimes k} \otimes A_{k}\right)^{\xi}
$$

If $\operatorname{dim} U<\infty$ then $\left(U^{\otimes k} \otimes A_{k}\right)^{\xi}$ is a free $A_{k}^{S_{k}}$-module of finite rank. The following is easily checked by using the explicit definition of the action of $\mathfrak{a}[t]$ given in (2.4).

Lemma. The space $\left(U^{\otimes k} \otimes A_{k}\right)^{S_{k}}$ is a \mathbf{Z}_{+}-graded $\left(\mathfrak{a}[t], A_{k}^{S_{k}}\right)$-submodule of $U^{\otimes k} \otimes A_{k}$.
2.9. Apply the preceding construction to the case when $\mathfrak{a}=\mathfrak{s l}_{n+1}$ and $U=V\left(\omega_{1}\right)$. Define an $A_{k^{-}}$ valued bilinear form

$$
\langle,\rangle:\left(V\left(\omega_{1}\right)^{\otimes k} \otimes A_{k}\right) \times\left(V\left(\omega_{1}\right)^{\otimes k} \otimes A_{k}\right) \rightarrow A_{k}
$$

by extending linearly the assignment,

$$
\left\langle\mathbf{v} \otimes f, \mathbf{v}^{\prime} \otimes g\right\rangle=\left(\mathbf{v}, \mathbf{v}^{\prime}\right)_{k} f g
$$

where $\mathbf{v}, \mathbf{v}^{\prime} \in V\left(\omega_{1}\right)^{\otimes k}$, and $f, g \in A_{k}$. Notice that the form \langle,$\rangle is not S_{k}$-invariant. The following is proved by a direct calculation using the formulae in (2.3) and (2.4).

Lemma. For all $x \in \mathfrak{s l}_{n+1}, f \in \mathbf{C}[t]$, we have

$$
\left\langle(x \otimes f)(\mathbf{v} \otimes g), \mathbf{v}^{\prime} \otimes g^{\prime}\right\rangle=\left\langle\mathbf{v} \otimes g,(\Omega(x) \otimes f)\left(\mathbf{v}^{\prime} \otimes g^{\prime}\right)\right\rangle
$$

where $\mathbf{v}, \mathbf{v}^{\prime} \in V\left(\omega_{1}\right)^{\otimes k}$ and $g, g^{\prime} \in A_{k}$. Further, for all $\mathbf{v} \in V\left(\omega_{1}\right)^{\otimes k}$, the assignment

$$
\langle, \mathbf{v}\rangle: V\left(\omega_{1}\right)^{\otimes k} \otimes A_{k} \rightarrow A_{k}
$$

is a map of A_{k}-modules.
2.10. The following lemma gives an interpretation of the polynomials $\mathbf{p}(\mathbf{r})$ in terms of the representation theory of current algebras. The proof is straightforward but tedious. It is included since the lemma is crucial for the proof of the main theorem in Section 3. We remark that $\left[e_{j, 1}, e_{k, 1}\right]=$ $0=\left[e_{1, j}, e_{1, k}\right]$ for $1 \leqslant j, k \leqslant n+1$ which implies that the products in the statement and proof of the lemma are well defined. We fix a partition $\xi=\left(\xi_{1} \geqslant \ldots \geqslant \xi_{n+1}>0\right)$ of k and use freely the notation of Section 2.6.

Lemma. Let $\mathbf{r}=\left(\left\{0^{\xi_{1}}\right\}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n+1}\right)$, where $\mathbf{r}_{j}=\left(r_{j, 1}, \ldots, r_{j, \xi_{j}}\right) \in \mathbf{Z}_{+}^{\xi_{j}}, 2 \leqslant j \leqslant n+1$. We have

$$
\left\langle\mathbf{y}(\mathbf{r})\left(e_{1}^{\otimes k} \otimes 1\right), \mathbf{e}(\xi)\right\rangle=\mathbf{p}(\mathbf{r})
$$

where $\mathbf{y}(\mathbf{r}) \in \mathbf{U}\left(\mathfrak{n}^{-}[t]\right)$ is the element

$$
\mathbf{y}(\mathbf{r})=\prod_{j=2}^{n+1}\left(e_{j, 1} \otimes t^{r_{j, 1}}\right) \cdots\left(e_{j, 1} \otimes t^{r_{j, \xi_{j}}}\right)
$$

