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Introduction

Given a positive integer k, let Ak be the algebra of polynomials with complex coefficients in k
variables t1, . . . , tk and let Sk be the symmetric group on k letters. The group Sk acts naturally on Ak
by permuting the variables. It is a classical result that Ak when regarded as a module for (the algebra
of invariants) A Sk

k is free of rank k!.
In this paper, we are interested in certain variations of this problem. We regard Ak as being graded

by the non-negative integers in the standard way with each generator having degree one and note that
A Sk

k is a graded subalgebra. Suppose that we are given a partition ξ = (ξ1 � ξ2 � · · · � ξn+1 > 0) of k

and an element r ∈ Zξ2+ × · · · × Zξn+1+ , where Z+ is the set of non-negative integers. We define a poly-
nomial p(r) ∈ Ak which can be thought of as being associated to Young symmetrizers of tableaux of
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shape ξ where the filling in the first row is 1. For instance, when ξ = (k − � � �) > 0, the polynomials
are indexed by elements r = (r1, . . . , r�) ∈ Z�+ and are defined by,

p(r) =
∑
σ∈S�

(
�∏

i=1

(
t

rσ (i)

2i−1 − t
rσ (i)

2i

))
. (0.1)

Let Mk,ξ be the A Sk
k -submodule of Ak generated by the elements {p(r): r ∈ Zξ2+ × · · · × Zξn+1+ }. We use

the theory of global Weyl modules for the current algebra of sln+1 to prove that Mk,ξ is free and has
a graded basis. The number of elements of a given grade is the coefficient of the corresponding power
of q in the Kostka polynomial κ1k,ξ tr . The partition ξ defines an irreducible representation of Sk and
we show that Mk,ξ can be identified with the corresponding multiplicity space in Ak .

The global Weyl modules we use, are indexed by multiples of the first fundamental weight of sln+1.
These modules are well understood in the literature and many spanning sets and bases are known for
them: a Poincare–Birkhoff–Witt type spanning set, a Gelfand–Tsetlin basis defined in [6] and a global
canonical basis given in [12]. Our main result gives an explicit way to construct an A Sk

k -generating set
or basis of Mk,ξ from a spanning set or basis of the appropriate global Weyl module. The special case
described in (0.1) corresponds to taking a Poincare–Birkhoff–Witt spanning set for the global Weyl
modules.

For ξ = � � �, the freeness of the module M2�,ξ was first conjectured by Chari and Greenstein. It
was motivated by their study [4,5] of the homological properties of the category of finite-dimensional
representations of the current algebra of sl2. In [1] the module Mk,k−��� is denoted as Mk,� and a
more specific conjecture is given which identifies a natural basis for it and this conjecture remains
open.

Our interest in this result stems from the fact that it plays a crucial role in [2] which establishes a
BGG-type duality for locally finite-dimensional representations of the current algebra associated to sl2.
In Section 1, we give an elementary formulation of the results of this paper without using the notion
of global Weyl modules. The definitions and necessary results on global Weyl modules are recalled in
Section 2. In Section 3 we prove our main result which gives the isomorphism between the module
Mk,ξ and the appropriate space of invariants in the global Weyl module.

1. The modules Mk,ξ

1.1. Throughout this note we let Z+ (resp. N) denote the set of non-negative (resp. positive) inte-
gers and C the set of complex numbers. For k ∈ N, we let Ak be the polynomial ring in k-variables
equipped with the standard grading. For r ∈ Z+ the r-th graded piece is denoted as Ak[r] and is the
space of homogeneous polynomials of degree r. We shall use without further mention, the celebrated
result of Quillen (see [13] for an exposition) that a projective module for Ak is free.

1.2. We begin with some standard results (see for instance [8]) on the representation theory of the
symmetric group Sk on k letters. Let P [k] be the set of all partitions ξ = (ξ1 � · · · � ξn+1 � 0) of k.
The irreducible representations of Sk are parametrized by elements of P [k]. By abuse of notation, we
shall denote by ξ both a partition of k and an irreducible representation of Sk in the corresponding
isomorphism class and set dξ = dim ξ . Any representation V of Sk can be written as a sum of finite-
dimensional irreducible modules. If V ξ denotes the isotypical component corresponding to ξ ∈ P [k],
we have

V =
⊕

ξ∈P[k]
V ξ ,

as Sk-modules. We shall also use the notation V Sr to denote the isotypical component corresponding
to the trivial representation.
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1.3. The group algebra C[Sk] of Sk is canonically an Sk-module and,

C[Sk] =
⊕
ξ P[k]

C[Sk]ξ , dimC HomSk

(
ξ,C[Sk]ξ

) = dξ .

