Complexes of Modules over Exceptional Lie Superalgebras $E(3,8)$ and $E(5,10)$

Victor G. Kac and Alexei Rudakov

1 Introduction

In $[3,4,5]$, we constructed all degenerate irreducible modules over the exceptional Lie superalgebra $E(3,6)$. In the present paper, we apply the same method to the exceptional Lie superalgebras $E(3,8)$ and $E(5,10)$.

The Lie superalgebra $E(3,8)$ is strikingly similar to $E(3,6)$. In particular, as in the case of $E(3,6)$, the maximal compact subgroup of the group of automorphisms of $E(3,8)$ is isomorphic to the group of symmetries of the Standard Model. However, as the computer calculations by Joris van Jeugt show, the fundamental particle contents in the $E(3,8)$ case is completely different from that in the $E(3,6)$ case [3]. All the nice features of the latter case, like the CPT symmetry, completely disappear in the former case. We believe that the main reason behind this is that, unlike $E(3,6), E(3,8)$ cannot be embedded in $E(5,10)$, which, we believe, is the algebra of symmetries of the SU_{5} Grand Unified Model (the maximal compact subgroup of the automorphism group of $\mathrm{E}(5,10)$ is SU_{5}).

However, similarity with $E(3,6)$ allows us to apply to $E(3,8)$ all the arguments from [3] almost verbatim, and Figure 4.1 of the present paper, that depicts all degenerate $E(3,8)$-modules, is almost the same as [3, Figure 3] for $E(3,6)$.

The picture in the $E(5,10)$ case is quite different (see Figure 5.1). We believe that it depicts all degenerate irreducible $E(5,10)$-modules, but we still do not have a proof.

2 Morphisms between generalized Verma modules

Let $\mathrm{L}=\oplus_{\mathrm{j} \in \mathbb{Z}} \mathrm{G}_{\mathrm{j}}$ be a \mathbb{Z}-graded Lie superalgebra by finite-dimensional vector spaces. Let

$$
\begin{equation*}
\mathrm{L}_{-}=\oplus_{\mathrm{j}<0} \mathrm{G}_{\mathrm{j}}, \quad \mathrm{~L}_{+}=\oplus_{\mathrm{j}>0} \mathrm{G}_{\mathrm{j}}, \quad \mathrm{~L}_{0}=\mathrm{G}_{0}+\mathrm{L}_{+} . \tag{2.1}
\end{equation*}
$$

Given a G_{0}-module V , we extend it to a L_{0}-module by letting L_{+}act trivially, and define the induced L-module

$$
\begin{equation*}
M(V)=U(L) \otimes_{u\left(L_{0}\right)} V \tag{2.2}
\end{equation*}
$$

If V is a finite-dimensional irreducible G_{0}-module, the L-module $M(V)$ is called a generalized Verma module (associated to V), and it is called degenerate if it is not irreducible.

Let A and B be two G_{0}-modules and let $\operatorname{Hom}(A, B)$ be the G_{0}-module of linear maps from A to B. The following proposition will be extensively used to construct morphisms between the L-modules $M(A)$ and $M(B)$.

Proposition 2.1. Let $\Phi \in M(\operatorname{Hom}(A, B))$ be such that

$$
\begin{equation*}
v \cdot \Phi=0 \quad \forall v \in \mathrm{~L}_{0} . \tag{2.3}
\end{equation*}
$$

Then one can construct a well-defined morphism of L-modules

$$
\begin{equation*}
\varphi: M(A) \longrightarrow M(B) \tag{2.4}
\end{equation*}
$$

by the rule $\varphi(u \otimes a)=u \Phi(a)$. Explicitly, write $\Phi=\sum_{m} u_{m} \otimes \ell_{m}$, where $u_{m} \in U(L)$, $\ell_{\mathrm{m}} \in \operatorname{Hom}(A, B)$. Then

$$
\begin{equation*}
\varphi(u \otimes a)=\sum_{m}\left(u u_{m}\right) \otimes \ell_{m}(a) \tag{2.5}
\end{equation*}
$$

Proof. We have to prove that for $v \in \mathrm{U}\left(\mathrm{L}_{0}\right)$,

$$
\begin{equation*}
\varphi(u v \otimes a)=\varphi(u \otimes v a) \tag{2.6}
\end{equation*}
$$

in order to conclude that φ is well defined. Notice that condition (2.3) means

$$
\begin{equation*}
\sum_{m}\left[v, u_{m}\right] \otimes \ell_{m}+\sum_{m} u_{m} \otimes v \ell_{m}=0 \tag{2.7}
\end{equation*}
$$

Therefore, we have

$$
\begin{align*}
\varphi(u v \otimes a)= & \sum_{m} u v u_{m} \otimes \ell_{m}(a) \\
= & \sum_{m} u\left[v, u_{m}\right] \otimes \ell_{m}(a)+\sum_{m} u u_{m} v \otimes \ell_{m}(a) \\
= & \sum_{m} u\left[v, u_{m}\right] \otimes \ell_{m}(a)+\sum_{m} u u_{m} \otimes v\left(\ell_{m}(a)\right) \tag{2.8}\\
= & \sum_{m} u\left[v, u_{m}\right] \otimes \ell_{m}(a)+\sum_{m} u u_{m} \otimes\left(v \ell_{m}\right)(a) \\
& +\sum_{m} u u_{m} \otimes \ell_{m}(v a) \\
= & \sum_{m} u u_{m} \otimes \ell_{m}(v a)=\varphi(u \otimes v a) \quad(b y(2.7) \text { and }(2.5))
\end{align*}
$$

The fact that φ defines a morphism of L-modules is immediate from the definition.
Remark 2.2. If L_{0} is generated by G_{0} and a subset $\mathrm{T} \subset \mathrm{L}_{+}$, then condition (2.3) is equivalent to

$$
\begin{align*}
& \mathrm{G}_{0} \cdot \Phi=0 \tag{2.9a}\\
& \mathrm{a} \cdot \Phi=0 \quad \forall \mathrm{a} \in \mathrm{~T} \tag{2.9b}
\end{align*}
$$

Condition (2.9a) usually gives a hint to a possible shape of Φ and is checked by general invariant-theoretical considerations. After that, (2.9b) is usually checked by a direct calculation.

Remark 2.3. We can view $M(V)$ also as the induced $\left(L_{-} \oplus G_{0}\right)$-module: $U\left(L_{-} \oplus G_{0}\right) \otimes_{u\left(G_{0}\right)} V$. Then condition (2.9a) on $\Phi=\sum_{m} u_{m} \otimes \ell_{m}$, where $u_{m} \in U\left(L_{-} \oplus G_{0}\right)$ and $\ell_{m} \in \operatorname{Hom}(A, B)$, suffices in order for (2.5) to give a well-defined morphism of ($L_{-} \oplus G_{0}$)-modules. We can also replace G_{0} by any of its subalgebras.

