Volume 11
2004, No 1-2

On the simplest system with retarding switching and a 2 -point critical set

D. A. Filimonov *

Abstract

The system considered in this paper consists of two equations $(k=1,2) \dot{x}(t)=(-1)^{k-1}(0 \leq t<\infty), k(0)=1, x(0)=0, x(t) \notin$ $\{0,1\}(-1 \leq t<0)$, that change mutually in every instant t for which $x(t-\tau) \in\{0,1\}$, where $\tau=$ const >0 is given. In this paper the behavior of the solutions is characterized for every $\tau \in\left(\frac{4}{3}, \frac{3}{2}\right)$, i. e. in case not covered in [4]; as it was noted there, this behavior turned out to be more complex then when $\tau \in(3 / 2, \infty)$. Thus the behavior of the solutions of this system with critical set $K=\{0,1\}$ is characterized for every $\tau>0$.

Keywords. Functional differential equation, Equation of retarded type, System with retarding switching, Periodic solution

AMS(MOS) subject classification. $34 K 15$

[^0]In [1] the systems with retarding switching were introduced as a natural generalization of the "raging systems" of T. Vogel [2]. The Vogel's system is defined with two autonomous systems in $\mathbf{R}^{\mathbf{n}}$ ("base systems") which replace each other when the phase point $x(t)$ reaches the given fixed "critical set" K. General systems with retarding switching were defined in [3]. Here the change of the base systems occurs in every instant t when the point $x(t-\tau)$ gets into K, where $\tau=$ const >0 is given, and the values of the solution are given on some time interval of the length τ as the initial condition, as well as the number of the initial base system.

In [4] the considered system has the form

$$
\begin{equation*}
\dot{x}(t)=(-1)^{k-1} \quad(k=1,2 ; \quad 0 \leq t<\infty) \tag{1}
\end{equation*}
$$

whereas the critical set is $K=\{0,1\}$. We set the continuous initial function $x=\varphi(t)$, for $-1 \leq t \leq 0$, where $\varphi(0)=0, \varphi(t) \notin\{0,1\}(-1 \leq t<0)$, and start with the first base equation $(k=1)$.

In [4] the behavior of the solution of the system (1) is fully characterized for $\tau \in\left[0, \frac{4}{3}\right] \cup\left[\frac{3}{2}, \infty\right)$. When $\tau \in\left[\frac{4}{3}, \frac{3}{2}\right]$ there are some calculations for $\tau \in\left[\frac{4}{3}, \frac{31}{21}\right]$.

But one critical value - $\tau=\frac{63}{43}$ - in interval $\left(\frac{16}{11}, \frac{31}{21}\right)$ was lost. That's why coordinates x for turning points mentioned in [4] are correct only for $\tau \in\left(\frac{16}{11}, \frac{63}{43}\right)$.

If $\tau \stackrel{63}{43}$ after switching in points $\frac{63}{43}, \frac{20}{43}, \frac{60}{43}, \frac{14}{43}, \frac{48}{43},-\frac{10}{43}, 0,-1,-\frac{23}{43}$ the solution goes to $-\infty$;
if $\tau \in\left(\frac{63}{43}, \frac{31}{21}\right)$ it is periodic with sequential turning points $\tau, \tau-1,3 \tau-$ $3,5 \tau-7,11 \tau-15,21 \tau-31,43 \tau-63,43 \tau-64, \tau-2,-85 \tau+124$.

Probably this oversight hindered the author of [4] from finding the general rule of behavior of the solutions of the system (1) when $\tau \in[4 / 3,3 / 2)$.

In this paper the behavior of the solutions of the system (1) is characterized for every $\tau \in\left(\frac{4}{3}, \frac{3}{2}\right)$, i. e. in case not covered in [4]; as it was noted there, this behavior turned out to be more complex then when $\tau \in(3 / 2, \infty)$. Thus the behavior of the solution of this system with critical set $K=\{0,1\}$ is characterized for every $\tau>0$.

Let us introduce the designations $\tau_{k}:=3 \cdot 4^{k} /\left(2 \cdot 4^{k}+1\right)(k \in \mathbb{N}) ; \theta_{k}:=$ $3 \cdot\left(4^{k+1}-1\right) /\left(2 \cdot 4^{k+1}+1\right)(k \in \mathbb{N})$ and $\zeta_{k}:=3 \cdot\left(2 \cdot 4^{k}-1\right) /\left(4^{k+1}-1\right)(k \in$ $\mathbb{N})$. This are the increasing sequences, with $\tau_{1}=\frac{4}{3}, \tau_{k} \rightarrow 3 / 2$ as $k \rightarrow \infty$; $\theta_{1}=\frac{15}{11}, \theta_{k} \rightarrow 3 / 2$ as $k \rightarrow \infty$ and $\zeta_{1}=\frac{7}{5}, \zeta_{k} \rightarrow 3 / 2$ as $k \rightarrow \infty$. More than $\tau_{k}<\theta_{k}<\zeta_{k}<\tau_{k+1}(\forall k \in \mathbb{N})$.