The following is well known but we isolate it as a lemma since it is used frequently. Recall that if V
and V ′ are two representations of Sk then one has the diagonal action of Sk on V ⊗ V ′ .

Lemma. Let ξ, ξ ′ ∈ P [k]. Then

dim
(
ξ ⊗ ξ ′)Sk =

{
0, ξ �= ξ ′,
1, ξ = ξ ′.

In particular, given a basis e1, . . . ,edξ
of ξ there exists a dual basis {e1, . . . ,edξ } such that (ξ ⊗ξ)Sk is spanned

by the element
∑dξ

s=1 es ⊗ es . �
1.4. Consider the natural right action of Sk on the ring Ak given by permuting the variables which

clearly preserves the graded pieces of Ak . The subalgebra A Sk
k of invariants is a graded subalgebra of

Ak and is a polynomial algebra in k homogeneous elements where the s-th element has degree s.
We also regard Ak as a right module over the ring A Sk

k and note that it commutes with the action

of Sk . Hence for any partition ξ of k, the Sk-isotypical component Aξ

k is also a free module for A Sk
k of

rank d2
ξ . We have an isomorphism of A Sk

k and Sk-modules,

Ak
∼=

⊕
ξ∈P[k]

Aξ

k .

If Ik is the augmentation ideal in A Sk
k , then there exists an isomorphism of Sk-modules,

Ak/Ik A Sk
k

∼= C[Sk].
The augmentation ideal Ik is graded and hence C[Sk] acquires a Z+-grading. It is known that the
graded multiplicity of the irreducible representation ξ is given by the Kostka polynomial κ1k,ξ tr .

1.5. Fix a partition ξ = (ξ1 � ξ2 � · · · � ξn+1 > 0) of k with (n + 1)-parts and set ki = ξi − ξi+1,
1 � i � n + 1 where we understand that kn+1 = ξn+1. It will be convenient to think of Ak as a tensor
product of algebras

Ak = A⊗k1
1 ⊗ A⊗k2

2 ⊗ · · · ⊗ A
⊗kn+1
n+1 ,

where we understand that A⊗k�

� = C if k� = 0. Let

Sξ = Sξ1 × · · · × Sξn+1 ,

be the corresponding Young subgroup of Sk . An element r ∈ Zξ1+ × · · · × Zξn+1+ defines a filling of the
Young diagram of ξ in an obvious way. Namely, writing r = (r1, . . . , rn+1) where r j = (r j,1, . . . , r j,ξ j )

for 1 � j � n + 1, we fill the j-th row of the Young diagram of ξ with the integers r j,1, . . . , r j,ξ j .

For each 1 � � � n + 1 with k� �= 0 define elements a�(r) ∈ A⊗k�

� by

a�(r) =
∑
τ∈S

sgn(τ )t
r1,ξ�+1+1

τ (1) · · · t
r�,ξ�+1
τ (�) ⊗ · · · ⊗

∑
τ∈S

sgn(τ )t
r1,ξ�

τ (1) · · · t
r�,ξ�
τ (�),
� �
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and if k� = 0 set a�(r) = 1. Finally, set

p(r) =
∑
σ∈Sξ

a1(σ r) ⊗ · · · ⊗ an+1(σ r).

Definition. Let Mk,ξ be the A Sk
k -submodule of A

Sξ

k generated by the elements

{
p(r): r = (r1, . . . , rn+1) ∈ {

0ξ1
} × Zξ2+ × · · · × Zξn+1+

}
.

1.6. We compute an example to illustrate the preceding definitions and to relate it to the modules
in the introduction. Suppose that n = 1 and ξ = (k − m � m > 0) so that k1 = k − 2m, k2 = m. The
polynomials we are interested in are indexed by elements r = (0k−m, (r1, . . . , rm)) ∈ {0k−m} × Zm+ and

live in A⊗k−2m
1 ⊗ A⊗m

2 . Then a1(r) = 1 while

a2(r) = (
tr1

2 − tr1
1

) ⊗ · · · ⊗ (
trm

2 − trm
1

) ∈ A⊗m
2 .

