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On the simplest system with retarding
switching and a 2–point critical set
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Abstract

The system considered in this paper consists of two equations
(k = 1, 2) ẋ(t) = (−1)k−1(0 ≤ t < ∞), k(0) = 1, x(0) = 0, x(t) 6∈
{0, 1}(−1 ≤ t < 0), that change mutually in every instant t for which
x(t − τ) ∈ {0, 1}, where τ = const > 0 is given. In this paper the
behavior of the solutions is characterized for every τ ∈ (4

3 , 3
2), i. e. in

case not covered in [4]; as it was noted there, this behavior turned out
to be more complex then when τ ∈ (3/2,∞). Thus the behavior of the
solutions of this system with critical set K = {0, 1} is characterized
for every τ > 0.
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In [1] the systems with retarding switching were introduced as a natural
generalization of the ”raging systems” of T. Vogel [2]. The Vogel’s system is
defined with two autonomous systems in Rn (”base systems”) which replace
each other when the phase point x(t) reaches the given fixed ”critical set”
K. General systems with retarding switching were defined in [3]. Here the
change of the base systems occurs in every instant t when the point x(t− τ)
gets into K, where τ = const > 0 is given, and the values of the solution are
given on some time interval of the length τ as the initial condition, as well
as the number of the initial base system.

In [4] the considered system has the form

ẋ(t) = (−1)k−1 (k = 1, 2; 0 ≤ t < ∞), (1)

whereas the critical set is K = {0, 1}. We set the continuous initial function
x = ϕ(t), for −1 ≤ t ≤ 0, where ϕ(0) = 0, ϕ(t) 6∈ {0, 1}(−1 ≤ t < 0), and
start with the first base equation (k = 1).

In [4] the behavior of the solution of the system (1) is fully characterized
for τ ∈ [0, 4

3
] ∪ [3

2
,∞). When τ ∈ [4

3
, 3

2
] there are some calculations for

τ ∈ [4
3
, 31

21
].

But one critical value - τ = 63
43

- in interval (16
11

, 31
21

) was lost. That’s
why coordinates x for turning points mentioned in [4] are correct only for
τ ∈ (16

11
, 63

43
).

If τ = 63
43

after switching in points 63
43

, 20
43

, 60
43

, 14
43

, 48
43

,−10
43

, 0,−1,−23
43

the
solution goes to −∞;

if τ ∈ (63
43

, 31
21

) it is periodic with sequential turning points τ, τ − 1, 3τ −
3, 5τ − 7, 11τ − 15, 21τ − 31, 43τ − 63, 43τ − 64, τ − 2,−85τ + 124.

Probably this oversight hindered the author of [4] from finding the general
rule of behavior of the solutions of the system (1) when τ ∈ [4/3, 3/2).

In this paper the behavior of the solutions of the system (1) is charac-
terized for every τ ∈ (4

3
, 3

2
), i. e. in case not covered in [4]; as it was noted

there, this behavior turned out to be more complex then when τ ∈ (3/2,∞).
Thus the behavior of the solution of this system with critical set K = {0, 1}
is characterized for every τ > 0.

Let us introduce the designations τk := 3 · 4k/(2 · 4k + 1) (k ∈ N); θk :=
3 · (4k+1 − 1)/(2 · 4k+1 + 1) (k ∈ N) and ζk := 3 · (2 · 4k − 1)/(4k+1 − 1) (k ∈
N). This are the increasing sequences, with τ1 = 4

3
, τk → 3/2 as k → ∞;

θ1 = 15
11

, θk → 3/2 as k → ∞ and ζ1 = 7
5
, ζk → 3/2 as k → ∞. More than

τk < θk < ζk < τk+1 (∀k ∈ N).

Theorem 1. For all k ∈ N:
the solution of the problem is periodic and has 4k + 2 switchings on the

least period, if τ = τk;
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the solution of the problem is periodic and has 2k + 4 switchings on the
least period, if τk < τ < θk;

the solution of the problem goes to −∞ after 2k +5 switchings, if τ = θk;
the solution of the problem is periodic and has 2k + 6 switchings on the

least period, if θk < τ < ζk;
the solution of the problem goes to −∞ after 4k +5 switchings, if τ = ζk;
the solution of the problem is periodic and has 2k + 4 switchings on the

least period, if ζk < τ < τk+1.

Proof. Let consider, that τ ∈ [4/3, 3/2) is given. Let (a1, b1)(= (0, 0)),
(a2, b2), . . . , ((α1, β1), (α2, β2), . . .) be the sequence of the values of (x, t) in
the instants of the hit of the solution on the critical set (in instants of the
switching, respectively).

If τ = τ1 = 4
3

the solution is periodic with sequential turning points
4
3
, 1

3
, 1,−1

3
,

2
3
, 0 and it corresponds with the formulation of the Theorem 1.

Let us prove that Theorem 1 is valid for all τ ∈ (4/3, 3/2). Denote by J
the maximal natural number for which αj > 1 at all odd j < J and αj < 1
at all even j < J ; J = ∞ if αj satisfy these conditions for all natural j. It is
obvious that J ≥ 4.