Proof. Using Lemma 2.9 we have

$$
\left\langle\mathbf{y}(\mathbf{r})\left(v_{\omega_{1}}^{\otimes k} \otimes a\right), \mathbf{e}(\xi)\right\rangle=\left\langle v_{\omega_{1}}^{\otimes k} \otimes a, \mathbf{x}(\mathbf{r}) \mathbf{e}(\xi)\right\rangle
$$

where

$$
\begin{aligned}
\mathbf{x}(\mathbf{r}) & =\prod_{j=2}^{n+1}\left(e_{1, j} \otimes t^{r_{j, 1}}\right) \cdots\left(e_{1, j} \otimes t^{r_{j, \xi_{j}}}\right)=\prod_{\ell=2}^{n+1} \prod_{s=\xi_{\ell+1}+1}^{\xi_{\ell}} \mathbf{x}_{\ell, s}(\mathbf{r}), \\
\mathbf{x}_{\ell, s}(\mathbf{r}) & =\left(e_{1,2} \otimes t^{r_{2, s}}\right) \cdots\left(e_{1, \ell} \otimes t^{r_{\ell, s}}\right), \quad 2 \leqslant \ell \leqslant n+1, \quad \xi_{\ell+1}+1 \leqslant s \leqslant \xi_{\ell} .
\end{aligned}
$$

Given $\sigma \in S_{\xi}$ it is clear that $\mathbf{x}(\mathbf{r})=\mathbf{x}(\sigma \mathbf{r})$ although it is not true that $\mathbf{x}_{\ell, s}(\mathbf{r})=\mathbf{x}_{\ell, s}(\sigma \mathbf{r})$. To compute $\mathbf{x}(\mathbf{r}) \mathbf{e}(\xi)$, we note first that

$$
\mathbf{x}_{\ell, s}(\mathbf{r})\left(e_{1} \wedge \cdots \wedge e_{\ell}\right)=\left(\sum_{\tau \in S_{\ell}} \operatorname{sgn}(\tau) t_{\tau(2)}^{r_{2, s}} \cdots t_{\tau(\ell)}^{r_{\ell, s}}\right) e_{1}^{\otimes \ell}
$$

and hence

$$
\mathbf{x}_{\ell, \xi_{\ell+1}+1}(\mathbf{r})\left(e_{1} \wedge \cdots \wedge e_{\ell}\right) \otimes \cdots \otimes \mathbf{x}_{\ell, \xi_{\ell}}(\mathbf{r})\left(e_{1} \wedge \cdots \wedge e_{\ell}\right)=\mathbf{a}(\mathbf{r}) e_{1}^{\otimes \ell}
$$

Since $\left(e_{1, k} \otimes t^{r}\right)\left(e_{1, k} \otimes t^{s}\right)\left(e_{1} \wedge \cdots \wedge e_{m}\right)=0$ for all $2 \leqslant m \leqslant n+1$, we get

$$
\begin{aligned}
& \left(e_{1, k} \otimes t^{r_{k, 1}}\right) \cdots\left(e_{1, k} \otimes t^{r_{k, \xi_{k}}}\right)\left(e_{1} \wedge \cdots \wedge e_{m}\right)^{\otimes \xi_{k}} \\
& \quad=\sum_{\sigma \in S_{\xi_{k}}}\left(e_{1, k} \otimes t^{r_{k, \sigma(1)}}\right)\left(e_{1} \wedge \cdots \wedge e_{m}\right) \otimes \cdots \otimes\left(e_{1, k} \otimes t^{r_{n+1, \xi_{\sigma(k)}}}\right)\left(e_{1} \wedge \cdots \wedge e_{m}\right) .
\end{aligned}
$$

This now implies that

$$
\begin{aligned}
\mathbf{x}(\mathbf{r}) \mathbf{e}(\xi)= & \sum_{\sigma \in S_{\xi}} e_{1}^{\otimes k_{1}} \otimes \mathbf{x}_{2, \xi_{3}+1}(\sigma(\mathbf{r}))\left(e_{1} \wedge e_{2}\right) \otimes \cdots \otimes \mathbf{x}_{2, \xi_{2}}(\sigma(\mathbf{r}))\left(e_{1} \wedge e_{2}\right) \otimes \cdots \\
& \otimes \mathbf{x}_{n+1,1}(\sigma(\mathbf{r}))\left(e_{1} \wedge \cdots \wedge e_{n+1}\right) \otimes \cdots \otimes \mathbf{x}_{n+1, \xi_{n+1}}(\sigma(\mathbf{r}))\left(e_{1} \wedge \cdots \wedge e_{n+1}\right) \\
= & \mathbf{p}(\mathbf{r}) e_{1}^{\otimes k}
\end{aligned}
$$

and the proof of the lemma is complete.
2.11. For $k \in \mathbf{Z}_{+}$, let

$$
\begin{equation*}
W(k)=\left(V\left(\omega_{1}\right)^{\otimes k} \otimes A_{k}\right)^{S_{k}} \tag{2.5}
\end{equation*}
$$