3 Lie superalgebras $E(3,6), E(3,8)$, and $E(5,10)$
Recall some standard notation:

$$
\begin{equation*}
W_{n}=\left\{\sum_{j=1}^{n} P_{i}(x) \partial_{i} \mid P_{i} \in \mathbb{C}\left[\left[x_{\overline{1}}, \ldots, x_{n}\right]\right], \partial_{i} \equiv \frac{\partial}{\partial x_{i}}\right\} \tag{3.1}
\end{equation*}
$$

denotes the Lie algebra of formal vector fields in n indeterminates;

$$
\begin{equation*}
S_{n}=\left\{D=\sum P_{i} \partial_{i} \mid \operatorname{div} D \equiv \sum_{i} \partial_{i} P_{i}=0\right\} \tag{3.2}
\end{equation*}
$$

denotes the Lie subalgebra of divergenceless formal vector fields; $\Omega^{k}(n)$ denotes the space of formal differential forms of degree k in n indeterminates; $\Omega_{c \ell}^{k}(n)$ denotes the subspace of closed forms.

The Lie algebra W_{n} acts on $\Omega^{k}(n)$ via the Lie derivative $D \rightarrow L_{D}$. Given $\lambda \in \mathbb{C}$, we can twist this action

$$
\begin{equation*}
\mathrm{D} \omega=\mathrm{L}_{\mathrm{D}} \omega+\lambda(\operatorname{div} \mathrm{D}) \omega . \tag{3.3}
\end{equation*}
$$

The W_{n}-module thus obtained is denoted by $\Omega^{k}(n)^{\lambda}$. Recall the following obvious isomorphism of W_{n}-modules:

$$
\begin{equation*}
\Omega^{0}(n) \simeq \Omega^{n}(n)^{-1}, \tag{3.4}
\end{equation*}
$$

and the following slightly less obvious isomorphism of W_{n}-modules:

$$
\begin{equation*}
W_{n} \simeq \Omega^{n-1}(n)^{-1} . \tag{3.5}
\end{equation*}
$$

The latter is obtained by mapping a vector field $D \in W_{n}$ to the ($n-1$)-form $\mathrm{l}_{\mathrm{D}}\left(\mathrm{d} \mathrm{x}_{1} \wedge \cdots \wedge \mathrm{~d} \mathrm{x}_{\mathrm{n}}\right)$. Note that (3.5) induces an isomorphism of S_{n}-modules

$$
\begin{equation*}
S_{n} \simeq \Omega_{c l}^{n-1}(n) . \tag{3.6}
\end{equation*}
$$

Recall that the Lie superalgebra $\mathrm{E}(5,10)=\mathrm{E}(5,10)_{\bar{o}}+\mathrm{E}(5,10)_{\overline{\mathrm{j}}}$ is constructed as follows (see [1, 2]):

$$
\begin{equation*}
E(5,10)_{\bar{o}}=S_{5}, \quad E(5,10)_{\overline{1}}=\Omega_{c l}^{2}(5), \tag{3.7}
\end{equation*}
$$

$\mathrm{E}(5,10)_{\overline{\mathrm{o}}}$ acts on $\mathrm{E}(5,10)_{\overline{\mathrm{i}}}$ via the Lie derivative, and $\left[\omega_{2}, \omega_{2}^{\prime}\right]=\omega_{2} \wedge \omega_{2}^{\prime} \in \Omega_{\mathrm{ce}}^{4}(5)=\mathrm{S}_{5}$ (see (3.6)) for $\omega_{2}, \omega_{2}^{\prime} \in E(S, 10)_{\overline{1}}$.

Next, recall the construction of the Lie superalgebras $E^{b}:=E(3,6)$ and $E^{\sharp}:=$ $\mathrm{E}(3,8)$ (see [1])

$$
\begin{align*}
& E_{\overline{0}}^{b}=E_{\overline{0}}^{\sharp}=W_{3}+\mathfrak{s l}_{2}\left(\Omega^{0}(3)\right) \text { (the natural semidirect sum); } \\
& E_{\overline{1}}^{b}=\Omega^{1}(3)^{-1 / 2} \otimes \mathbb{C}^{2}, \quad E_{\overline{1}}^{\sharp}=\left(\Omega^{0}(3)^{-1 / 2} \otimes \mathbb{C}^{2}\right)+\left(\Omega^{2}(3)^{-1 / 2} \otimes \mathbb{C}^{2}\right) . \tag{3.8}
\end{align*}
$$

The action of the even on the odd parts is defined via the Lie derivative and the multiplication of a function and a differential form. The bracket of two odd elements is defined
by using the identifications (3.4) and (3.5) as follows. For $\omega_{i}, \omega_{i}^{\prime} \in \Omega^{i}(3)$ and $v, v^{\prime} \in \mathbb{C}^{2}$, we define the following bracket of two elements from E_{1}^{b} :

$$
\begin{align*}
{\left[\omega_{1} \otimes v, \omega_{1}^{\prime} \otimes v^{\prime}\right]=} & -\left(\omega_{1} \wedge \omega_{1}^{\prime}\right) \otimes\left(v \wedge v^{\prime}\right) \\
& -\left(d \omega_{1} \wedge \omega_{1}^{\prime}+\omega_{1} \wedge d \omega_{1}^{\prime}\right) \otimes\left(v \cdot v^{\prime}\right) \tag{3.9}
\end{align*}
$$

and the following bracket of two elements from E_{1}^{\sharp} :

$$
\begin{align*}
{\left[\omega_{2} \otimes v, \omega_{2}^{\prime} \otimes v^{\prime}\right]=} & 0, \quad\left[\omega_{0} \otimes v, \omega_{0}^{\prime} \otimes v^{\prime}\right]=-\left(\mathrm{d} \omega_{0} \wedge d \omega_{0}^{\prime}\right) \otimes\left(v \wedge v^{\prime}\right) \tag{3.10}\\
{\left[\omega_{0} \otimes v, \omega_{2} \otimes v^{\prime}\right]=} & -\left(\omega_{0} \wedge \omega_{2}\right) \otimes\left(v \wedge v^{\prime}\right) \\
& -\left(\mathrm{d} \omega_{0} \wedge \omega_{2}-\omega_{0} \wedge \omega_{2}\right) \otimes\left(v \cdot v^{\prime}\right) \tag{3.11}
\end{align*}
$$