Lemma 1. Let τ ∈ (4/3, 3/2), 2k + 1 < J ; then α2k > 0.

Proof. Let proof this statement by contradiction. Let assume that there
exists k ∈ N, so that 2k + 1 < J but α2k ≤ 0; from all such k choose
the smallest. From the definition of J and from our assumption follows,
that for all n ∈ N (1 ≤ n ≤ 2k − 2) in every segment with ends αn, αn+1

there is only one point from our critical set : {1}. Taking into account
formulas a2 = 1, β1 < b3 < β2, we conclude, that an = 1 (1 ≤ n ≤ 2k)
and βn−2 < bn < βn−1 (3 ≤ n ≤ 2k + 1). From α2k−1 > 0 and α2k ≤ 0 we
obtain, that a2k+1 = 1, a2k+2 = 0. According to the definition of solution
we have βn − βn = τ(∀n ∈ N); in particular, β2k+1 − b2k+1 = τ < 3/2. But
β2k+1−b2k+1 = (β2k+1−β2k)(β2k−b2k+1 = |α2k+1−α2k|+|α2k−a2k| > 2. This
contradiction shows us falseness of our assumption. Lemma 1 is proved.

Let j ∈ [2, J−1]. It follows from Lemma 1, that αj > 0 for all j ∈ [2, J−2].
Then it follows from the definition of the solution that

bj+1 − βj−1 = βj−1 − bj. (2)

But βj = bj + τ for all values of j such that bj is defined - in particular,
for j = J < ∞, as bJ < βJ−1. Therefore from (2) we obtain the recurrence
relation

βj+1 = −βj + 2βj−1 + 2τ, 2 ≤ j ≤ J − 1. (3)
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Moreover the definition of the solution directly implies the expression for α
in terms of β:

αj = 1 + (−1)j[τ − 2(βj − βj−1)], 2 ≤ j ≤ J. (4)

The formula

βj =
6j + 1− (−2)j

9
τ − (−2)j−1 − 1

3
, 1 ≤ j ≤ J,

follows from the relation (3) and the initial data β1 = τ, β2 = τ + 1. This
formula together with (4) and the equality α1 = τ yields that

αj =
2j − (−1)j

3
τ − 2j−1 + 1, 1 ≤ j ≤ J. (5)

One can see that both sequences {αj}(j ∈ [1, J ] even) and (j ∈ [1, J ] odd)
are decreasing. Hence J is the smallest even number for which the value αj

calculated according to the formula (5), becomes ≤ 1. The values τk, k ∈ N
for which α2k+1 = 1, i.e.

22k+1 + 1

3
τk − 22k + 1 = 1.

are the critical ones. We find from here that τk = 3 · 4k/(2 · 4k + 1). Now
let’s consider possible cases.

If τ = τk, then α2k+1 = 1, that’s why because in [α2k, α2k+1] there are
no other points from critical set, the solution continues with the same time
intervals but symmetrically relatively {x = 1/2}, i. e. the solution is peri-
odical and has 2k + 1 + 2k + 1 = 4k + 2 switchings on the least period (Fig.
1)1.
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Fig. 1.

Let then τk < τ < τk+1. Therefore α2k+1 > 1 and α2k+3 < 1. The further
behavior of the solution depends on that, if α2k+3 is greater than zero or no.
So we have another set of critical points, for which

22k+3 + 1

3
θk − 22k+2 + 1 = 0,

1All figures were rendered for k = 3
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wherefrom we receive θk = 3 · (4k+1 − 1)/(2 · 4k+1 + 1).

If τk < τ < θk, i. e. α2k+3 < 0, then after switchings in points α2k+2 and
α2k+3 there is one another switching in point α2k+4 < 0 and the solution gets
to the beginning of it’s period after 2k + 4 switchings (Fig. 2).
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If τ = θk, i. e. α2k+3 = 0, then we can verify by direct calculating, that
α2k+4 = −1. Therefore α2k+5 < 0 after which nothing does not prevent the
solution to go to −∞. It has performed 2k + 5 switchings (Fig. 3).
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If θk < τ < τk+1, the result depends on the sign of α2k+2. From this we
receive the last set of critical points

22k+2 − 1

3
ζk − 22k+1 + 1 = 0,

or ζk = 3 · (2 · 4k − 1)/(4k+1 − 1).

If θk < τ < ζk, then we can verify by direct calculating, that α2k+5 =
τ − 2 < 0. So the solution after switching in points α2k+4, α2k+5 and α2k+6

gets to the beginning of it’s period after 2k + 6 switchings (Fig. 4).
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Fig. 4.

If τ = ζk. Then we can observe, that α2k+3 = τ − 1. It means, that
the solution further behave as if t ∈ [β1, β2k+3], and after that, having in all
2k + 2 + 2k + 2 + 1 = 4k + 5 switchings, goes to −∞ (Fig. 5).
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And finally if ζk < τ < τk+1, then because in this case α2k+2 > 0 and
α2k+3 < 1, there is only one another switching, after which the solution gets
to the beginning of it’s period after 2k + 4 switchings (Fig. 6). This ends
proof of Theorem 1.
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Fig. 6.
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