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The main goal of the article is to give the definition of algebraic stability that
would permit us to consider stability, not only for algebraic vector bundles or
torsion-free coherent sheaves, but for the abelian category of coherent sheaves or
for whatever abelian category. We present an axiomatic description of the alge-
braic stability on an abelian category and prove some general results. Then the
stability for coherent sheaves on a projective variety is constructed which general-
izes Gieseker stability. Stabilities for graded modules and for quiver representa-
tions are also discussed. The constructions could be used for other abelian
categories as well. Q 1997 Academic Press

Traditionally the stability is used as a technical tool while constructing
moduli varieties. From its first appearance in the 1960s in D. Mumford’s
work in the geometric invariant theory the stable and semistable objects

Ž w x.were defined in dozens of contexts see, for example, F; K; LT; M; R . It
seems practical to make a kind of general scheme for those definitions that
would permit us to proceed with the stability considerations in an abelian
category and this is done here in the article.

We would gain from this even in the classical case of algebraic coherent
sheaves where stability was traditionally defined only for torsion-free

Ž w x.coherent sheaves see, for example, OSS, Chap. 2 , and only recently the
definition has been generalized to ‘‘coherent sheaves of pure dimension d’’

w xby Simpson and Maruyama S; M . In our approach we do not impose
initially any condition on the sheaf in question. But ‘‘being of pure
dimension’’ it becomes the property of stable sheaves a posteriori, one can
derive this from the definition.
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Section 1 is devoted to the definition and basic properties of a stability
for an abelian category. In Section 2 the generalized Gieseker stability for
algebraic coherent sheaves is constructed. Then in the next section we
discuss another way to construct stability for a category and apply this to
generalize the stability that was defined by King for quiver representa-

w xtions K .
The author thanks the E. Schrodinger International Institute, where the¨

first version of the text was written, and S. Kuleshov for helpful discus-
sions. The research was also partly supported by INTAS grant.

1. GENERAL ALGEBRAIC STABILITY

Let AA be an abelian category. To define stability in a category AA we
need first a preorder on the objects of AA. We will say that a preorder on AA

is given when we can compare nonzero objects of AA that for A, B g Obj AA,
A / 0, B / 0, either A $ B, or A % B, or A 7 B is valid and it is possible
to have A 7 B even when A / B.

DEFINITION 1.1. Let us say that the stability structure on AA is given if
there is a preorder on AA such that for an exact sequence of nonzero
objects 0 ª A ª B ª C ª 0 we have

either A $ B mA $ C mB $ C,
or A % B mA % C mB % C,
or A 7 B mA 7 C mB 7 C.

We call this property the seesaw property.

LEMMA 1.2. Gï en an exact sequence of nonzero objects 0 ª A ª B ª
C ª 0 and a nonzero object D we ha¨e

A $ D and C $ D «B $ D,
A % D and C % D «B % D,
A 7 D and C 7 D «B 7 D.

Summarizing both properties one can say that the middle term B of the
exact sequence is situated in between the side terms A and C in respect to
the preorder.

To prove the lemma it is enough to notice that either A U B U C or
A # B # C by the seesaw property and the result follows by the transitiv-
ity of the preorder.
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The result of Lemma 1.2 can be generalized as follows.

LEMMA 1.3. Gï en nonzero objects B and D suppose that B has a filtration

B s F 0 > F 1 > ??? > F m > F mq 1 s 0

with the factors Gi s F irF iq1. Then

Gi $ D for i s 1, . . . , m « B $ D ,
iG % D for i s 1, . . . , m « B % D ,
iG 7 D for i s 1, . . . , m « B 7 D.

We shall call this property the center of mass property.

LEMMA 1.4. Suppose that B has a filtration

B s F 0 > F 1 > ??? > F m > F mq 1 s 0

with the nonzero factors Gi s F irF iq1 and G0 $ G1 $ ??? $ Gm. Denote
Gk s F krF Žkqp. for k G 0, p G 1, k q p F m q 1. Thenp

Gk $ Gn m k , p - n , q ,Ž . Ž .p q lex

where ‘‘lex’’ stands for the lexicografic order.

Also we proceed by induction and leave the details to the reader.

DEFINITION 1.5. Let us call an object B stable when B is nonzero and
for a nontrivial subobject A ; B we have A $ B.