Recall also an embedding of E^{b} in $\mathrm{E}(5,10)[1,3]$. For that let $z_{+}=x_{4}, z_{-}=x_{5}$, $\partial_{+}=\partial_{4}, \partial_{-}=\partial_{5}$, and let $\epsilon^{+}, \epsilon^{-}$denote the standard basis of \mathbb{C}^{2}. Then E_{0}^{b} is embedded in $E(5,10)_{\bar{o}}=S_{5}$ by $\left(D \in W_{3}, a, b, c \in \Omega^{0}(3)\right)$:

$$
\begin{align*}
& \mathrm{D} \longmapsto \mathrm{D}-\frac{1}{2}(\operatorname{div} \mathrm{D})\left(z_{+} \partial_{+}+z_{-} \partial_{-}\right), \\
& \left(\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & -\mathrm{a}
\end{array}\right) \longmapsto \mathrm{a}\left(z_{+} \partial_{+}-z_{-} \partial_{-}\right)+\mathrm{b} z_{+} \partial_{-}+c z_{-} \partial_{+}, \tag{3.12}
\end{align*}
$$

and $E_{\overline{1}}^{b}$ is embedded in $E(5,10)_{\overline{1}}=\Omega_{c \ell}^{2}(5)$ by $\left(f \in \Omega^{0}(3)\right)$:

$$
\begin{equation*}
\mathrm{fd} x_{\mathrm{i}} \otimes \epsilon^{ \pm} \longmapsto z_{ \pm} \mathrm{d} x_{\mathrm{i}} \wedge \mathrm{df}+\mathrm{fd} x_{\mathrm{i}} \wedge \mathrm{~d} z_{ \pm} . \tag{3.13}
\end{equation*}
$$

Introduce the following subalgebras $S^{b} \subset E^{b}$ and $S^{\sharp} \subset E^{\sharp}$:

$$
\begin{align*}
& S_{\overline{\mathrm{O}}}^{b}=S_{\overline{\mathrm{O}}}^{\sharp}=W_{3}+\mathbb{C} \otimes \mathfrak{s l}_{2}(\mathbb{C}), \\
& S_{\overline{1}}^{b}=\Omega_{\mathrm{cl}}^{1}(3)^{-1 / 2} \otimes \mathbb{C}^{2}, \quad S_{\overline{1}}^{\sharp}=\Omega^{0}(3)^{-1 / 2} \otimes \mathbb{C}^{2} . \tag{3.14}
\end{align*}
$$

Proposition 3.4. The map $S^{\sharp} \rightarrow S^{b}$, which is identical on $S_{\frac{\#}{0}}^{\sharp}$ and sends $\mathrm{f} \otimes v \in S_{\overline{1}}^{\sharp}$ to $\mathrm{df} \otimes v \in S_{\overline{1}}^{b}$ is a surjective homomorphism of Lie superalgebras with 2-dimensional central kernel $\mathbb{C} \otimes \mathbb{C}^{2} \subset S_{1}^{\sharp}$.

Proof. The proof is straightforward using (3.9), (3.10), and (3.11).
This proposition is probably the main reason for a remarkable similarity between representation theories of E^{\sharp} and E^{b}. We stress this similarity in our notation and develop representation theory of E^{\sharp} along the same lines as that of E^{b} done in $[3,4]$. Sometimes we drop the superscript b or \sharp when the situation is the same.

Recall that E^{b} carries a unique irreducible consistent \mathbb{Z}-gradation. It has depth 2, and it is defined by

$$
\begin{equation*}
\operatorname{deg} x_{i}=-\operatorname{deg} \partial_{i}=2, \quad \operatorname{deg} \partial_{i}=-1, \quad \operatorname{deg} \epsilon^{ \pm}=0, \quad \operatorname{deg} \mathfrak{s l}_{2}(\mathbb{C})=0 \tag{3.15}
\end{equation*}
$$

The "nonpositive" part of this \mathbb{Z}-gradation is as follows:

$$
\begin{align*}
& \mathrm{G}_{-2}=\left\langle\partial_{\mathrm{i}} \mid \mathfrak{i}=1,2,3\right\rangle \\
& \mathrm{G}_{-1}=\left\langle\mathrm{d}_{\mathrm{i}}^{\mathrm{a}}:=\epsilon^{\mathrm{a}} \otimes \mathrm{~d} x_{\mathrm{i}}=\mathrm{d} x_{\mathrm{i}} \wedge \mathrm{~d} z_{\mathrm{a}} \mid \mathfrak{i}=1,2,3, \mathrm{a}=+,-\right\rangle \tag{3.16}\\
& \mathrm{G}_{0}=\mathfrak{s l}_{3}(\mathbb{C}) \oplus \mathfrak{s l}_{2}(\mathbb{C}) \oplus \mathbb{C} Y
\end{align*}
$$

where

$$
\begin{align*}
& \mathfrak{s l}_{3}(\mathbb{C})=\left\langle h_{1}=x_{1} \partial_{1}-x_{2} \partial_{2}, h_{2}=x_{2} \partial_{2}-x_{3} \partial_{3}, e_{1}=x_{1} \partial_{2},\right. \\
& \\
& \left.\quad e_{2}=x_{2} \partial_{3}, e_{12}=x_{1} \partial_{3}, f_{1}=x_{2} \partial_{1}, f_{2}=x_{3} \partial_{2}, f_{12}=x_{3} \partial_{1}\right\rangle, \tag{3.17}\\
& \mathfrak{s l}_{2}(\mathbb{C})=\left\langle h_{3}=z_{+} \partial_{+}-z_{-} \partial_{-}, e_{3}=z_{+} \partial_{-}, f_{3}=z_{-} \partial_{+}\right\rangle, \\
& Y=\frac{2}{3} \sum x_{i} \partial_{i}-\left(z_{+} \partial_{+}+z_{-} \partial_{-}\right) .
\end{align*}
$$

The eigenspace decomposition of $\operatorname{ad}(3 Y)$ coincides with the consistent \mathbb{Z}-grading of E^{b}. We fix the Cartan subalgebra $\mathcal{H}=\left\langle h_{1}, h_{2}, h_{3}, \mathrm{Y}\right\rangle$ and the Borel subalgebra $\mathcal{B}=\mathcal{H}+$ $\left\langle e_{i}(i=1,2,3), e_{12}\right\rangle$ of G_{0}. Then $f_{0}:=d_{1}^{+}$is the highest weight vector of the (irreducible) G_{0}-module G_{-1}, the vectors

$$
\begin{equation*}
e_{0}^{\prime}:=x_{3} d_{3}^{-}, \quad e_{0}^{b}:=x_{3} d_{2}^{-}-x_{2} d_{3}^{-}+2 z_{-} d x_{2} \wedge d x_{3} \tag{3.18}
\end{equation*}
$$

are all the lowest weight vectors of the G_{0}-module G_{1}, and we have

$$
\begin{align*}
& {\left[e_{0}^{\prime}, f_{0}\right]=f_{2}} \\
& {\left[e_{0}^{b}, f_{0}\right]=\frac{2}{3} h_{1}+\frac{1}{3} h_{2}-h_{3}-Y=: h_{0}^{b}} \tag{3.19}
\end{align*}
$$

so that

$$
\begin{equation*}
h_{0}^{b}=-x_{2} \partial_{2}-x_{3} \partial_{3}+2 z_{-} \partial_{-} . \tag{3.20}
\end{equation*}
$$