1.7. We shall prove,

Theorem 1. Let k ∈ N and let ξ = (ξ1 � ξ2 � · · · � ξn+1 > 0) be a partition of k into (n + 1)-parts. The A Sk
k

module Mk,ξ is graded free and the number of elements in the basis of degree s is the coefficient of qs in the

Kostka polynomial κ1k,ξ tr . Moreover, we have an isomorphism of graded Sk and A Sk
k -modules

Aξ

k
∼= Mk,ξ ⊗ ξ,

where the action is given by,

a(m ⊗ v) = am ⊗ v, σ (m ⊗ v) = m ⊗ σ v, a ∈ A Sk
k , σ ∈ Sk, m ∈ Mk,ξ , v ∈ ξ.

In particular, if Ik is the augmentation ideal in ASk
k , we have a Z+-graded isomorphism of vector spaces

Mk,ξ /Ik Mk,ξ
∼= HomSk

(
ξ,C[Sk]

)
.

We deduce this theorem from the results of the next two sections.

2. Representations of sln+1[t]

In this section we first recall several results on the representation theory of sln+1 which can be
found in any standard book (see [8,11] for instance). We then define a family of representations (the
global Weyl modules) of the infinite-dimensional Lie algebra sln+1 ⊗ C[t] and recall some of their
properties which were first established in [7] and [9].

2.1. Let sln+1 be the Lie algebra of (n + 1) × (n + 1)-matrices of trace zero and h (resp. n+ , n−) be
the subalgebra of diagonal (resp. strictly upper, lower triangular) matrices. Let ei, j be the (n + 1) ×
(n + 1)-matrix with one in the (i, j)-th position and zero elsewhere. The elements

x+
i = ei,i+1, hi = ei,i − ei+1,i+1, x−

i = ei+1,i, 1 � i � n,

generate sln+1 as a Lie algebra. Let Ω : sln+1 → sln+1 be the anti-automorphism satisfying

Ω
(
x±

i

) = x∓
i , Ω(hi) = hi . (2.1)
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2.2. Let P n be the set of all partitions with at most (n + 1)-parts and for 1 � i � n, let ωi ∈ P n be
the partition 1i . An element λ = (λ1 � λ2 � · · · � λn+1 � 0) of P n defines a finite-dimensional irre-
ducible representation V (λ) of sln+1 and two partitions λ,λ′ ∈ P n define isomorphic representations
iff λi − λi+1 = λ′

i − λ′
i+1 for all 1 � i � n. The trivial representation of sln+1 corresponds to taking the

empty partition.
It is well known that V (λ) is generated as an sln+1-module by an element vλ with defining rela-

tions:

n+vλ = 0, hi vλ = (λi − λi+1)vλ,
(
x−

i

)λi−λi+1+1
vλ = 0, 1 � i � n.

Further, any irreducible finite-dimensional representation of sln+1 is isomorphic to V (λ) for some
λ ∈ P n .

2.3. We say that a representation V of sln+1 is locally finite-dimensional if it is a direct sum
of finite-dimensional representations. By Weyl’s theorem, this is equivalent to requiring that V be
isomorphic to a direct sum of modules V (λ), λ ∈ P n . The Lie algebra h acts diagonalizably on a
locally finite-dimensional module V , and we have

V =
⊕
r∈Zn

V r, V r = {v ∈ V : hi v = ri v}, r ∈ Zn.

In the case when ξ is a partition, we also use the notation,

V ξ = {
v ∈ V : hi v = (ξi − ξi+1)v, 1 � i � n

}
, V n+

ξ = {
v ∈ V ξ : n+v = 0

}
.

Note that V (λ)n
+ = Cvλ for all λ ∈ P n and that a locally finite-dimensional representation is gener-

ated as an sln+1-module by the spaces V n+
ξ , ξ ∈ P n . The following is elementary.