Then $W(k)$ is a \mathbf{Z}_{+}-graded $\left(\mathfrak{s l}_{n+1}, A_{k}^{S_{k}}\right)$-bimodule. Since $V\left(\omega_{1}\right)^{\otimes k} \otimes A_{k}$ and hence also, $W(k)$ is a locally finite-dimensional $\mathfrak{s l}_{n+1}$-module, we can write

$$
\begin{equation*}
W(k)=\bigoplus_{\xi \in \mathcal{P}^{n} \cap \mathcal{P}[k]} W(k)_{\xi}, \quad W(k)_{\xi}=W(k)_{\xi}^{\mathfrak{n}^{+}} \oplus\left(\mathfrak{n}^{-} W(k) \cap W(k)_{\xi}\right) . \tag{2.6}
\end{equation*}
$$

Since the action of $\mathfrak{s l} l_{n+1}$ action and S_{k} on $W(k)$ commute, we have

$$
\begin{equation*}
W(k)_{\xi}=\left(V\left(\omega_{1}\right)_{\xi}^{\otimes k} \otimes A_{k}\right)^{s_{k}}, \quad W(k)_{\xi}^{\mathfrak{n}^{+}}=\left(\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}} \otimes A_{k}^{\xi}\right)^{s_{k}} \tag{2.7}
\end{equation*}
$$

Since the action of $\mathfrak{s l}_{n+1}$ on $W(k)$ also commutes with the action of $A_{k}^{S_{K}}$, we see that the subspaces $W(k)_{\xi}, W(k)_{\xi}^{\mathfrak{n}^{+}}$and $\left(\mathfrak{n}^{-} W(k) \cap W(k)_{\xi}\right)$ are all \mathbf{Z}_{+}-graded $A_{k}^{S_{k}}$-submodules of $W(k)$. Further, the direct sums in (2.6) are of $A_{k}^{S_{k}}$-submodules. Since $W(k)$ is obviously a free $A_{k}^{S_{k}}$-module we see that $W(k) \xi_{\xi}^{\mathfrak{n}^{+}}$ is also a free $A_{k}^{S_{k}}$-module and hence graded free.
2.12. We shall need the following result. As usual we denote by $\mathbf{U}(\mathfrak{a})$ the universal enveloping algebra of the Lie algebra \mathfrak{a}.

Theorem 2. Let $k \in \mathbf{N}$.

(i) The element $v_{\omega_{1}}^{\otimes k}$ generates $W(k)$ as a module for $\mathfrak{s l}_{n+1}[t]$, and

$$
W(k)=\mathbf{U}\left(\mathfrak{n}^{-}[t]\right)\left(v_{\omega_{1}}^{\otimes k} \otimes A_{k}^{S_{k}}\right) .
$$

(ii) For $\xi \in \mathcal{P}^{n}$, the $A_{k}^{S_{k}}$-module $W(k){ }_{\xi}^{\mathfrak{n}^{+}}$is graded free and the number of elements in a basis with grade s is the coefficient of q^{s} in the Kostka polynomial $\kappa_{1^{k}, \xi^{t r}}$.

Part (i) of the theorem was proved in [7] for $\mathfrak{s l}_{2}$ and in [9] for $\mathfrak{s l}_{n+1}$. Recall that I_{k} is the augmentation ideal in $A_{k}^{S_{k}}$ and consider the graded $\mathfrak{s l}_{n+1}[t]$-module, $W(k) / I_{k} W(k)$. It was shown in [6] that the subspace $\left(W(k) / I_{k} W(k)\right)_{\xi}^{\mathfrak{n}^{+}}$has a graded basis and also that the number of elements in the basis of grade s is the coefficient of q^{s} in the Kostka polynomial $\kappa_{1^{k}, \xi^{\prime} r}$. Part (ii) follows since $W(k)_{\xi}^{\mathfrak{n}+}$ is graded free as an $A_{k}^{S_{k}}$-module and we have an isomorphism of graded spaces,

$$
W(k)_{\xi}^{\mathfrak{n}+} / I_{k} W(k)_{\xi}^{\mathfrak{n}^{+}} \cong\left(W(k) / I_{k} W(k)\right)_{\xi}^{\mathfrak{n}^{+}} .
$$