DEFINITION 1.6. Let us call an object B semistable when B is nonzero
and for a nontrivial subobject A ; B we have A U B.

Because of the seesaw property one can use factorobjects to define
stable and semistable objects as well:

B is stable if and only if B $ C for a nontrivial factorobject C,
B is semi-stable means B U C for a nontrivial factorobject C.

In a sense stable objects are similar to irreducible ones and we have a
general Schur lemma type result.

THEOREM 1. Let A, B be semi-stable objects from AA such that A # B and
suppose there is a nonzero morphism w : A ª B. Then:

Ž .a A 7 B,
Ž .b if B is stable then w is an epimorphism,
Ž .c if A is stable then w is a monomorphism,
Ž .d if both A, B are stable then w is an isomorphism.
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Ž .Remark. Suppose Hom A, B are finite dimensional vector spaces over
a field I- as it is for coherent sheaves on a projective variety over I- and
let I- be algebraically closed. Then it follows from the theorem that for a

Ž .stable object A we always have Hom A, A s I- .

Proof of Theorem 1. Let us consider the usual ker-im and im-coker
exact sequences for w

0 ª K ª A ª I ª 0, 0 ª I ª B ª C ª 0.

As w / 0 so I / 0. By the definition of semi-stability

I U B , A U I , so A U B.

Ž .But A # B, so A 7 I 7 B, thus a is proved.
Ž . ŽFor b we need to mention that I / B implies I $ B because B is
.stable in contradiction with I 7 B that we have got above. We proceed

Ž . Ž .similarly with c and d .

As usual one can expect also a kind of Harder]Narasimhan filtration to
exist. For this we need to assume additional properties.

Let us use in the following the convenient shorthand notations like
Ž .A ; ; U B, instead of writing A ; B and A U B with obvious variations .

Here A ; B does not exclude A s B.
As usual we call B noetherian if an ascending chain in B stabilizes and

say AA is noetherian when any object of AA is noetherian.

Ž .DEFINITION 1.7. Let us call B quasi-noetherian or q-noetherian if a
chain

A ; ; U A ; ; U ???1 2

in B has to stabilize. We call AA q-noetherian if any object in AA is
q-noetherian.

Of course the condition of being q-noetherian is weaker than being
noetherian.

Ž .DEFINITION 1.8. Let us call B weakly artinian or w-artinian if a chain

A > ; U A > ; U ???1 2

in B has to stabilize. The same way we call AA w-artinian if any object in AA

is w-artinian.

Remark. B being w-artinian implies that a chain A > ; $ A > ;1 2
$ ??? in B has to be finite.
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PROPOSITION 1.9. Let B be q-noetherian and w-artinian then it exist a
subobject Ba in B such that:

Ž . aa if 0 / A ; B is a subobject in B then A U B ,
Ž . a ab if 0 / A ; B and A 7 B then A ; B ,

a Ž . Ž .If in an object B there exists a subobject B with properties a , b then such
Ba is uniquely defined.

The object Ba itself is necessary semistable and clearly B is semistable
if and only if B s Ba.

Let B be under conditions of Proposition 1.9 further on.

LEMMA 1.10. Let 0 / A ; B. Then either A is semistable or there is
0 / A9 ; B such that A9 is semistable and A9 % A.

Proof of the lemma. Let A s A. If A is not semistable then there is1 1
A such that2

A > ; $ A / 0.1 2

The same is valid for A and so on. We have to come to a semistable2
subobject after a finite number of steps because the infinite chain

A > ; $ A > ; $ ???1 2

does not exist in the w-artinian B.

LEMMA 1.11. Let C / 0 be a subobject in B. If there is a semistable
subobject A in B satisfying A % C then either A ; C or it exists C9 ; B such
that C9 > ; % C.

Proof of the lemma. We have two standard exact sequences

0 ª A l C ª A ª U ª 0,
0 ª C ª A q C ª U ª 0.

If A is not in C then A q C / C thus U / 0.
Now either A l C s 0 or A l C / 0. In the former case A s U, in the

latter A l C U A because A is semistable, and A U U by the seesaw
property applied to the first sequence. Hencefore A U U in both cases.

We know C $ A so C $ U. Thus the second sequence implies that
Ž .C $ A q C by the seesaw property.