Lemma. Let V be a locally finite-dimensional sln+1-module and let ξ ∈ P n. Then

V ξ = V n+
ξ ⊕ (

n−V ∩ V ξ

)
. �

2.4. Recall that if U is any vector space there is a natural action of Sk on the k-fold tensor product
U⊗k which just permutes the factors. We will need the following result, the first two parts of which
are elementary and the third part is the famous Schur–Weyl duality between representations of sln+1
and those of Sk

Proposition. Let k,n ∈ N.

(i) The module V (ω1) is isomorphic to the natural representation of sln+1 with standard basis e1, . . . , en+1
and action given by ei, je� = δ j,�ei . The assignment (ei, e j) = δi, j defines a symmetric bilinear from
( , ) : V (ω1) ⊗ V (ω1) → C satisfying,

(
xv, v ′) = (

v,Ω(x)v ′), v, v ′ ∈ V (ω1), x ∈ sln+1.

(ii) For 1 � i � n + 1, we have

(
V (ω1)

⊗i)n+
(ωi)

= C(e1 ∧ e2 ∧ · · · ∧ ei),

and an isomorphism of sln+1-modules
∧i V (ω1) ∼= V (ωi) which maps e1 ∧ · · · ∧ ei to vωi .
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(iii) Let k ∈ N. The natural right action of Sk on V (ω1)
⊗k commutes with the left action of sln+1 and as an

(sln+1, Sk)-bimodule, we have

V (ω1)
⊗k ∼=

⊕
ξ∈P n∩P[k]

V (ξ) ⊗ ξ.

Equivalently, the space (V (ω1)
⊗k)n

+
ξ is an irreducible Sk-submodule of V (ω1)

⊗k and we have an iso-
morphism of Sk-modules

(
V (ω1)

⊗k)n+
ξ

∼= ξ. �
2.5. Denote by ( , )k : V (ω1)

⊗k × V (ω1)
⊗k → C the symmetric non-degenerate bilinear form given

by extending linearly the assignment,

(ei1 ⊗ · · · ⊗ eik , e j1 ⊗ · · · ⊗ e jk )k = (ei1 , e j1) · · · (eik , e jk ),

where is, js ∈ {1, . . . ,n + 1} for 1 � s � k. The form is clearly Sk-invariant and satisfies

(
xv,v′)

k = (
v,Ω(x)v′)

k, v,v′ ∈ V (ω1)
⊗k, x ∈ g.

In particular since Ω(hi) = hi for all 1 � i � n, we have

(
V (ω1)

⊗k
ξ , V (ω1)

⊗k
ξ ′

)
k = 0, ξ, ξ ′ ∈ P n, ξ �= ξ ′,

and so the restriction of the form to V (ω1)
⊗k
ξ is non-degenerate.

Lemma. For all ξ ∈ P n ∩ P [k] the restriction of the form ( , )k to (V (ω1)
⊗k)n

+
ξ × (V (ω1)

⊗k)n
+

ξ is non-
degenerate.

Proof. Let v,v′ ∈ V (ω1)
⊗k
ξ be such that (v,v′)k �= 0 and assume that n+v = 0. By Lemma 2.3, we may

write v′ = v1 + v2, where v1 ∈ V n+
ξ and v2 = ∑n

i=1 ei+1,iui for some ui ∈ V (ω1)
⊗k . Hence we get

(v,v2)k =
(

v,

n∑
i=1

ei+1,iui

)
k

=
n∑

i=1

(ei,i+1v,ui)k = 0,

i.e., (v,v1)k = (v,v′)k �= 0 and the lemma is proved. �
2.6. Given k ∈ N and a partition ξ = (ξ1 � · · · � ξn+1 > 0) of k set ki = ξi − ξi+1, and let

e(ξ) = e⊗k1
1 ⊗ (e1 ∧ e2)

⊗k2 ⊗ · · · ⊗ (e1 ∧ e2 ∧ · · · ∧ en+1)
⊗kn+1 ∈ (

V (ω1)
⊗k)n+

ξ
.

We note the following consequence of Proposition 2.4.