The following relations are also important to keep in mind:

$$
\begin{align*}
& {\left[e_{0}^{\prime}, \mathrm{d}_{1}^{+}\right]=\mathrm{f}_{2}, \quad\left[e_{0}^{\prime}, \mathrm{d}_{2}^{+}\right]=-\mathrm{f}_{12}, \quad\left[e_{0}^{\prime}, \mathrm{d}_{3}^{+}\right]=0, \quad\left[e_{0}^{\prime}, \mathrm{d}_{\mathrm{i}}^{-}\right]=0} \\
& {\left[\mathrm{~d}_{\mathrm{i}}^{ \pm}, \mathrm{d}_{\mathrm{j}}^{ \pm}\right]=0, \quad\left[\mathrm{~d}_{\mathrm{i}}^{+}, \mathrm{d}_{\mathrm{j}}^{-}\right]+\left[\mathrm{d}_{\mathrm{j}}^{+}, \mathrm{d}_{\mathrm{i}}^{-}\right]=0} \tag{3.21}
\end{align*}
$$

Recall that G_{0} along with the elements $f_{0}, e_{0}^{b}, e_{0}^{\prime}$ generate the Lie superalgebra E^{b} [1].

The Lie superalgebra E^{\sharp} carries a unique consistent irreducible \mathbb{Z}-gradation of depth 3:

$$
\begin{equation*}
E^{\sharp}=\oplus_{j \geq-3} G_{j} . \tag{3.22}
\end{equation*}
$$

It is defined by

$$
\begin{equation*}
\operatorname{deg} x_{i}=-\operatorname{deg} \partial_{i}=\operatorname{deg} d x_{i}=2, \quad \operatorname{deg} \epsilon^{ \pm}=-3, \quad \operatorname{deg} \mathfrak{s l}_{2}(\mathbb{C})=0 \tag{3.23}
\end{equation*}
$$

In view of Proposition 3.4 and the above E^{b}-notation, we introduce the following E\#-notation

$$
\begin{align*}
& d^{ \pm}:=1 \otimes \epsilon^{ \pm}, \quad d_{i}^{ \pm}:=x_{i} \otimes \epsilon^{ \pm}, \quad e_{0}^{\prime}:=\frac{1}{2} x_{3}^{2} \otimes \epsilon^{ \pm}, \quad f_{0}:=d_{1}^{+}, \\
& e_{0}^{\sharp}:=-\left(d x_{2} \wedge d x_{3}\right) \otimes \epsilon^{-}, \quad h_{0}^{\sharp}:=\frac{2}{3} h_{1}+\frac{1}{3} h_{2}-\frac{1}{2} h_{3}+\frac{1}{2} Y . \tag{3.24}
\end{align*}
$$

If, in analogy with E^{b}, we denote $\epsilon^{a}=d z_{a}$, then $G_{-3}=\left\langle d z_{+}, d z_{-}\right\rangle, G_{-2}, G_{-1}$ and G_{0} are the same as for E^{b} (except that now $\left[G_{-1}, G_{-2}\right] \neq 0$), and the relations (3.19) and (3.21) still hold, but the formula for h_{0}^{\sharp} is different:

$$
\begin{equation*}
h_{0}^{\sharp}=\frac{2}{3} h_{1}+\frac{1}{3} h_{2}-\frac{1}{2} h_{3}+\frac{1}{2} Y=x_{1} \partial_{1}-z_{+} \partial_{+} . \tag{3.25}
\end{equation*}
$$

As in the E^{b} case, the elements e_{i}, f_{i}, h_{i} for $i=0,1,2,3$ along with e_{0}^{\prime} generate E^{\sharp}, the elements e_{0}^{\sharp} and e_{0}^{\prime} are all lowest weight vectors of the G_{0}-module G_{1}, and G_{0} along with e_{0}^{\prime} and e_{0}^{\sharp} generate the subalgebra $\oplus_{j \geq 0} G_{j}[1]$. Thus, by Remark 2.2, condition (2.9b) is equivalent to

$$
\begin{equation*}
e_{0}^{\prime} \cdot \Phi=0, \quad e_{0}^{\sharp} \cdot \Phi=0 \tag{3.26}
\end{equation*}
$$

4 Complexes of degenerate Verma modules over $E(3,6)$

Let W be a finite-dimensional symplectic vector space and let H be the corresponding Heisenberg algebra

$$
\begin{equation*}
\mathrm{H}=\mathrm{T}(\mathrm{~W}) /(v \cdot w-w \cdot v-(v, w) \cdot 1) \tag{4.1}
\end{equation*}
$$

where $T(W)$ denotes the tensor algebra over W and (,) is the nondegenerate symplectic form on W. Given two transversal Lagrangian subspaces $L, L^{\prime} \subset W$, we have a canonical

1014 V. G. Kac and A. Rudakov
isomorphism of symplectic spaces: $\mathrm{W}=\mathrm{L}+\mathrm{L}^{\prime} \simeq \mathrm{L} \oplus \mathrm{L}^{*}$, and we can canonically identify the symmetric algebra $S(\mathrm{~L})$ with the factor of H by the left ideal generated by L^{\prime}

$$
\begin{equation*}
\mathrm{V}_{\mathrm{L}}:=\mathrm{H} /\left(\mathrm{L}^{\prime}\right) \simeq \mathrm{S}(\mathrm{~L}) 1_{\mathrm{L}}, \text { where } 1_{\mathrm{L}}=1+\mathrm{L}^{\prime} . \tag{4.2}
\end{equation*}
$$

We thus acquire an H -module structure on $\mathrm{S}(\mathrm{L})$.
We construct a symplectic space W by taking $x_{1}, x_{2}, x_{3}, z_{+}, z_{-}, \partial_{1}, \partial_{2}, \partial_{3}, \partial_{+}, \partial_{-}$as a basis with the first half being dual to the second half:

$$
\begin{equation*}
\left(\partial_{i}, x_{j}\right)=-\left(x_{j}, \partial_{i}\right)=\delta_{i j}, \quad\left(\partial_{a}, z_{b}\right)=-\left(z_{b}, \partial_{a}\right)=\delta_{a, b}, \quad \text { all other pairings zero. } \tag{4.3}
\end{equation*}
$$

In general, the decomposition $W=\mathrm{L}+\mathrm{L}^{\prime} \simeq \mathrm{L} \oplus \mathrm{L}^{*}$ provides the canonical maps

$$
\begin{equation*}
\operatorname{End}(\mathrm{L}) \xrightarrow{\sim} \mathrm{L} \otimes \mathrm{~L}^{*} \xrightarrow{\sim} \mathrm{~L} \cdot \mathrm{~L}^{\prime} \hookrightarrow \mathrm{H}, \tag{4.4}
\end{equation*}
$$

which induce a Lie algebra homomorphism: $\mathfrak{g l}(\mathrm{L}) \rightarrow \mathrm{H}_{\text {Lie }}$, where the Lie algebra structure is defined by the usual commutator.

