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Abstract

Van Lambalgen’s theorem states that a pair («, 8) of bit sequences is Martin-
Lof random if and only if o is Martin-Lof random and 8 is Martin-Lof random
relative to a.. In [Information and Computation 209.2 (2011): 183-197, Theorem 3.3],
Hayato Takahashi generalized van Lambalgen’s theorem for computable measures P
on a product of two Cantor spaces; he showed that the equivalence holds for each
B for which the conditional probability P(:|38) is computable. He asked whether
this computability condition is necessary. We give a positive answer by providing
a computable measure for which van Lambalgen’s theorem fails. We also present a
simple construction of a computable measure for which conditional measure is not
computable. Such measures were first constructed by N. Ackerman, C. Freer and
D. Roy in [Proceedings of the 26th Annual IEEE Symposium on Logic in Computer
Science (LICS), pp. 107-116. IEEE (2011)].

Michiel van Lambalgen characterized Martin-Lof randomness of a pair of bit sequences:

Theorem 1 (van Lambalgen [6]). The following are equivalent for a pair (o, ) of se-
quences:

e (a,B) is Martin-Ldf random,
e « is Martin-Lof random and B is Martin-Lof random relative to c.

One can replace uniform (Lebesgue) measure in the definition of Martin-L6f randomness
by any other computable measure P. We call sequences that are random in this sense
P-random. There exist two definitions of Martin-L6f randomness for a pair of sequences.
The first states that («, ) is random if the join aificzf:... is random. The second
definition uses the two dimensional variant of a Martin-Lof test, which is given by a family
of uniformly effectively open sets U,, C 2% x 2 such that the uniform measure of U, is at
most 27", Both approaches are equivalent.

To generalize van Lambalgen’s theorem for computable measures P, the first approach
seems not suitable. Why join two sequences in this specific way? What does it mean?
Also, the most direct approach of replacing Martin-Lof randomness with P-randomness
will make the theorem wrong for trivial reasons: There exist a computable P and a pair of
sequences («, 8) such that crfiqzf2 ... is P-random, while « is not P-random. Indeed,
let P be the measure that concentrates all its mass on the single point 010101..., i.e.,
P({0101...}) =1 and P(S) =0if 0101--- ¢ S. The sequence 0101... is P-random, but
00... is not random.

To use the two-dimensional approach, we need to decompose the bivariate measure
P into two univariate measures. It is natural to use the marginal and the conditional
measure for P. In fact, such decompositions are omnipresent in probability theory, and it
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nicely fits the statement of van Lambalgen’s theorem, which uses in the second criterion
a conditionally and an unconditionally random sequence.

We now define conditional measure. Let 2% denote Cantor space. For any string z, let
[x] be the (basic open) set containing all extensions of z. We say that a measure P on
2V is computable if the function that maps each string z to P([z]) is computable. Similar
for measures P on 2V x 2V, Following Takahashi [10], we define for each measure P on
2N x 2N and each measurable set S C 2N:

s P(S x[B1...5n))
Pe(S18) = i B G A

Let the marginal distribution be Py (S) = P(2N x 9).

Remark: The definition of a conditional measure is usually given using the Radon-
Nikodym theorem. In fact, this theorem defines a set of conditional measures, and each
pair of such measures coincides on a set [ of Pj/-measure one. Using the Lebesgue
differentiation theorem it can be shown that these conditional measures also coincide
with Po(+|8) for Pp-almost all 3. We refer to the appendix for more details.

This specific conditional measure is especially suitable to generalize van Lambalgen’s
theorem: if 3 is Py-random, then Po(+|3) is defined and is a measure [10, Theorem 4.1]
(see also [8, Lemma 10]). In [1, Theorem 29, p14] it is shown that for computable P, the
measure Pc might not be computable. The measure that satisfies the conditions of our
main result satisfies a similar property:

Corollary 2 (of the proof of Theorem 4). There exists a computable measure P on 2N x 2N
such that the set of B for which Po(+|8) is not computable relative to B, has nonzero Py -
measure.

The corollary is proven after Theorem 4. Similar examples of such measures were
invented by Jason Rute [7]. In the example from [1], definitions of computability of
functions and measures from computable analysis are used. They can be used on general
spaces but are rather difficult to formulate. Functions that are not computable in this
sense include all functions with a discontinuity. Therefore, the example in [1] is made
in such a way that Po(S|8) is continuous in S for all measurable sets S. We present a
simple variant of the construction of such a measure in Theorem 6 below. The proof of
this theorem does not rely on other parts of this note.