Lemma. The set {e(ξ)σ : σ ∈ Sk} spans (V (ω1)
⊗k)n

+
ξ . �
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From now on, we fix elements σ� ∈ Sk , 1 � � � dξ − 1 with σ1 = id such that the set {e(ξ)σ�: 1 �
� � dξ } is a basis of (V (ω1)

⊗k)n
+

ξ . We also use Lemma 2.5 and fix a dual basis {e�: 1 � � � dξ } of

(V (ω1)
⊗k)n

+
ξ satisfying

(
e j,e(ξ)σm

)
k = 0, 1 � j �= m � dξ ,

(
em,e(ξ)σm

)
k = 1. (2.2)

2.7. We now introduce the main tools to prove Theorem 1 and we begin with some general def-
initions. Given a complex Lie algebra a and an indeterminate t , let a[t] = a ⊗ C[t] be the Lie algebra
with commutator given by,

[a ⊗ f ,b ⊗ g] = [a,b] ⊗ f g, a,b ∈ a, f , g,∈ C[t].

We identify without further comment the Lie algebra a with the subalgebra a ⊗ 1 of a[t]. Clearly,
a[t] has a natural Z+-grading given by the powers of t and this also induces a Z+-grading on U(a[t]).
A Z+-graded bimodule for the pair (a[t], Ak) is a complex vector space V = ⊕

s∈Z+ V s which admits
a left action of a[t] and a commuting right action of Ak such that both actions are compatible with
the grading, i.e.,

(
a ⊗ tr)V [s] ⊂ V [s + r], V [s]Ak[r] ⊂ V [s + r], s, r ∈ Z+.

An elementary way to construct such modules is as follows: let Us , 1 � s � k be a-modules and define
on (U1 ⊗ · · · ⊗ Uk ⊗ Ak) the structure of a bimodule for the pair (a[t], Ak) by:

(u1 ⊗ · · · ⊗ uk ⊗ a)b = u1 ⊗ · · · ⊗ uk ⊗ ab, (2.3)

(
x ⊗ tr)(u1 ⊗ · · · ⊗ uk ⊗ a) =

k∑
s=1

( s−1⊗
j=1

u j

)
⊗ xus

( k⊗
j=s+1

u j

)
⊗ tr

sa, (2.4)

where a,b ∈ Ak , us ∈ Us , 1 � s � k, r ∈ Z+ and x ∈ a. The grading on (U1 ⊗ · · · ⊗ Uk ⊗ Ak) is induced
by the grading on Ak , i.e., for an integer r, the r-th-graded piece is (U1 ⊗ · · · ⊗ Uk) ⊗ Ak[r]. These
modules are clearly free as right Ak (and so also as right A Sk

k ) modules.

2.8. Consider the special case when all the Ui ’s are the same, say Ui = U for 1 � i � k. The induced
diagonal (right) action of Sk on U⊗k ⊗ Ak commutes with the right action of Ak and hence for each
ξ ∈ P [k], the isotypical component (U⊗k ⊗ Ak)

ξ is a A Sk
k -module and we have an isomorphism of

A Sk
k -modules

U⊗k ⊗ Ak
∼=

⊕
ξ∈P[k]

(
U⊗k ⊗ Ak

)ξ
.

If dim U < ∞ then (U⊗k ⊗ Ak)
ξ is a free A Sk

k -module of finite rank. The following is easily checked
by using the explicit definition of the action of a[t] given in (2.4).

Lemma. The space (U⊗k ⊗ Ak)
Sk is a Z+-graded (a[t], A Sk

k )-submodule of U⊗k ⊗ Ak. �
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2.9. Apply the preceding construction to the case when a = sln+1 and U = V (ω1). Define an Ak-
valued bilinear form

〈 , 〉 : (V (ω1)
⊗k ⊗ Ak

) × (
V (ω1)

⊗k ⊗ Ak
) → Ak,

by extending linearly the assignment,

〈
v ⊗ f ,v′ ⊗ g

〉 = (
v,v′)

k f g,

where v,v′ ∈ V (ω1)
⊗k , and f , g ∈ Ak . Notice that the form 〈 , 〉 is not Sk-invariant. The following is

proved by a direct calculation using the formulae in (2.3) and (2.4).