We consider the following subspaces of W :

$$
\begin{array}{ll}
\mathrm{L}_{\mathrm{A}}=\mathrm{L}_{\mathrm{D}}^{\prime}=\left\langle x_{\mathrm{i}}, z_{a}\right\rangle, & \mathrm{L}_{\mathrm{B}}=\mathrm{L}_{\mathrm{C}}^{\prime}=\left\langle x_{i}, \partial_{\mathrm{a}}\right\rangle, \\
\mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\mathrm{B}}^{\prime}=\left\langle\partial_{\mathrm{c}}, z_{a}\right\rangle, & \mathrm{L}_{\mathrm{D}}=\mathrm{L}_{A}^{\prime}=\left\langle\partial_{i}, \partial_{\mathrm{a}}\right\rangle, \tag{4.5}
\end{array}
$$

where $i=1,2,3 ; a=+,-$. Note that these are the only G_{0}-invariant Lagrangian subspaces of W.

As formulae (3.17) determine the inclusion $G_{0} \hookrightarrow \mathfrak{g l}\left(V_{x}\right)$, where $X=A, B, C$, or D, we get a Lie algebra monomorphism:

$$
\begin{equation*}
\mathrm{G}_{0} \longleftrightarrow \mathfrak{g l}\left(\mathrm{~V}_{\mathrm{X}}\right) \longleftrightarrow \mathrm{H}_{\text {Lie }} . \tag{4.6}
\end{equation*}
$$

Thus we get a G_{0}-action on V_{X}. Notice that by (4.6)

$$
\begin{align*}
& Y \longrightarrow Y^{b}=\frac{2}{3}\left(\sum_{i} x_{i} \partial_{i}\right)-\left(\sum_{a} z_{a} \partial_{a}\right), \tag{4.7}\\
& Y^{b} 1_{A}=0, \quad Y^{b} 1_{B}=21_{B}, \quad Y^{b} 1_{C}=-21_{C}, \quad Y^{b} 1_{D}=0,
\end{align*}
$$

as it should be for $E^{b}=E(3,6)$ (see [3]).
In the $E(3,8)$ case we modify the G_{0}-action on V_{X} leaving it the same for $\mathfrak{s l}_{3}(\mathbb{C}) \oplus$ $\mathfrak{s l}_{2}(\mathbb{C}) \subset G_{0}$, but letting

$$
\begin{equation*}
Y \longmapsto Y^{\sharp}=-\frac{4}{3}\left(\sum_{i} x_{i} \partial_{i}\right)+\left(\sum_{a} z_{a} \partial_{a}\right)=Y^{b}+2 T, \tag{4.8}
\end{equation*}
$$

where, $T=-\sum_{i} x_{i} \partial_{i}+\sum_{a} z_{a} \partial_{a}$. We have

$$
\begin{align*}
Y x_{i}^{p} z_{a}^{r} 1_{A} & =\left(-\frac{4}{3} p+r\right) x_{i}^{p} z_{a}^{r} \mathbf{1}_{A} \\
Y x_{i}^{p} \partial_{a}^{r} \mathbf{1}_{B} & =\left(-\frac{4}{3} p-r-2\right) x_{i}^{p} \partial_{a}^{r} \mathbf{1}_{B} \tag{4.9}\\
Y \partial_{i}^{q} z_{a}^{r} \mathbf{1}_{C} & =\left(\frac{4}{3} q+r+4\right) \partial_{i}^{q} z_{a}^{r} \mathbf{1}_{C} \\
Y \partial_{i}^{q} \partial_{a}^{r} \mathbf{1}_{D} & =\left(\frac{4}{3} q-r+2\right) \partial_{i}^{q} \partial_{a}^{r} \mathbf{1}_{D}
\end{align*}
$$

Let $F(p, q ; r ; y)$ denote the finite-dimensional irreducible G_{0}-module with highest weight $(p, q ; r ; y)$, where $p, q, r \in \mathbb{Z}_{+}, y \in \mathbb{C}$, and let $M(p, q ; r ; y)=M(F(p, q ; r ; y))$ be the corresponding generalized Verma module over $E(3,8)$. This module has a unique irreducible quotient denoted by $\mathrm{I}(p, q ; r ; y)$. The latter module is called degenerate if the former is.

We announce below a classification of all degenerate irreducible $E(3,8)$-modules.
Theorem 4.5. All irreducible degenerate $E(3,8)$-modules $I(p, q ; r, y)$ are as follows $\left(p, q, r \in \mathbb{Z}_{+}\right)$:
type A: $I\left(p, 0 ; r ; y_{A}\right), \quad y_{A}=-\frac{4}{3} p+r ;$
type $B: I\left(p, 0 ; r ; y_{B}\right), \quad y_{B}=-\frac{4}{3} p-r-2 ;$
type $C: I\left(0, q ; r ; y_{C}\right), \quad y_{C}=\frac{4}{3} q+r+4 ;$
type $D: I\left(0, q ; r ; y_{D}\right), \quad y_{D}=\frac{4}{3} q-r+2, \quad$ and $(q, r) \neq(0,0)$.

We construct below certain $E(3,8)$-morphisms between the modules $M(p, q ; r$; $\left.y_{x}\right)$. This will imply that all modules $I(p, q ; r ; y)$ on the list are degenerate. The proof of the fact that the list is complete will be published elsewhere.

The theorem means that all the degenerate generalized Verma modules over $E(3,8)$ are in fact the direct summands of induced modules $M\left(V_{X}\right), X=A, B, C, D$:

$$
\begin{equation*}
M\left(V_{X}\right)=\bigoplus_{m, n \in \mathbb{Z}} M\left(V_{X}^{m, n}\right) \tag{4.11}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{x}^{m, n}=\left\{f 1_{x} \mid\left(\sum x_{i} \partial_{i}\right) f=m f,\left(\sum z_{a} \partial_{a}\right) f=n f\right\}, \tag{4.12}
\end{equation*}
$$

(we normalize degree of $\mathbf{1}_{\mathrm{X}}$ as $(0,0)$).
We construct morphisms between these modules with the help of Proposition 2.1. As in the E^{b} case [3], introduce the following operators on $M\left(\operatorname{Hom}\left(V_{X}, V_{x}\right)\right)$:

$$
\begin{equation*}
\nabla=\Delta^{+} \delta_{+}+\Delta^{-} \delta_{-}=\delta_{1} \partial_{1}+\delta_{2} \partial_{2}+\delta_{3} \partial_{3} \tag{4.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta^{ \pm}=\sum_{i=1}^{3} \mathrm{~d}_{\mathrm{i}}^{ \pm} \otimes \partial_{i}, \quad \delta_{i}=\sum_{\alpha= \pm} \mathrm{d}_{\mathrm{i}}^{\mathrm{a}} \otimes \partial_{\mathrm{a}} \tag{4.14}
\end{equation*}
$$

Proposition 4.6. (a) The element ∇ gives a well-defined morphism $M\left(V_{x}\right) \rightarrow M\left(V_{x}\right)$, $X=A, B, C, D$, by formula (2.5).
(b) $\nabla^{2}=0$.