Hayato Takahashi generalized van Lambalgen’s theorem as follows:

Theorem 3 (Takahashi [11, 12]). For any computable bivariate measure P and any (3
such that Pc(+|8) is computable relatively to B, the following are equivalent:

e (a,B) is P-Martin-Léf random,
e [ is Py-random and « is Po(-|f)-random relative to [5.

For an alternative exposition of the proof and for related results, I refer to the upcoming
article [9]. One might ask whether the theorem only holds for g for which Po(:|5) is
computable relative to 8?7 In this note we show that we can not drop this assumption,
hence, van Lambalgen’s theorem fails for some computable measure. To formulate the
result, we need a definition of randomness relative to a non-computable measure. There
exist two types of Martin-Lof tests [5]:

o A uniform P-Martin-Lof test is a P-Martin-Lof test that is effectively open relative
to each oracle that computes P.

e A Hippocratic or blind P-Martin-Lof test is a Martin-Lof test that is effectively open
without any oracle.

If P is computable, then both types of tests define the same set of random sequences.
Otherwise, the second type of tests defines a weaker notion of randomness, which we will
use below. We call a sequence blind P-random if no blind Martin-Lof test succeeds on it.
Our main result is:
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Figure 1: Left: The measure P. Right: Some values for P(I X [z]). From bottom to
top: For I C [0,a1], P(I x [00]) = p(I) and P(I x [10]) = 0. For I C [a, aa], we have
P(I x [00]) = u(I)/2. For a) <7 < s <1 we have P([r, s] x [x]) = u([r, s] x [z]).

Theorem 4. There exists a bivariate computable measure P on 2~ x 2N for which Po(-|3)
exists for all B; moreover, there exists a pair of sequences («, 3) such that the pair is P-
Martin-Lof random and « is not blind Pco(+|8)-Martin-Léf random (even without oracle

B)-

Definitions Let p be the uniform measure, thus, u([z]) = 27/*! for any string . We also
use p for the product of two uniform measures over 2 x 2N, Real numbers in [0, 1] that
are not binary rational, are interpreted as elements of 2. For binary rational numbers
a and S, we associate [, 8] with the corresponding basic open set in Cantor space (thus
only containing the binary representation of a with a tail of zeros, and a tail of ones for

B).-

Proof. Let aq, as, ..., be an increasing computable sequence of binary rational numbers
that converges to a Martin-Lof random real «. Such a real exists (and can be Turing
complete, see e.g. [3, Theorem 4.3]). To construct the bivariate measure P, modify the
uniform measure on 2V x 2V as illustrated in figure 1 left: concentrate all measure in the
horizontal strip [0, a1] x 2 uniformly in its left-most horizontal position, i.e., in [0, a;] x
000...; concentrate the measure in the intervals [aq, as] x [0] and [, ] x [1] uniformly
in their leftmost positions, i.e., in [a1, as] x 000... and [aq, as] x 1000...; and so on.!

Before presenting the formal definition, let us illustrate the construction of P. Consider
an interval I C [0, a;]. We have P(I x [z]) = 0 if  contains at least one 1, and P(I x [z]) =
u(I) otherwise, see figure 1 right. For I C [ay, ] we have P(I x [0z]) = P(I x [1z]) =0
if 2 contains at least one 1 and p(I)/2 otherwise.

We define the measure more formally for every basic open set I x [y] C 2% x 2¢. We
consider several cases:

o If I C [a, 1], then P(I x [y]) = u(I x [y]).

o If I C [y, apy1] and |y| > n, then let y = wx where w represents the first n bits of
y. If:
— x contains at least one 1, then P(I x [wz]) =0,
— otherwise, i.e. if x is empty or contains only zeros, P(I x [wz]) = pu(I x [w]).
e Otherwise, we partition the basic open set in (countably many) other basic open sets

that satisfy one of the conditions above. The measure is the sum of the measures of
all sets in the partition.

1The construction has some similarities with the measure constructed in the proof of Proposition 6.3
in [2]: the measure has also singularities that approach a left computable real. However, I believe there is
no deeper correspondence between this measure and the measure constructed here.
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Figure 2: The Martin-Lof test V,, for P is obtained by trimming each basic set enumerated
in a set U,.