Lemma. For all x ∈ sln+1 , f ∈ C[t], we have

〈
(x ⊗ f )(v ⊗ g),v′ ⊗ g′〉 = 〈

v ⊗ g,
(
Ω(x) ⊗ f

)(
v′ ⊗ g′)〉,

where v,v′ ∈ V (ω1)
⊗k and g, g′ ∈ Ak. Further, for all v ∈ V (ω1)

⊗k, the assignment

〈 ,v〉 : V (ω1)
⊗k ⊗ Ak → Ak

is a map of Ak-modules. �
2.10. The following lemma gives an interpretation of the polynomials p(r) in terms of the rep-

resentation theory of current algebras. The proof is straightforward but tedious. It is included since
the lemma is crucial for the proof of the main theorem in Section 3. We remark that [e j,1, ek,1] =
0 = [e1, j, e1,k] for 1 � j,k � n + 1 which implies that the products in the statement and proof of the
lemma are well defined. We fix a partition ξ = (ξ1 � · · · � ξn+1 > 0) of k and use freely the notation
of Section 2.6.

Lemma. Let r = ({0ξ1 }, r2, . . . , rn+1), where r j = (r j,1, . . . , r j,ξ j ) ∈ Z
ξ j
+ , 2 � j � n + 1. We have

〈
y(r)

(
e⊗k

1 ⊗ 1
)
,e(ξ)

〉 = p(r),

where y(r) ∈ U(n−[t]) is the element

y(r) =
n+1∏
j=2

(
e j,1 ⊗ tr j,1

) · · · (e j,1 ⊗ t
r j,ξ j

)
.

Proof. Using Lemma 2.9 we have

〈
y(r)

(
v⊗k
ω1

⊗ a
)
,e(ξ)

〉 = 〈
v⊗k
ω1

⊗ a,x(r)e(ξ)
〉
,

where

x(r) =
n+1∏
j=2

(
e1, j ⊗ tr j,1

) · · · (e1, j ⊗ t
r j,ξ j

) =
n+1∏
�=2

ξ�∏
s=ξ�+1+1

x�,s(r),

x�,s(r) = (
e1,2 ⊗ tr2,s

) · · · (e1,� ⊗ tr�,s
)
, 2 � � � n + 1, ξ�+1 + 1 � s � ξ�.
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Given σ ∈ Sξ it is clear that x(r) = x(σ r) although it is not true that x�,s(r) = x�,s(σ r). To compute
x(r)e(ξ), we note first that

x�,s(r)(e1 ∧ · · · ∧ e�) =
( ∑

τ∈S�

sgn(τ )t
r2,s
τ (2) · · · t

r�,s
τ (�)

)
e⊗�

1 ,

and hence

x�,ξ�+1+1(r)(e1 ∧ · · · ∧ e�) ⊗ · · · ⊗ x�,ξ�
(r)(e1 ∧ · · · ∧ e�) = a(r)e⊗�

1 .

Since (e1,k ⊗ tr)(e1,k ⊗ ts)(e1 ∧ · · · ∧ em) = 0 for all 2 � m � n + 1, we get

(
e1,k ⊗ trk,1

) · · · (e1,k ⊗ trk,ξk
)
(e1 ∧ · · · ∧ em)⊗ξk

=
∑

σ∈Sξk

(
e1,k ⊗ trk,σ (1)

)
(e1 ∧ · · · ∧ em) ⊗ · · · ⊗ (

e1,k ⊗ t
rn+1,ξσ (k)

)
(e1 ∧ · · · ∧ em).

This now implies that

x(r)e(ξ) =
∑
σ∈Sξ

e⊗k1
1 ⊗ x2,ξ3+1

(
σ(r)

)
(e1 ∧ e2) ⊗ · · · ⊗ x2,ξ2

(
σ(r)

)
(e1 ∧ e2) ⊗ · · ·

⊗ xn+1,1
(
σ(r)

)
(e1 ∧ · · · ∧ en+1) ⊗ · · · ⊗ xn+1,ξn+1

(
σ(r)

)
(e1 ∧ · · · ∧ en+1),

= p(r)e⊗k
1 ,

and the proof of the lemma is complete. �
2.11. For k ∈ Z+ , let

W (k) = (
V (ω1)

⊗k ⊗ Ak
)Sk . (2.5)

Then W (k) is a Z+-graded (sln+1, A Sk
k )-bimodule. Since V (ω1)

⊗k ⊗ Ak and hence also, W (k) is a
locally finite-dimensional sln+1-module, we can write