Proof. The proof of (b) is the same as in [3]. In order to prove (a), we have to check conditions (2.9). It is obvious that $\Delta^{ \pm}$(resp. $\boldsymbol{\delta}_{i}$) are $\mathfrak{s l}_{3}(\mathbb{C})$-(resp., $\mathfrak{s l}_{2}(\mathbb{C})$-) invariant. Using both formulas for ∇, we conclude that it is G_{0}-invariant, proving (2.9a). In order to check (2.9b), first note that

$$
\begin{equation*}
e_{0}^{\prime} \nabla=\left(f_{2} \partial_{1} \partial_{+}-f_{12} \partial_{2} \partial_{+}\right)=\left(x_{3} \partial_{2} \partial_{1}-x_{3} \partial_{1} \partial_{2}\right) \partial_{+}=0 . \tag{4.15}
\end{equation*}
$$

Now

$$
\begin{align*}
e_{0}^{\sharp} \nabla & =h_{0}^{\sharp} \partial_{1} \partial_{+}+f_{1} \partial_{2} \partial_{+}+f_{12} \partial_{3} \partial_{1}-f_{3} \partial_{1} \partial_{-} \\
& =\left(x_{1} \partial_{1}-z_{+} \partial_{+}+T\right) \partial_{1} \partial_{+}+x_{2} \partial_{1} \partial_{2} \partial_{+}+x_{3} \partial_{1} \partial_{3} \partial_{+}-z_{-} \partial_{+} \partial_{1} \partial_{-} \tag{4.16}\\
& =\left(x_{1} \partial_{1}-z_{+} \partial_{+}+T+x_{2} \partial_{2}+x_{3} \partial_{3}-z_{-} \partial_{-}\right) \partial_{1} \partial_{+}=0,
\end{align*}
$$

where we use (4.8) to check that

$$
\begin{equation*}
h_{0}^{\sharp}=\frac{2}{3} h_{1}+\frac{1}{3} h_{2}-\frac{1}{2} h_{3}+\frac{1}{2} Y^{\sharp}=x_{1} \partial_{1}-z_{+} \partial_{+}+T . \tag{4.17}
\end{equation*}
$$

Let $M_{X^{\prime}}=M\left(V_{x^{\prime}}\right)$, where

$$
\begin{align*}
& \mathrm{V}_{\mathrm{A}^{\prime}}=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] 1_{\mathrm{A}}=\oplus_{\mathrm{p} \geq 0} \mathrm{~V}_{\mathrm{A}}^{\mathrm{p}, 0}, \\
& \mathrm{~V}_{\mathrm{B}^{\prime}}=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] 1_{\mathrm{B}}=\oplus_{\mathfrak{p} \geq 0} \mathrm{~V}_{\mathrm{B}}^{\mathrm{p}, 0}, \\
& \mathrm{~V}_{\mathrm{C}^{\prime}}=\mathbb{C}\left[\partial_{1}, \partial_{2}, \partial_{3}\right] 1_{\mathrm{C}}=\oplus_{\mathrm{q} \geq 0} \mathrm{~V}_{\mathrm{C}}^{-\mathrm{q}, 0}, \tag{4.18}\\
& \mathrm{~V}_{\mathrm{D}^{\prime}}=\mathbb{C}\left[\partial_{1}, \partial_{2}, \partial_{3}\right] 1_{\mathrm{D}}=\oplus_{\mathrm{q} \geq 0} \mathrm{~V}_{\mathrm{D}}^{-\mathrm{q}, 0},
\end{align*}
$$

and let

$$
\begin{equation*}
\nabla_{2}=\Delta^{-} \Delta^{+}=\mathrm{d}_{1}^{-} \Delta^{+} \partial_{1}+\mathrm{d}_{2}^{-} \Delta^{+} \partial_{2}+\mathrm{d}_{3}^{-} \Delta^{+} \partial_{3} \tag{4.19}
\end{equation*}
$$

We define the morphism $\nabla_{2}: M_{A^{\prime}} \rightarrow M_{B^{\prime}}$ by extending the map defined by ∇_{2} as follows:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{A}^{\prime}} \xrightarrow{\sim} \mathbb{C}\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right] \longrightarrow \mathrm{U}\left(\mathrm{~L}_{-}\right) \otimes \mathbb{C}\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right] 1_{\mathrm{B}} \simeq \mathrm{U}\left(\mathrm{~L}_{-}\right) \otimes \mathrm{V}_{\mathrm{B}^{\prime}}, \\
& \mathrm{f} 1_{\mathrm{A}} \longmapsto \mathrm{f} \longmapsto \nabla_{2} \mathrm{f} 1_{\mathrm{B}} . \tag{4.20}
\end{align*}
$$

In order to apply Proposition 2.1, we have to check conditions (2.9) for ∇_{2}. As before, condition (2.9a) obviously holds. Now

$$
\begin{equation*}
e_{0}^{\prime} \nabla_{2} \mathbf{1}_{\mathrm{B}}=-\sum_{i} \mathrm{~d}_{\mathrm{i}}^{-}\left(\mathrm{f}_{2} \partial_{1} \partial_{-}-\mathrm{f}_{12} \partial_{2}\right) \partial_{\mathrm{i}} \mathrm{f} \mathbf{1}_{\mathrm{B}}=0 \tag{4.21}
\end{equation*}
$$

because $f_{2} \partial_{1}-f_{12} \partial_{2}=x_{3} \partial_{2} \partial_{1}-x_{3} \partial_{1} \partial_{2}=0$. Furthermore,

$$
\begin{align*}
e_{0}^{\sharp} \nabla_{2} f 1_{B} & =\left(-\sum_{i} d_{i}^{-}\left(h_{0}^{\sharp} \partial_{1}+f_{1} \partial_{2}+f_{12} \partial_{3}\right) \partial_{i}-f_{3} \Delta^{+} \partial_{1}\right) f 1_{B} \\
& =-\left(\sum_{i} d_{i}^{-}\left(x_{1} \partial_{1}-z_{+} \partial_{+}+T+x_{2} \partial_{2}+x_{3} \partial_{3}\right) \partial_{1} \partial_{2}-\Delta^{-} \partial_{1}-\Delta^{+} \partial_{1} f_{3}\right) f 1_{B} \tag{4.22}
\end{align*}
$$