Note that for any string z, the P-measure of [a|,|,a] X [2] equals the uniform measure,
ie.,

P([aj,), o] x [2]) = p(la), af x [2]).

The same holds for any set [r, s] x [z] with oy <7 < s < 1: P([r,s] x [2]) = p([r, s] x [z]),
see figure 1 right. P is computable, because o, | is computable from z, and the horizontal
line at o, splits any interval I x [z] in at most two parts, see figure 2; for each part
the P-measure is easily calculated: the measure of the part above a|,| equals its uniform
measure and the measure in the part below can be partitioned into finitely many pieces
which each satisfies one of the cases in the definition of P.

We now determine the conditional measure at a horizontal coordinate 3. Unless
contains finitely many ones, Po(-|8) is the uniform measure with support [a,1]. For
such (3, the point « is not blind Pe(+|8)-random: the open sets U,, =]0, a + 27" contain
« for all n, are uniformly effectively open and have P(:|3)-measure O(27"). If 8 contains
finitely many 1’s, the conditional measure is piecewise constant and nonzero on infinitely
many intervals below «. Hence, Pc(-|f) is defined for all 3.

We choose 3, such that («, 8) is Martin-Lof random relative to the uniform measure.
By the original version of van Lambalgen’s theorem, it suffices to choose 8 to be random
relative to «. Clearly, 8 contains infinitely many ones and as argued in the previous
paragraph, « is not Po(+|3)-random.

It remains to show that the pair (a, 8) is also P-random. Let (U, )nen be a Martin-Lof
test relative to P. It suffices to convert this test to a Martin-Lof test (V,)nen relative to
the uniform measure such that U,, and V,, have the same intersection with the horizontal
line at height a. More precisely, it suffices for each V,, to be uniformly effectively open
such that:

e U, N ({a} X 2N) =V ({a} X QN)’
o u(V,) < P(U,).

(Indeed, this implies that if («, 8) was not P-random, then it is also not random relative
to the uniform measure and this would contradict the construction.) Construction of V;:
Each time an interval [r,s] x [z] is enumerated in a set U,, enumerate its upper part
starting from ay, in V,, ie., [max{r,a,},s] x [z] if s > a),] and nothing otherwise,
see figure 2. Note that U, and V,, have the same intersection with the line at height «
because enumerated intervals are only modified below «/,| < a. The sets V;, are uniformly
effectively open. Hence, the first condition is satisfied. Finally, observe that p(V;,) <
P(U,): for each enumerated interval [r, s] x [z], nothing is changed unless 7 < «|, and
in this case we have pu([a,, 8] x [2]) = P([a)q, s] x [z]) < P([r,s] x [z] ). Because V, and
U,, are the union of corresponding rectangles, the second condition is also satisfied.

O



In the proof of Corollary 2, we use the following observation:

Lemma 5 (De Leeuw, Moore, Shannon and Shapiro [4]). Let Q be a computable measure
on 2N and let o € 2N, If there exists a set of positive Q-measure of sequences that compute
a, then « is computable.

Proof. Because there exists countably many machines, there exists a unique machine that
computes « from a set of sequences with positive ()-measure. Let ¢ > 0 be a lower bound
for this @-measure. We can enumerate a binary tree containing all strings = that can be
computed on this machine from a set of oracles that has QQ-measure at least c. This tree
contains at most 1/c infinite branches and each such branch is computable. O

of Corollary 2. Let a and P be as constructed above. Pj; is computable. The binary
rational sequences have Pjs-measure o < 1, because P concentrates all measure below «
on the binary rational sequences and above «, these sequences have measure zero. For
each ( that is not binary rational, the measure Po(-|3) equals the uniform measure with
support [a, 1]. Let R be this measure. The function « — R([z]) computes «, hence R is
not computable. Lemma 5 implies that the set of 5 that computes R has Pj;-measure
zero. Hence, at most a Pp;-measure zero of sequences § that are not binary rational,
compute Pco(-|3). The other non-rational sequences have measure 1 — « > 0 and satisfy
the conditions of the corollary. O

Unfortunately, for any [z] below «, the function Px([x]|-) is nowhere continuous. It
is only continuous in the set of points that are not binary rational, and the set of binary
rational points is not negligable (it has Pp;-measure «). Therefore, we present another
example of such a measure for which the conditional measure is continuous, even for all 5.

Theorem 6. There exists a computable measure P on N x 2N such that:
e for each S C N, the function Pc(S|) is defined and continuous on 2V,
e the set of B for which Po(|3) is not computable relative to 5, has Pyr-measure one.