Theorem 1. For all $k \in \mathbb{N}$:
the solution of the problem is periodic and has $4 k+2$ switchings on the least period, if $\tau=\tau_{k}$;
the solution of the problem is periodic and has $2 k+4$ switchings on the least period, if $\tau_{k}<\tau<\theta_{k}$;
the solution of the problem goes to $-\infty$ after $2 k+5$ switchings, if $\tau=\theta_{k}$;
the solution of the problem is periodic and has $2 k+6$ switchings on the least period, if $\theta_{k}<\tau<\zeta_{k}$;
the solution of the problem goes to $-\infty$ after $4 k+5$ switchings, if $\tau=\zeta_{k}$;
the solution of the problem is periodic and has $2 k+4$ switchings on the least period, if $\zeta_{k}<\tau<\tau_{k+1}$.
Proof. Let consider, that $\tau \in[4 / 3,3 / 2)$ is given. Let $\left(a_{1}, b_{1}\right)(=(0,0))$, $\left(a_{2}, b_{2}\right), \ldots,\left(\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots\right)$ be the sequence of the values of (x, t) in the instants of the hit of the solution on the critical set (in instants of the switching, respectively).

If $\tau=\tau_{1}=\frac{4}{3}$ the solution is periodic with sequential turning points $\frac{4}{3}, \frac{1}{3}, 1,-\frac{1}{3}$,
$\frac{2}{3}, 0$ and it corresponds with the formulation of the Theorem 1.
Let us prove that Theorem 1 is valid for all $\tau \in(4 / 3,3 / 2)$. Denote by J the maximal natural number for which $\alpha_{j}>1$ at all odd $j<J$ and $\alpha_{j}<1$ at all even $j<J ; J=\infty$ if α_{j} satisfy these conditions for all natural j. It is obvious that $J \geq 4$.
Lemma 1. Let $\tau \in(4 / 3,3 / 2), 2 k+1<J$; then $\alpha_{2 k}>0$.
Proof. Let proof this statement by contradiction. Let assume that there exists $k \in \mathbb{N}$, so that $2 k+1<J$ but $\alpha_{2 k} \leq 0$; from all such k choose the smallest. From the definition of J and from our assumption follows, that for all $n \in \mathbb{N}(1 \leq n \leq 2 k-2)$ in every segment with ends α_{n}, α_{n+1} there is only one point from our critical set : $\{1\}$. Taking into account formulas $a_{2}=1, \beta_{1}<b_{3}<\beta_{2}$, we conclude, that $a_{n}=1(1 \leq n \leq 2 k)$ and $\beta_{n-2}<b_{n}<\beta_{n-1}(3 \leq n \leq 2 k+1)$. From $\alpha_{2 k-1}>0$ and $\alpha_{2 k} \leq 0$ we obtain, that $a_{2 k+1}=1, a_{2 k+2}=0$. According to the definition of solution we have $\beta_{n}-\beta_{n}=\tau(\forall n \in \mathbb{N})$; in particular, $\beta_{2 k+1}-b_{2 k+1}=\tau<3 / 2$. But $\beta_{2 k+1}-b_{2 k+1}=\left(\beta_{2 k+1}-\beta_{2 k}\right)\left(\beta_{2 k}-b_{2 k+1}=\left|\alpha_{2 k+1}-\alpha_{2 k}\right|+\left|\alpha_{2 k}-a_{2 k}\right|>2\right.$. This contradiction shows us falseness of our assumption. Lemma 1 is proved.

Let $j \in[2, J-1]$. It follows from Lemma 1 , that $\alpha_{j}>0$ for all $j \in[2, J-2]$. Then it follows from the definition of the solution that

$$
\begin{equation*}
b_{j+1}-\beta_{j-1}=\beta_{j-1}-b_{j} . \tag{2}
\end{equation*}
$$

But $\beta_{j}=b_{j}+\tau$ for all values of j such that b_{j} is defined - in particular, for $j=J<\infty$, as $b_{J}<\beta_{J-1}$. Therefore from (2) we obtain the recurrence relation

$$
\begin{equation*}
\beta_{j+1}=-\beta_{j}+2 \beta_{j-1}+2 \tau, \quad 2 \leq j \leq J-1 \tag{3}
\end{equation*}
$$

Moreover the definition of the solution directly implies the expression for α in terms of β :

$$
\begin{equation*}
\alpha_{j}=1+(-1)^{j}\left[\tau-2\left(\beta_{j}-\beta_{j-1}\right)\right], \quad 2 \leq j \leq J . \tag{4}
\end{equation*}
$$

The formula

$$
\beta_{j}=\frac{6 j+1-(-2)^{j}}{9} \tau-\frac{(-2)^{j-1}-1}{3}, \quad 1 \leq j \leq J
$$

follows from the relation (3) and the initial data $\beta_{1}=\tau, \beta_{2}=\tau+1$. This formula together with (4) and the equality $\alpha_{1}=\tau$ yields that

$$
\begin{equation*}
\alpha_{j}=\frac{2^{j}-(-1)^{j}}{3} \tau-2^{j-1}+1, \quad 1 \leq j \leq J \tag{5}
\end{equation*}
$$