W (k) =
⊕

ξ∈P n∩P[k]
W (k)ξ , W (k)ξ = W (k)n

+
ξ ⊕ (

n−W (k) ∩ W (k)ξ
)
. (2.6)

Since the action of sln+1 action and Sk on W (k) commute, we have

W (k)ξ = (
V (ω1)

⊗k
ξ ⊗ Ak

)Sk , W (k)n
+

ξ = ((
V (ω1)

⊗k)n+
ξ

⊗ Aξ

k

)Sk . (2.7)

Since the action of sln+1 on W (k) also commutes with the action of A Sk
k , we see that the subspaces

W (k)ξ , W (k)n
+

ξ and (n−W (k)∩W (k)ξ ) are all Z+-graded A Sk
k -submodules of W (k). Further, the direct

sums in (2.6) are of A Sk
k -submodules. Since W (k) is obviously a free A Sk

k -module we see that W (k)n
+

ξ

is also a free A Sk
k -module and hence graded free.
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2.12. We shall need the following result. As usual we denote by U(a) the universal enveloping
algebra of the Lie algebra a.

Theorem 2. Let k ∈ N.

(i) The element v⊗k
ω1

generates W (k) as a module for sln+1[t], and

W (k) = U
(
n−[t])(v⊗k

ω1
⊗ A Sk

k

)
.

(ii) For ξ ∈ P n, the A Sk
k -module W (k)n

+
ξ is graded free and the number of elements in a basis with grade s is

the coefficient of qs in the Kostka polynomial κ1k,ξ tr . �
Part (i) of the theorem was proved in [7] for sl2 and in [9] for sln+1. Recall that Ik is the augmen-

tation ideal in A Sk
k and consider the graded sln+1[t]-module, W (k)/Ik W (k). It was shown in [6] that

the subspace (W (k)/Ik W (k))n
+

ξ has a graded basis and also that the number of elements in the basis

of grade s is the coefficient of qs in the Kostka polynomial κ1k,ξ tr . Part (ii) follows since W (k)n+
ξ is

graded free as an A Sk
k -module and we have an isomorphism of graded spaces,

W (k)n+
ξ /Ik W (k)n

+
ξ

∼= (
W (k)/Ik W (k)

)n+
ξ

.

2.13. The modules W (k) are special examples of a family of modules called the global Weyl mod-
ules which were defined and studied in [7] for arbitrary simple Lie algebras and further studied in
[6,10,14]. For sln+1 it is proved in [3] that the global Weyl modules can be realized as sitting inside
a suitable space of invariants. However, except in the special case considered in this paper, the global
Weyl modules are strictly smaller than the space of invariants.

3. The main result and Proof of Theorem 1

3.1. Fix k ∈ N, ξ = (ξ1 � ξ2 � · · · � ξn+1 > 0) a partition of k and set ki = ξi − ξi+1, 1 � i � n + 1.
We use freely the notation of the earlier sections, in particular we let σs ∈ Sk , 1 � s � dξ be as defined
in Section 2.6. Theorem 1 is clearly a consequence Theorem 2 and the following result.

Theorem 3. The restriction of the map 〈 ,e(ξ)〉 : V (ω1)
⊗k ⊗ Ak → Ak gives an isomorphism of A Sk

k -modules

W (k)n
+

ξ → Mk,ξ . For σ ∈ Sk we have

Mk,ξ σ = 〈
W (k)n

+
ξ ,e(ξ)σ

〉
, (3.1)

and further,

〈
W (k)n

+
ξ ,

(
V (ω1)

⊗k)n+
ξ

〉 = Aξ

k =
dξ⊕

s=1

Mk,ξ σs, (3.2)

as Sk and A Sk
k -modules.

Proof. By Lemma 2.9, we have that 〈 ,e(ξ)〉 : V (ω1)
k ⊗ Ak → Ak is a map of Ak-modules. Hence,

using (2.5) and the remarks in Section 2.11, we see that the restriction to W (k) and hence to W (k)n
+

ξ

is a map of A Sk
k -modules. Let {es: 1 � s � dξ } be the basis of (V (ω1)

⊗k)n
+

ξ defined in Section 2.6.