2.13. The modules $W(k)$ are special examples of a family of modules called the global Weyl modules which were defined and studied in [7] for arbitrary simple Lie algebras and further studied in [6,10,14]. For $\mathfrak{s l}_{n+1}$ it is proved in [3] that the global Weyl modules can be realized as sitting inside a suitable space of invariants. However, except in the special case considered in this paper, the global Weyl modules are strictly smaller than the space of invariants.

3. The main result and Proof of Theorem 1

3.1. Fix $k \in \mathbf{N}, \xi=\left(\xi_{1} \geqslant \xi_{2} \geqslant \cdots \geqslant \xi_{n+1}>0\right)$ a partition of k and set $k_{i}=\xi_{i}-\xi_{i+1}, 1 \leqslant i \leqslant n+1$. We use freely the notation of the earlier sections, in particular we let $\sigma_{s} \in S_{k}, 1 \leqslant s \leqslant d_{\xi}$ be as defined in Section 2.6. Theorem 1 is clearly a consequence Theorem 2 and the following result.

Theorem 3. The restriction of the map $\langle, \mathbf{e}(\xi)\rangle: V\left(\omega_{1}\right)^{\otimes k} \otimes A_{k} \rightarrow A_{k}$ gives an isomorphism of $A_{k}^{S_{k}}$-modules $W(k)_{\xi}^{\mathfrak{n}^{+}} \rightarrow M_{k, \xi}$. For $\sigma \in S_{k}$ we have

$$
\begin{equation*}
M_{k, \xi} \sigma=\left\langle W(k)_{\xi}^{\mathfrak{n}^{+}}, \mathbf{e}(\xi) \sigma\right\rangle, \tag{3.1}
\end{equation*}
$$

and further,

$$
\begin{equation*}
\left\langle W(k)_{\xi}^{\mathfrak{n}^{+}},\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}}\right\rangle=A_{k}^{\xi}=\bigoplus_{s=1}^{d_{\xi}} M_{k, \xi} \sigma_{s}, \tag{3.2}
\end{equation*}
$$

as S_{k} and $A_{k}^{S_{k}}$-modules.
Proof. By Lemma 2.9, we have that $\langle, \mathbf{e}(\xi)\rangle: V\left(\omega_{1}\right)^{k} \otimes A_{k} \rightarrow A_{k}$ is a map of A_{k}-modules. Hence, using (2.5) and the remarks in Section 2.11, we see that the restriction to $W(k)$ and hence to $W(k) \xi_{\xi}^{\mathrm{n}^{+}}$ is a map of $A_{k}^{S_{k}}$-modules. Let $\left\{\mathbf{e}_{s}: 1 \leqslant s \leqslant d_{\xi}\right\}$ be the basis of $\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}}$defined in Section 2.6. Using Eq. (2.7) and Lemma 1.2, we may write any non-zero element $\mathbf{v} \in W(k))_{\xi}^{\mathfrak{n}^{+}}$as

$$
\begin{equation*}
\mathbf{v}=\sum_{s=1}^{d_{\xi}} \mathbf{e}_{s} \otimes g_{s}, \quad g_{s} \in A_{k}^{\xi}, g_{1} \neq 0 \tag{3.3}
\end{equation*}
$$

Using Eq. (2.2), we get

$$
\langle\mathbf{v}, \mathbf{e}(\xi)\rangle=g_{1} \neq 0
$$

which proves that the map $\langle, \mathbf{e}(\xi)\rangle: W(k) \xi_{\xi}^{\mathfrak{n}^{+}} \rightarrow A_{k}$ is injective and that its image is contained in A_{k}^{ξ}. In particular it follows from Theorem 2 that $\left\langle W(k) \xi_{\xi}^{\mathfrak{n}^{+}}, \mathbf{e}(\xi)\right\rangle$ is a free $A_{k}^{S_{k}}$-module of rank d_{ξ}.