Proof. Let A be a computably enumerable set that is not computable (for example the
Halting problem). Fix an algorithm that enumerates the elements of A, and for each n € A
let t,, be the time at which this algorithm enumerates n. The idea of the construction of
P is the same as in [1]: if n ¢ A, then the measure P({n} x -) is uniformly distributed
over 2. Otherwise, the measure is non-uniform, but only at a very small scale, i.e., for
|z] < t,, the values of P({n} X -) do not depend on whether z € A or not, and only
for |z| > t, the values are different. In this way, we guarantee that P is computable: if
|x| > ¢, a program that computes P({n} x [z]) on input (n,z) can discover whether n € A
and compute the different value. Because the conditional measure is defined in the limit,
P (+|B) depends on this small scale structure, and therefore, the conditional measure can
encode non-computable information.

To define P, we use the functions fy and f; which are defined graphically in the figure
below. Note that the average of f; over 2N is 1 for s = 0,1. For 8 € 2N, let B+ be the tth
bit of 3. Note that

B— fi (ﬁt+1ﬂt+2 .. )
is the function obtained by repeating f; with period 27*. These functions are all continuous

and have average 1.
Let us first define P using the following density, see figure 3:

27" fo(Btn+t1fint2...) ifneA
27" otherwise.

f(nﬁ):{

Thus, P({n} x [z]) = [}, f(n. B)dB.
Let P(n|B) be short for Po({n}|3). Is this function continuous in 8?7 The marginal
density far = ) ;cn f(4,-) is continuous, because it is a uniformly convergent sum of
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Figure 3: Left: measures fy and f; over 2. Right: measure P over N x 2N,

continuous functions. Also, fjps is bounded from below by a positive constant (if m & A,
then fy; > 27™). Hence, the conditional measure is continuous on singleton sets:

f(n, B)
ZieN f(la 5) .

For S C N, P(S|p) is a uniformly convergent sum of continuous functions, and hence also
continuous.

P(n|p) =

By Lemma 5, it remains to show for each 8 that P(-|3) computes A, (i.e., A is computed
by a machine that has oracle access to approximations of P(n|3) of any precision). For
each fixed 3, the values of P(n|3) for all n ¢ A are the same. Unfortunately, there can be
many n € A for which P(n|B) is close to this value. Hence, A might not be computable
from P(:|5).

We adapt the construction of P by encoding membership of n in A using two values
of the conditional measure: P(2n|3) and P(2n + 1|3). Note that for each 3 € 2N at least
one of the values fo(8), f1(8) is either 0 or 2. Hence, for b € {0,1}, we define P using

—2n—b .
fon-+5.8) = {;f (s e ) i€ A,

otherwise.

For the same reasons as before, P(n|-) is continuous. If n € A and m ¢ A, at least one of
the values P(2n|3), P(2n + 1|B) is zero or 2P(2m|B) > 0. Hence, P(-|) computes A.
O

Appendix: Two definitions of conditional measure co-
incide

In probability theory, conditional measures are defined implicitly using the Radon-Nikodym
theorem. Any measure that satisfies the conditions of this theorem can be used as a con-

ditional measure. The following lemma states that such measures are almost everywhere
equal to the conditional measure Po defined above.

Lemma 7 (Folklore). Let 2* be the set of strings. For every measure P on 2N x 2V and
for every function f:2* x 2V such that

P([a], [y]) = : ]f(ow)PM(dﬁ)'

we have that f(-,5) = Po([]|B) for all B in a set of measure one.

In the proof we use the Lebesgue differentiation theorem for Cantor space. The proof
of this version follows the original proof for Real numbers.



Theorem 8 (Lebesgue differentiation theorem for Cantor space). Let QQ be a measure on
2N For every Q-integrable function g : 2N — R we have that

lim f[gl,.,,,gn] g(7)Q(dv) _
n QB Ba) Y

(8)

for Q-almost all 3.

of Lemma 7. For a fixed x, apply the Lebesgue differentiation theorem with g(-) = f(z,-)
and Q@ = Pp;. By assumption on f, the nominator simplifies to P([z],[51...8,]). It
follows that f(z, ) differs from Po([x]|8) in at most a set of S with Pp/-measure zero.
Because there are countably many strings z, it follows that f(-, 8) and Pe([-], 8) differ in
at most a set of Pjs-measure zero. O
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