We conclude that C9 s A q C satisfies the lemma.

Proof of Proposition 1.9. The uniqueness of Ba is clear, we are to prove
the existence.
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Let us call for the moment a subobject C / 0 in B greedy if for a
semistable A in B the property A % C implies A ; C.

The B itself is greedy and for any E / 0 in B we can construct a greedy
C # E as follows.

If the subobject C s E does not satisfy the condition then it exists a0
semistable A, A % C and A is not a subobject of C . Then by Lemma0 0
1.11 there is C > ; % C . The same way if C does not satisfy the1 0 1
condition we get to have C > ; % C , and so on. But an infinite chain of2 1
the type

C ; ; $ C ; ; $ C ???0 1 2

is impossible as B is q-noetherian.
We would like first to prove the existence of B* that satisfies the

Ž .property a .
Ž .If B does not satisfy a then we construct a greedy object B ; ; % B.1

Because of Lemma 1.10 and the fact that B is greedy we can substitute1
Ž . Ž .B for B in proving a . Now the same way if B does not satisfy a then1 1

we construct a greedy object B ; ; % B and so on. Thus we are making2 1
the chain

B > ; $ B > ; $ B ???1 2 3

that must be finite because B is w-artinian.
Now we are to prove the existence of Ba among the subobjects that

Ž .already have the property a .
Ž . Ž .If a is valid for B but b is wrong then it exists A, A 7 B , A is not a0 0

subobject in B and we can suppose that A is semistable by Lemma 1.10.0
Let B s B q A. By the reasoning similar to this of the proof of Lemma1 0
1.11 it is easy to show that B # B , clearly B is strictly larger than B ,1 0 1 0

Ž .and, of course, a is valid for B as well.1
We would repeat this getting

B ; ; U B ; ; U B ???0 1 2

with the strict inclusion on every step until we come to a subobject
Ž . Ž .satisfying both a and b because the infinite chain of this type is

impossible as B is q-noetherian.

Ž .DEFINITION 1.12. Let us call B weakly-noetherian or w-noetherian if
B is q-noetherian and a chain

A ; ; # A ; ; # ???1 2

in B has to stabilize also. We call AA w-noetherian if any object of AA is
w-noetherian.
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Of course ‘‘noetherian’’ implies ‘‘w-noetherian’’ and ‘‘q-noetherian.’’

THEOREM 2. Suppose AA is w-artnian and w-noetherian then for an object
B of AA there exists a filtration

B s F 0 B > F1 B > ??? > F mB > F mq 1B s 0H H H H

such that:

Ž . i i iq1i factors G B s F BrF B are semistable,H H H

Ž . 0 1 mii G B $ G B $ ??? $ G B.H H H

Ž . Ž .If the filtration with the properties i , ii exists in an object B then it is unique.

We need to prove some propositions first.

Ž . Ž .PROPOSITION 1.13. Let B ha¨e a filtration with the properties i , ii from
Theorem 2. Then Ba s F mB.H

Proof of the proposition. We can proceed by induction on m. For m s 0
the statement is obvious. So let us consider the general case.

Let A be a subobject in B. Let us write F i instead of F i B and the sameH
i my1 m Ž m.afor G . By induction F rF s BrF , thus

Ar F m l A U F my 1rF m s Gmy 1.Ž .
my 1 m Ž m . m m mBut G $ G so Ar F l A $ F as G s F .

Ž m . m mNotice that F l A U F because F is semistable. Then by the
center of mass property we have

A U F m ,
m Ž .so F satisfies the condition a from Proposition 1.9.

m Ž . m Ž m .To prove that F satisfies b consider A 7 F . Now we have F l A
U F m 7 A. By the seesaw property this implies

Ar F m l A # A ,Ž .

Ž m . m m my1provided that Ar F l A / 0. But A 7 F s G % G , hence

Ar F m l A % Gmy 1 ,Ž .

Ž m . mwhich is impossible by induction. Whence Ar F l A s 0 and F l A
m m Ž .s A. Thus we conclude that A ; F so F satisfies b , and the unique-

ness statement from Proposition 1.9 gives us exactly what is needed.