We now prove the first equality in (3.2). For this, we begin by showing that

$$
\begin{equation*}
\left\langle W(k)_{\xi}^{\mathfrak{n}^{+}}, \mathbf{e}(\xi)\right) \sigma=\left\langle W(k)_{\xi}^{\mathfrak{n}^{+}}, \mathbf{e}(\xi) \sigma\right\rangle . \tag{3.4}
\end{equation*}
$$

Choose \mathbf{v} as in Eq. (3.3) and let $\sigma \in S_{k}$. We have

$$
\langle\mathbf{v}, \mathbf{e}(\xi) \sigma\rangle=\langle\mathbf{v} \sigma, \mathbf{e}(\xi) \sigma\rangle=\left\langle\sum_{s=1}^{\ell} \mathbf{e}_{s} \sigma \otimes g_{s} \sigma, \mathbf{e}(\xi) \sigma\right\rangle=\left(\sum_{s=1}^{\ell}\left(\mathbf{e}_{s}, \mathbf{e}(\xi)\right)_{k} g_{s}\right) \sigma=\langle\mathbf{v}, \mathbf{e}(\xi)\rangle \sigma
$$

where the first equality follows from Eq. (2.5) and the penultimate equality is a consequence of the S_{k} invariance of $(,)_{k}$. Hence (3.4) is established.

Recalling from Lemma 2.6 that the elements $\left\{\mathbf{e}(\xi) \sigma: \sigma \in S_{k}\right\}$ span $\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}}$, we observe that

$$
\sum_{\sigma \in S_{k}}\left\langle W(k) \xi_{\xi}^{\mathfrak{n}^{+}}, \mathbf{e}(\xi) \sigma\right\rangle=\left\langle W(k)_{\xi}^{\mathfrak{n}^{+}},\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}}\right\rangle \subset A_{k}^{\xi} .
$$

To prove the reverse inclusion, suppose that $a \in A_{k}^{\xi}$ and assume that it generates an irreducible $S_{k^{-}}$ submodule N and let $a_{1}, \ldots, a_{d_{\xi}}$ be a basis of N where $a_{1}=a$. Then there exists a non-zero element

$$
\mathbf{v} \in\left(\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}} \otimes N\right)^{S_{k}} \subset W(k)_{\xi}^{\mathfrak{n}^{+}}
$$

and by Lemma 1.2 we can write $\mathbf{v}=\sum_{s=1}^{d_{\xi}} \mathbf{v}_{s} \otimes a_{s}$ where the elements $\left\{\mathbf{v}_{s}: 1 \leqslant s \leqslant d_{\xi}\right\}$ are a basis for $\left(V\left(\omega_{1}\right)^{\otimes k}\right){\underset{\xi}{\mathfrak{n}}}^{\mathfrak{C}^{+}}$. By Lemma 2.5 we may choose a dual basis $\left\{\mathbf{v}_{s}^{\prime}: 1 \leqslant s \leqslant d_{\xi}\right\}$ of $\left(V\left(\omega_{1}\right)^{\otimes k}\right)_{\xi}^{\mathfrak{n}^{+}}$and we find now that

$$
\left\langle\mathbf{v}, \mathbf{v}_{1}^{\prime}\right\rangle=a_{1}=a
$$

Since A^{ξ} is completely reducible, this proves that

$$
A^{\xi}=\sum_{s=1}^{d_{\xi}}\left\langle W(k)_{\xi}^{\mathfrak{n}^{+}}, \mathbf{e}(\xi) \sigma_{s}\right\rangle .
$$

Recall from Section 1.4 that A^{ξ} is a free $A_{k}^{S_{k}}$-module of rank d_{ξ}^{2}. Since we have shown earlier in this proof that $\left\langle W(k) \xi_{\xi}^{\mathrm{n}^{+}}, \mathbf{e}(\xi) \sigma_{s}\right\rangle$ is free $A_{k}^{S_{k}}$-module of rank d_{ξ}, it follows that in fact

$$
A_{k}^{\xi}=\bigoplus_{s=1}^{d_{\xi}}\left(W(k)_{\xi}^{\mathfrak{n}^{+}}, \mathbf{e}(\xi) \sigma_{s}\right\rangle
$$

To complete the proof of the theorem, we must prove that

$$
\left\langle W(k) \xi_{\xi}^{\mathfrak{n}^{+}}, \mathbf{e}(\xi)\right\rangle=M_{k, \xi} .
$$