As $z_{ \pm} \partial_{ \pm} \mathrm{f} 1_{\mathrm{B}}=\mathrm{f} z_{ \pm} \partial_{ \pm} \mathbf{1}_{\mathrm{B}}=\mathrm{f}\left(-1+\partial_{ \pm} z_{ \pm}\right) \mathbf{1}_{\mathrm{B}}=-\mathrm{f} 1_{\mathrm{B}}$, and $\mathrm{f}_{3} \mathrm{f} 1_{\mathrm{B}}=0$, we conclude that

$$
\begin{align*}
-e_{0}^{\sharp} \nabla_{2} f 1_{\mathrm{B}} & =\sum_{i} \mathrm{~d}_{\mathrm{i}}^{-}\left(x_{1} \partial_{1}+x_{2} \partial_{2}+x_{3} \partial_{3}-z_{+} \partial_{+}+T+1\right) f 1_{\mathrm{B}} \\
& =\sum_{i} d_{i}^{-}\left(z_{-} \partial_{-}+1\right) f 1_{\mathrm{B}}=0 . \tag{4.23}
\end{align*}
$$

Thus Proposition 2.1 applies and we get the morphism $\nabla_{2}: M_{A^{\prime}} \rightarrow M_{B^{\prime}}$.
In exactly the same fashion we construct the morphism $\nabla_{2}: M_{C^{\prime}} \rightarrow M_{D^{\prime}}$ by taking $f \in \mathbb{C}\left[\partial_{1}, \partial_{2}, \partial_{3}\right]$.

Thus we have proved part (a) of the following proposition; part (b) was checked in [3].

Proposition 4.7. (a) Formulae (4.19) and (4.20) define the morphisms $\nabla_{2}: M_{A^{\prime}} \rightarrow M_{B^{\prime}}$, $\nabla_{2}: M_{C^{\prime}} \rightarrow M_{D^{\prime}}$ of $E(3,8)$-modules.
(b) $\nabla \nabla_{2}=0, \nabla_{2} \nabla=0$.

Similarly, we can construct morphisms with the help of the element

$$
\begin{equation*}
\nabla_{3}=\delta_{1} \delta_{2} \delta_{3}=\sum_{a, b, c} d_{1}^{a} d_{2}^{b} d_{3}^{c} \otimes \partial_{a} \partial_{b} \partial_{c}, \quad(a, b, c=+,-) . \tag{4.24}
\end{equation*}
$$

Consider modules $M_{X^{\prime \prime}}=M\left(V_{X^{\prime \prime}}\right)$, where

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{A}^{\prime \prime}}=\mathbb{C}\left[z_{+}, z_{-}\right] 1_{\mathrm{A}}=\oplus_{\mathrm{r} \geq 0} \mathrm{~V}_{\mathrm{A}}^{0, r}, & \mathrm{~V}_{\mathrm{B}^{\prime \prime}}=\mathbb{C}\left[\partial_{+}, \partial_{-}\right] \mathbf{1}_{\mathrm{B}}=\oplus_{\mathrm{r} \geq 0} \mathrm{~V}_{\mathrm{B}}^{0,-r}, \\
\mathrm{~V}_{\mathrm{C}^{\prime \prime}}=\mathbb{C}\left[z_{+}, z_{-}\right] \mathbf{1}_{\mathrm{C}}=\oplus_{\mathrm{r} \geq 0} \mathrm{~V}_{\mathrm{B}}^{0, r}, & \mathrm{~V}_{\mathrm{D}^{\prime \prime}}=\mathbb{C}\left[\partial_{+}, \partial_{-}\right] \mathbf{1}_{\mathrm{D}}=\oplus_{\mathrm{r} \geq 0} \mathrm{~V}_{\mathrm{D}}^{0,-r} . \tag{4.25}
\end{array}
$$

We construct morphisms $\nabla_{3}: M_{A^{\prime \prime}} \rightarrow M_{C^{\prime \prime}}$ and $\nabla_{3}: M_{B^{\prime \prime}} \rightarrow M_{D^{\prime \prime}}$ by extending the maps $\nabla_{3}^{\prime}: \mathrm{V}_{\mathrm{A}^{\prime \prime}} \rightarrow \mathrm{U}\left(\mathrm{L}_{-}\right) \otimes \mathrm{V}_{\mathrm{C}^{\prime \prime}}, \nabla_{3}^{\prime \prime}: \mathrm{V}_{\mathrm{B}^{\prime \prime}} \rightarrow \mathrm{U}\left(\mathrm{L}_{-}\right) \otimes \mathrm{V}_{\mathrm{D}^{\prime \prime}}$ given by the left and right diagrams below:

Here the horizontal maps are naturally $\mathfrak{s l}_{3}(\mathbb{C}) \oplus \mathfrak{s l}_{2}(\mathbb{C})$-isomorphisms, but we have to define the action of Y on the target demanding the map to be a G_{0}-isomorphism. With this in mind, we have to check that Y commutes with ∇_{3}.

We use the Einstein summation convention argument for the vertical maps ∇_{3} given by (4.26). Then for $f \in \mathbb{C}\left[z_{+}, z_{-}\right]$we have $Y\left(f 1_{A}\right)=(\operatorname{deg} f) f 1_{A}$ and

$$
\begin{align*}
Y\left(d_{1}^{a} d_{2}^{b} d_{3}^{c} \otimes \partial_{a} \partial_{b} \partial_{c} f 1_{c}\right) & =d_{1}^{a} d_{2}^{b} d_{3}^{c} \otimes\left(-1+Y^{\sharp}\right) \partial_{1} \partial_{b} \partial_{c} f 1_{c} \\
& =d_{1}^{a} d_{2}^{b} d_{3}^{c} \otimes \partial_{a} \partial_{b} \partial_{c} f\left(-4+\operatorname{deg} f+Y^{\sharp}\right) 1_{C} \tag{4.27}\\
& =(\operatorname{deg} f) \cdot d_{1}^{a} d_{2}^{b} d_{3}^{c} \otimes \partial_{a} \partial_{b} \partial_{c} f 1_{c} .
\end{align*}
$$

Similarly for $f \in \mathbb{C}\left[\partial_{+}, \partial_{-}\right]$, we have $Y\left(f 1_{B}\right)=(-\operatorname{deg} f-2) f 1_{B}$ and

$$
\begin{align*}
Y\left(d_{1}^{a} d_{2}^{b} d_{3}^{c} \otimes \partial_{a} \partial_{b} \partial_{c} f 1_{D}\right) & =d_{1}^{a} d_{2}^{b} d_{3}^{c} \otimes \partial_{a} \partial_{b} \partial_{c} f\left(-4-\operatorname{deg} f+Y^{\sharp}\right) 1_{D} \\
& =(-4-\operatorname{deg} f+2) d_{1}^{a} d_{2}^{b} d_{3}^{c} \otimes \partial_{a} \partial_{b} \partial_{c} f 1_{D} \tag{4.28}
\end{align*}
$$

where Y^{\sharp} defined by (4.8). Thus we get the commutativity.
We meet no problem checking $e_{0}^{\prime} \nabla_{3}=0$, but we consider calculations for $e_{0}^{\sharp} \nabla_{3}$ in more detail. If $f \in \mathbb{C}\left[z_{+}, z_{-}\right]$, then