Proof of Theorem 2. To prove the uniqueness let us notice first that the
last term of a filtration is uniquely defined by Propositions 1.13 and 1.9.
From this it is easy to get the result by induction.
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Suppose that AA satisfies the conditions of Theorem 2. To construct the
filtration let us define

a0 y1 a yŽ iq1. yiF s 0, F s B , F s preimage BrF .Ž .
yŽ iq1. Ž yi .a yŽ iq2. yŽ iq1.Clearly a factor G s BrF is semistable and G $ G

by the seesaw property applied to the sequence

0 ª GyŽ iq1. ª FyŽ iq2.rFyi ª GyŽ iq2. ª 0.

From Proposition 1.4 one concludes that

Fy1 ; ; % Fy2 ; ; % ??? .

Since B is q-noetherian so FyŽ mq1. s B for some m and we have only to
shift the indices to get the filtration as it is needed for the theorem.

Remark. The author can prove a kind of a dual statement to Proposi-
tion 1.9 but with a bit stronger condition on B. Let B be noetherian and
w-artinian then it exist a factorobject B for B such that:a

Ž .a9 if B ª A / 0 is a factor object for B then A # B ,a

Ž .b9 if B ª A / 0 is a factor object and A 7 B then the morphisma

B ª A factors through B ª B ª A, so A is a factor object for B .a a

The factor object B is uniquely defined by these properties. In thisa

case obviously B coincides with the first factor G0 B of the Harder]a H
Narasimhan filtration in B.

One can also construct a Jordan]Holder filtration in a semistable¨
object.

THEOREM 3. Suppose AA is w-artinian and q-noetherian and B is a
semistable object of AA. Then B has a filtration

B s F 0B > F 1B > ??? > F mB > F mq 1B s 0J J J J

such that:

Ž . i i iq1i factors G B s F BrF B are stable,J J J

Ž . 0 1 mii G B 7 G B 7 ??? 7 G B,J J J

� i 4 Ž . Ž .and the set G B of factors is uniquely defined by the properties i , ii .J

Proof of the theorem. Clearly the subobjects X in B such that X 7 B
satisfy the ascending and descending chain conditions. So the result
becomes standard.
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2. POLYNOMIAL STABILITY

It is well known that the category of algebraic coherent sheaves on a
projective variety is noetherian. The same is the category of finitely
generated graded R-modules where the algebra R is commutative and
finitely generated over a field I-. We would like to construct a stability
structure for these categories.

In both cases an object of a category has ‘‘a characteristic function.’’ For
a sheaf A on a variety X it is:

P n s dim H 0 X , A n .Ž . Ž .Ž .I-w A x

For a graded module A s [ A let it be the Hilbert]Samuel function:q g Z q

P n s dim [q F n A .Ž . I-w A x q )y` q

This justifies the following definition.

DEFINITION 2.1. Let us say that a characteristic function is defined for
a category AA if it is defined for any object A a function P : Z ª Z isw A x
defined with the properties:

Ž .i given an exact sequence 0 ª A ª B ª C ª 0 we have

P n s P n q P n for n 4 0;Ž . Ž . Ž .w B x w A x wC x

Ž .ii P s 0 if and only if A s 0;w A x

Ž .iii for n 4 0 the function P becomes a polynomial which has aw A x
positive highest coefficient when A / 0.

Remark. It is well known for the functions we have discussed above for
coherent sheaves and R-modules that they have these properties.

It follows from the definition that if A ; B then

P n F P n for n 4 0.Ž . Ž .w A x w B x

Without loss of generality we can suppose from now on that P denotesw A x
Ž .the polynomial one obtains via condition iii of the definition.

DEFINITION 2.2. Let A, B be nonzero objects of AA and

m m
i iP n s a n , P n s b nŽ . Ž .Ý Ýw A x i w B x i

is0 is0
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Ž .be the corresponding polynomials m being unspecified large number .
Denote

a ai j
l si , j b bi j

and let

L s l , l , . . . , l , l , . . . , lŽ .Ž A , B . m , my1 m , my2 m , 0 my1, my2 2, 1

be the line of 2 = 2-minors of the matrix

a , a , . . . , am my1 0 .
b , b , . . . , bm my1 0

The polynomial stability structure is define by conditions:

A 7 B mL s 0Ž A, B .

A $ B mthe first nonzero term in L is positive.Ž A, B .