Using Eq. (2.7) and Lemma 1.2, we may write any non-zero element v ∈ W (k)n
+

ξ as
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v =
dξ∑

s=1

es ⊗ gs, gs ∈ Aξ

k , g1 �= 0. (3.3)

Using Eq. (2.2), we get 〈
v,e(ξ)

〉 = g1 �= 0,

which proves that the map 〈 ,e(ξ)〉 : W (k)n
+

ξ → Ak is injective and that its image is contained in Aξ

k .

In particular it follows from Theorem 2 that 〈W (k)n
+

ξ ,e(ξ)〉 is a free A Sk
k -module of rank dξ .

We now prove the first equality in (3.2). For this, we begin by showing that

〈
W (k)n

+
ξ ,e(ξ)

〉
σ = 〈

W (k)n
+

ξ ,e(ξ)σ
〉
. (3.4)

Choose v as in Eq. (3.3) and let σ ∈ Sk . We have

〈
v,e(ξ)σ

〉 = 〈
vσ ,e(ξ)σ

〉 =
〈

�∑
s=1

esσ ⊗ gsσ ,e(ξ)σ

〉
=

(
�∑

s=1

(
es,e(ξ)

)
k gs

)
σ = 〈

v,e(ξ)
〉
σ

where the first equality follows from Eq. (2.5) and the penultimate equality is a consequence of the
Sk invariance of ( , )k . Hence (3.4) is established.

Recalling from Lemma 2.6 that the elements {e(ξ)σ : σ ∈ Sk} span (V (ω1)
⊗k)n

+
ξ , we observe that

∑
σ∈Sk

〈
W (k)n

+
ξ ,e(ξ)σ

〉 = 〈
W (k)n

+
ξ ,

(
V (ω1)

⊗k)n+
ξ

〉 ⊂ Aξ

k .

To prove the reverse inclusion, suppose that a ∈ Aξ

k and assume that it generates an irreducible Sk-
submodule N and let a1, . . . ,adξ

be a basis of N where a1 = a. Then there exists a non-zero element

v ∈ ((
V (ω1)

⊗k)n+
ξ

⊗ N
)Sk ⊂ W (k)n

+
ξ ,

and by Lemma 1.2 we can write v = ∑dξ

s=1 vs ⊗ as where the elements {vs: 1 � s � dξ } are a basis

for (V (ω1)
⊗k)n

+
ξ . By Lemma 2.5 we may choose a dual basis {v′

s: 1 � s � dξ } of (V (ω1)
⊗k)n

+
ξ and we

find now that 〈
v,v′

1

〉 = a1 = a.

Since Aξ is completely reducible, this proves that

Aξ =
dξ∑

s=1

〈
W (k)n

+
ξ ,e(ξ)σs

〉
.

Recall from Section 1.4 that Aξ is a free A Sk
k -module of rank d2

ξ . Since we have shown earlier in this

proof that 〈W (k)n
+

ξ ,e(ξ)σs〉 is free A Sk
k -module of rank dξ , it follows that in fact

Aξ

k =
dξ⊕〈

W (k)n
+

ξ ,e(ξ)σs
〉
.

s=1
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To complete the proof of the theorem, we must prove that

〈
W (k)n

+
ξ ,e(ξ)

〉 = Mk,ξ .

Since 〈n−W (k)ξ ,e(ξ)〉 = 0, it suffices by Lemma 2.3 to prove that 〈W (k)ξ ,e(ξ)〉 = Mk,ξ . Using
ei, j vω1 = 0, j �= 1 and the fact that

W (k) = U
(
n−[t])(v⊗k

ω1
⊗ A Sk

k

)
,

we see that W (k)ξ is spanned by elements of the form y(r)(v⊗k
ω1

⊗ a) where a ∈ A Sk
k , r = ({0ξ1 }, r2,

. . . , rn+1), where r j = (r j,1, . . . , r j,ξ j ) ∈ Z
ξ j
+ , 2 � j � n + 1, and,

y(r) =
n+1∏
j=2

(
e j,1 ⊗ tr j,1

) · · · (e j,1 ⊗ t
r j,ξ j

)
.

Lemma 2.10 shows that 〈
y
(

v⊗k
ω1

⊗ a
)
,e(ξ)

〉 = p(r)a,

which proves

Mk,ξ = 〈
W (k)ξ ,e(ξ)

〉
,

as required. �
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