Since $\left\langle\mathfrak{n}^{-} W(k)_{\xi}, \mathbf{e}(\xi)\right\rangle=0$, it suffices by Lemma 2.3 to prove that $\left\langle W(k)_{\xi}, \mathbf{e}(\xi)\right\rangle=M_{k, \xi}$. Using $e_{i, j} v_{\omega_{1}}=0, j \neq 1$ and the fact that

$$
W(k)=\mathbf{U}\left(\mathfrak{n}^{-}[t]\right)\left(v_{\omega_{1}}^{\otimes k} \otimes A_{k}^{S_{k}}\right)
$$

we see that $W(k)_{\xi}$ is spanned by elements of the form $\mathbf{y}(\mathbf{r})\left(v_{\omega_{1}}^{\otimes k} \otimes a\right)$ where $a \in A_{k}^{S_{k}}, \mathbf{r}=\left(\left\{0^{\xi_{1}}\right\}, \mathbf{r}_{2}\right.$, $\left.\ldots, \mathbf{r}_{n+1}\right)$, where $\mathbf{r}_{j}=\left(r_{j, 1}, \ldots, r_{j, \xi_{j}}\right) \in \mathbf{Z}_{+}^{\xi_{j}}, 2 \leqslant j \leqslant n+1$, and,

$$
\mathbf{y}(\mathbf{r})=\prod_{j=2}^{n+1}\left(e_{j, 1} \otimes t^{r_{j, 1}}\right) \cdots\left(e_{j, 1} \otimes t^{r_{j, \xi_{j}}}\right)
$$

Lemma 2.10 shows that

$$
\left\langle\mathbf{y}\left(v_{\omega_{1}}^{\otimes k} \otimes a\right), \mathbf{e}(\xi)\right\rangle=\mathbf{p}(\mathbf{r}) a,
$$

which proves

$$
M_{k, \xi}=\left\langle W(k)_{\xi}, \mathbf{e}(\xi)\right\rangle,
$$

as required.

Acknowledgments

We thank Shrawan Kumar for several discussions. This work was completed when both authors were visiting the Hausdorff Institute, Bonn, in connection with the trimester "On the interactions of Representation theory with Geometry and Combinatorics". The authors thank the organizers of the trimester for the invitation to participate in the program.

References

[1] Matthew Bennett, Vyjayanthi Chari, R.J. Dolbin, Nathan Manning, Square-bounded partitions and Catalan numbers, J. Algebraic Combin. 34 (1) (2010) 1-18.
[2] Matthew Bennett, Vyjayanthi Chari, Nathan Manning, BGG reciprocity for current algebras, arXiv:1106.0347.
[3] Matthew Bennett, Vyjayanthi Chari, Jacob Greenstein, Nathan Manning, On homomorphism between global Weyl modules, arXiv:1008.5213v2, Represent. Theory, in press.
[4] V. Chari, J. Greenstein, Current algebras, highest weight categories and quivers, Adv. Math. 216 (2) (2007) 811-840.
[5] V. Chari, J. Greenstein, A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras, Adv. Math. 220 (4) (2009) 1193-1221.
[6] V. Chari, S. Loktev, Weyl, Demazure and fusion modules for the current algebra of $\mathfrak{s l}_{r+1}$, Adv. Math. 207 (2006) 928-960.
[7] V. Chari, A. Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001) 191-223 (electronic).
[8] R. Goodman, N. Wallach, Representations and Invariants of the Classical Groups, Cambridge University Press, 1998.
[9] B. Feigin, S. Loktev, Multi-dimensional Weyl modules and symmetric functions, Comm. Math. Phys. 251 (3) (2004) 427-445.
[10] G. Fourier, P. Littelmann, Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math. 211 (2) (2007) 566-593.
[11] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math., Springer-Verlag, 1972.
[12] M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (1) (2002) 117-175.
[13] T.Y. Lam, Serre's Problem on Projective Modules, Springer-Verlag, 2006, Oxford University Press, New York, 1979.
[14] K. Naoi, Weyl modules, Demazure modules and finite crystals for non-simply laced type, arXiv:1012.5480v2 [math.RT].

[^0]: * Corresponding author.

 E-mail addresses: chari@math.ucr.edu (V. Chari), s.loktev@gmail.com (S. Loktev).
 1 The author acknowledges support from the NSF, DMS-0901253.
 2 The author is supported by grants RFBR-09-01-00239, RFBR-CNRS-09-02-93106, N.Sh.8462.2010.1.