Remark. Of course it follows that

A % B m the first nonzero term in L is negative.Ž A , B .

We have to check the transitivity of the preorder and the seesaw
property.

LEMMA 2.3. If deg P ) deg P then A $ B.w A x w B x

Clearly the first nonzero minor in L will be equal to the product ofŽ A, B .
the highest coefficients of P and P which are positive.w A x w B x

LEMMA 2.4. If deg P s deg P s d then A $ B if and only ifw A x w B x

a a a b b bdy1 dy2 0 dy1 dy2 0
, , . . . , - , , . . . ,lexž / ž /a a a b b bd d d d d d

Ž .where ‘‘- ’’ is used for ‘‘lexicographically less’’ .lex

This amounts to the straight check according to the definition. It follows
from Lemmas 2.3 and 2.4 that the preorder is transitive.

Remark. In a sense one can consider Definition 2.2 as a way to define
an order on a projective space. This order coincides with the lexicographic

�Ž .4order on the affine chart 1 : a : ??? : a and the ‘‘infinite’’ pointsmy 1 0
�Ž .40 :a : ??? : a are all bigger than ‘‘finite’’ points. And the structuremy 1 0
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�Ž .4repeats itself then}points in 0 : 1 : a : ??? : a are in lexicographicmy 2 0
order between themselves, are smaller than points of the type
�Ž .40 : 0 : a : ??? : a , and so on.my 2 0

LEMMA 2.5. The polynomial preorder defines a stability structure.

Proof of the proposition. We are to check the seesaw property. Let
0 ª A ª B ª C ª 0 be an exact sequence. Then

P n s P n q P n .Ž . Ž . Ž .w B x w A x wC x

Hence

a a a a a aj i j i j is sa q c a q c c cb b j j i i j ij i

a q c a q c b bj j i i j is sc c c cj i j i

and this implies the seesaw property.

Ž . Ž .PROPOSITION 2.6. If the characteristic function with the properties i ] ii
is defined for an abelian category AA, then AA is w-artinian.

Proof of the proposition. By the contrary let us have an infinite chain

A > ; U A > ; U ??? ,1 2

with strict inclusions and let

P s aw r x x iÝr i

be the corresponding polynomials. As A > A strictly sor rq1

P n ) P n for n 4 0.Ž . Ž .r rq1

Hence deg P G deg P and, therefore, deg P s deg P s ??? s d forr rq1 r rq1
large enough r and aw r x G aw rq1x G ??? .d d

Since the polynomials have positive integer values for n 4 0 so their
w r x Ž .highest coefficients a belong to 1rd! N, hence it is impossible for themd

to decrease infinitely, and we get

aw s x s aw sq1x s ??? s qd d

for some large enough s.
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Ž . Ž .Then the property P n ) P n for n 4 0, and r G s is equivalent tor rq1

q , aw r x , aw r x , . . . , aw r x ) q , aw rq1x , aw rq1x , . . . , aw rq1xŽ . Ž .dy1 dy2 0 lex dy1 dy2 0

and this is the same as

aw r x aw r x aw r x aw rq1x aw rq1x aw rq1x
dy1 dy2 0 dy1 dy2 0

, , . . . , ) , , . . . , .lexž / ž /q q q q q q

Now because of Lemma 2.4 this means A % A which contradicts to ther rq1
presupposition that A U A .r rq1

DEFINITION 2.7. Let us say that the stability structure defined on a
category of algebraic coherent sheaves over a projective variety by the
polynomial preorder described above is the generalized Gieseker stability.

COROLLARY 2.8. The statements of Theorems 1, 2, and 3 are ¨alid for
algebraic coherent shea¨es on a projectï e ¨ariety in respect to the generalized
Gieseker stability.

One only have to remember that coherent sheaves are noetherian and
they are w-artinian as well, by the above proposition.

w xRemark. Let us remind M that a coherent sheaf F on X is said to be
Ž .of pure dimension d if dim Supp F s d and for every nonzero coherent

Ž .subsheaf F9 of F, we have dim Supp F s d.

ŽClearly it follows from our definitions and Lemma 2.3 that a stable for
.the generalized Gieseker stability sheaf is ‘‘of pure dimension’’ and that

the Simpson]Maruyama-stable sheaves are the same as the generalized-
Gieseker-stable sheaves in the end result.