One can see that both sequences $\left\{\alpha_{j}\right\}(j \in[1, J]$ even $)$ and $(j \in[1, J]$ odd $)$ are decreasing. Hence J is the smallest even number for which the value α_{j} calculated according to the formula (5), becomes ≤ 1. The values $\tau_{k}, k \in \mathbb{N}$ for which $\alpha_{2 k+1}=1$, i.e.

$$
\frac{2^{2 k+1}+1}{3} \tau_{k}-2^{2 k}+1=1
$$

are the critical ones. We find from here that $\tau_{k}=3 \cdot 4^{k} /\left(2 \cdot 4^{k}+1\right)$. Now let's consider possible cases.

If $\tau=\tau_{k}$, then $\alpha_{2 k+1}=1$, that's why because in $\left[\alpha_{2 k}, \alpha_{2 k+1}\right]$ there are no other points from critical set, the solution continues with the same time intervals but symmetrically relatively $\{x=1 / 2\}$, i. e. the solution is periodical and has $2 k+1+2 k+1=4 k+2$ switchings on the least period (Fig. $1)^{1}$.

Fig. 1.
Let then $\tau_{k}<\tau<\tau_{k+1}$. Therefore $\alpha_{2 k+1}>1$ and $\alpha_{2 k+3}<1$. The further behavior of the solution depends on that, if $\alpha_{2 k+3}$ is greater than zero or no. So we have another set of critical points, for which

$$
\frac{2^{2 k+3}+1}{3} \theta_{k}-2^{2 k+2}+1=0
$$

[^1]wherefrom we receive $\theta_{k}=3 \cdot\left(4^{k+1}-1\right) /\left(2 \cdot 4^{k+1}+1\right)$.
If $\tau_{k}<\tau<\theta_{k}$, i. e. $\alpha_{2 k+3}<0$, then after switchings in points $\alpha_{2 k+2}$ and $\alpha_{2 k+3}$ there is one another switching in point $\alpha_{2 k+4}<0$ and the solution gets to the beginning of it's period after $2 k+4$ switchings (Fig. 2).

Fig. 2.

If $\tau=\theta_{k}$, i. e. $\alpha_{2 k+3}=0$, then we can verify by direct calculating, that $\alpha_{2 k+4}=-1$. Therefore $\alpha_{2 k+5}<0$ after which nothing does not prevent the solution to go to $-\infty$. It has performed $2 k+5$ switchings (Fig. 3).

Fig. 3.

If $\theta_{k}<\tau<\tau_{k+1}$, the result depends on the sign of $\alpha_{2 k+2}$. From this we receive the last set of critical points

$$
\frac{2^{2 k+2}-1}{3} \zeta_{k}-2^{2 k+1}+1=0
$$

or $\zeta_{k}=3 \cdot\left(2 \cdot 4^{k}-1\right) /\left(4^{k+1}-1\right)$.
If $\theta_{k}<\tau<\zeta_{k}$, then we can verify by direct calculating, that $\alpha_{2 k+5}=$ $\tau-2<0$. So the solution after switching in points $\alpha_{2 k+4}, \alpha_{2 k+5}$ and $\alpha_{2 k+6}$ gets to the beginning of it's period after $2 k+6$ switchings (Fig. 4).

Fig. 4.
If $\tau=\zeta_{k}$. Then we can observe, that $\alpha_{2 k+3}=\tau-1$. It means, that the solution further behave as if $t \in\left[\beta_{1}, \beta_{2 k+3}\right]$, and after that, having in all $2 k+2+2 k+2+1=4 k+5$ switchings, goes to $-\infty$ (Fig. 5).

Fig. 5.
And finally if $\zeta_{k}<\tau<\tau_{k+1}$, then because in this case $\alpha_{2 k+2}>0$ and $\alpha_{2 k+3}<1$, there is only one another switching, after which the solution gets to the beginning of it's period after $2 k+4$ switchings (Fig. 6). This ends proof of Theorem 1 .

Fig. 6.

Acknowledgement. I thank Prof. A.D.Myshkis for the setting of a problem and for useful discussion.

References

[1] A. D. Myshkis and A. Ja. Khokhr'akov, Raging dynamical systems. 1. Singular points on the plane, Matematicheskij Sbornik (Mathematical Collection), 45 (1958), No. 3, 401-414. (in Russian).
[2] T. Vogel, Sur les systémes dèferlants, Bull. Soc. Math. France, 81 (1953), No. 1, 63-75.
[3] A. D. Myshkis, Systems with retarding switching, Avtomatika i Telemekhanika (Automation and Remote Control), 2000, No. 12, 48-52.
[4] A. D. Myshkis The simplest system with retarding switching and 2point critical set. Functional Differential Equations., 10 (2003), No. 3-4, 535-539.

[^0]: *Department of Mathematics and Mechanics, Moscow State University, mityafil@yandex.ru

[^1]: ${ }^{1}$ All figures were rendered for $k=3$