3. RATIO OF ADDITIVE FUNCTIONS STABILITY

w xAnother, perhaps more usual way to define the stability F; K; LT; OSS
is via a ratio of two additive functions and this is what we are going to
discuss in this section.

DEFINITION 3.1. Let c and r be two additive functions on AA and let
Ž .r A ) 0 for any nonzero object A of AA. We call the ratio

m A s c A rr AŽ . Ž . Ž .
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Ž .the c : r -slope of A and define the slope order by the conditions:

A $ B m m A - m B ,Ž . Ž .
A 7 B m m A s m B .Ž . Ž .

This is the way stability for algebraic vector bundles is usually defined
w xOSS; M; LT .

Ž .LEMMA 3.2. The c : r -slope preorder defines a stability structure.

Proof of the lemma. Let us notice that

c A c B 1Ž . Ž . r B c BŽ . Ž .
y s .

r A c Ar A r B r A r B Ž . Ž .Ž . Ž . Ž . Ž .

So the ordering between A and B is determined by the positivity,
negativity, or nullity of the determinant

r B c BŽ . Ž .
.

r A c AŽ . Ž .

Now it is easy to see that the same transformations of determinants that
were used in the proof of Lemma 2.5 also work here. We leave details to
the reader.

Remark. The function c is not obliged to take values in Z. For
example, Q, C, or an ordered Z-module could be the target set as well.

w xThe latter one was the case for the stability used in R .

w xKing K has used the notion of stability to construct moduli spaces of
the representations of a quiver. In his case stability is discussed only for
representations with a fixed K -image a and it depends on a choice of an0

Ž .additive function u such that u a s 0. This approach makes it possible to
construct a moduli space, but at the same moment it does not allow us to
compare stable representations with different a as their stabilities often
have to be defined with respect to different functions of u .

In order to relate the King’s definition with ours let us first remember
the definition from King’s paper.

w xDEFINITION 3.3 K, p. 516 . Let AA be an abelian category and
Ž .u : K AA ª R an additive function on the Grothendieck group. An object0

Ž .M g AA is called u-semistable if u M s 0 and every subobject M9 ; M
Ž .satisfies u M9 G 0. Such an M is called u-stable if the only subobjects M9

Ž .with u M9 s 0 are M and 0.
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PROPOSITION 3.4. Gï en a stability for an abelian category AA that is
Ž .defined ¨ia the c : r -slope preorder and M g AA let us consider an additï e

function u such that

c MŽ .
u s yc q r .

r MŽ .

Ž . Ž .Then u M s 0 and M is stable by the c : r -stability if and only if it is
u-stable in the sense of Definition 3.3.

Proof. Let us notice that

c M c M9 c MŽ . Ž . Ž .
u M9 G 0 m yc M9 q r M9 G 0 m F .Ž . Ž . Ž .

r M r M9 r MŽ . Ž . Ž .

So King’s results about moduli spaces u-stable objects are relevant to
w xour stability. The existence theorems from K for moduli spaces of

u-stable representations of a finite-dimensional algebra imply the existence
Ž .theorems for moduli spaces of c : r -stable representations.

Remark. The Harder]Narasimhan filtration of Theorem 2 in general
depends on the stability in question. This is easy to see with the following
example.

Ž . Ž . Ž .Let 1 ª 2 ª 3 be a quiver of type A and3

� 4V s V ª V ª V1 2 3

Žthe representation of the quiver for the definitions consult, for example,
w x.K . If we put

r V s dim V , c V s a dim V ,Ž . Ž .Ý Ýi i i

� 4then different choices for the coefficients a define different stabilities.i
Now let V be the representation where dim V s 1 and the maps arei

isomorphisms. The only subobjects of V are the following two:

V w1x s V w1x s 0, V w1x s 0, V w1x s V ;� 41 2 3 3

V w2x s V w2x s 0, V w2x s V , V w2x s V ,� 41 2 2 3 3

and one can investigate how the Harder]Narasimhan filtrations are made
out of them.

It is not difficult to check that if a s 3, a s 2, a s 1 then V is stable1 2 3
and the Harder]Narasimhan filtration is trivial. But if a s i then V is noti
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stable and

V > V w2x > V w1x > 0

is the Harder]Narasimhan filtration in this case.
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