$$
\begin{equation*}
e_{0}\left(\nabla_{3} f 1_{C}\right)=h_{0}^{\sharp} d_{2}^{b} d_{3}^{c} \otimes \partial_{+} \partial_{b} \partial_{c} f 1_{C}-f_{3} d_{2}^{b} d_{3}^{c} \otimes \partial_{-} \partial_{b} \partial_{c} f 1_{C}, \tag{4.29}
\end{equation*}
$$

because $d_{1}^{a}\left(x_{2} \partial_{1}\right) d_{3}^{c} \otimes \partial_{a} \partial_{+} \partial_{c} f 1_{c}=d_{1}^{a} d_{2}^{b}\left(x_{3} \partial_{1}\right) \otimes \partial_{a} \partial_{b} \partial_{+} f 1_{C}=0$. Now $f_{3}\left(d_{2}^{b} d_{3}^{c} \otimes \partial_{b} \partial_{c}\right)=$ $\left(d_{2}^{b} d_{3}^{c} \otimes \partial_{b} \partial_{c}\right) f_{3}$ and $h_{0}^{\sharp}\left(d_{2}^{b} d_{3}^{c} \otimes \partial_{b} \partial_{c}\right)=\left(d_{2}^{b} d_{3}^{c} \otimes \partial_{b} \partial_{c}\right)\left(h_{0}^{\sharp}-2\right)$, where $h_{0}^{\sharp}=(2 / 3) h_{1}+$ $(1 / 3) h_{2}-(1 / 2) h_{3}+(1 / 2) Y^{\sharp}$, and again Y^{\sharp} is defined by (4.8). Therefore,

$$
\begin{align*}
e_{0}^{\sharp}\left(\nabla_{3} f 1_{C}\right) & =\left(d_{2}^{b} d_{3}^{c} \otimes \partial_{b} \partial_{c}\right)\left(h_{0}^{\sharp} \partial_{+}-2 \partial_{+}-z_{+} \partial_{+} \partial_{-}\right) f 1_{C} \\
& =\left(d_{2}^{b} d_{3}^{c} \otimes \partial_{b} \partial_{c}\right)\left(h_{0}^{\sharp}-z_{-} \partial_{-}-2\right) \partial_{+} f 1_{C} \\
& =\left(d_{2}^{b} d_{3}^{c} \otimes \partial_{b} \partial_{c}\right)\left(-x_{2} \partial_{2}-x_{3} \partial_{3}-2\right) \partial_{+} f 1_{C} \tag{4.30}\\
& =\left(d_{2}^{b} d_{3}^{c} \otimes \partial_{b} \partial_{c}\right)\left(-\partial_{2} x_{2}-\partial_{3} x_{3}\right) \partial_{+} f 1_{C}=0 .
\end{align*}
$$

The calculations in the case $f \in \mathbb{C}\left[\partial_{+}, \partial_{-}\right]$are very much the same. So we have proved part (a) of the following proposition; part (b) was checked in [3].

Proposition 4.8. (a) Formulae (4.24) and (4.26) define the morphisms $\nabla_{3}: M_{A^{\prime \prime}} \rightarrow M_{D^{\prime \prime}}$ and $M_{B \prime \prime} \rightarrow M_{D \prime \prime}$ of $E(3,8)$-modules.
(b) $\nabla \cdot \nabla_{3}=0, \nabla_{3} \cdot \nabla=0$.

Furthermore, there are $E(3,8)$-module morphisms

$$
\begin{align*}
& \nabla_{4}^{\prime}: M\left(00 ; 2 ; y_{A}\right) \longrightarrow M\left(01 ; 1 ; y_{D}\right) \\
& \nabla_{4}^{\prime \prime}: M\left(10 ; 0 ; y_{A}\right) \longrightarrow M\left(00 ; 2 ; y_{D}\right) \tag{4.31}
\end{align*}
$$

defined by formulae (2.14) and (2.17) from [3], applied to $E(3,8)$. Arguments similar to those in [3] show that these are indeed well-defined morphisms.

Thus far we have constructed $E(3,8)$-homomorphisms $\nabla, \nabla_{2}, \nabla_{3}, \nabla_{4}^{\prime}$, and $\nabla_{4}^{\prime \prime}$ between generalized Verma modules. Note that these maps have degree 1, 2, 3, and 4, respectively, with respect to the \mathbb{Z}-gradation of $U\left(L_{-}\right)$induced by that of $E(3,8)$.

As in the case of $E(3,6)[3]$, all these maps are illustrated in Figure 4.1. The nodes in the quadrants A, B, C, D represent generalized Verma modules $M\left(p, 0 ; r ; y_{x}\right)$ if $X=A$

Figure 4.1
or B, and $M\left(0, q ; r ; y_{x}\right)$ if $X=C$ or D. The plain arrows represent ∇, the dotted arrows represent ∇_{2}, the interrupted arrows represent ∇_{3}, and the bold arrows represent ∇_{4}^{\prime} and $\nabla_{4}^{\prime \prime}$.

Note that the generalized Verma modules $M\left(00 ; 1 ; y_{A}\right)$ and $M\left(00 ; 1 ; y_{D}\right)$ are isomorphic since $y_{A}=y_{D}=1$. We identify them. This allows us to construct the $E(3,8)-$ module homomorphism

$$
\begin{equation*}
\widetilde{\nabla}: M\left(00 ; 1 ; y_{A}\right) \longrightarrow M\left(01 ; 2 ; y_{D}\right) \tag{4.32}
\end{equation*}
$$

which is not represented in Figure 4.1.
Note that $\mathrm{I}\left(00 ; 1 ; y_{A}\right)=\mathrm{I}\left(00 ; 1 ; y_{D}\right)$ is the coadjoint $\mathrm{E}(3,8)$-module. It follows from the above propositions that if we remove the module $M\left(00 ; 1 ; y_{D}\right)$ from Figure 4.1 and draw $\widetilde{\nabla}$, then all sequences in the modified Figure 4.1 become complexes. We denote by $H_{A}^{p, r}, H_{B}^{p,-r}, H_{C}^{-q, r}$, and $H_{D}^{-q,-r}$ the homology of these complexes at the position of $M(p q ; r ; y x), X=A, B, C, D$.

Theorem 4.9. (a) The kernels of all maps $\nabla, \nabla_{2}, \nabla_{3}, \nabla_{4}^{\prime}, \nabla_{4}^{\prime \prime}, \widetilde{\nabla}$ are maximal submodules.
(b) The homology $\mathrm{H}_{\mathrm{X}}^{\mathrm{m}, n}$ is zero except for six cases listed (as $\mathrm{E}(3,8)$-modules) below

$$
\begin{align*}
& \mathrm{H}_{A}^{0,0}=\mathbb{C}, \quad \mathrm{H}_{A}^{1,1}=\mathrm{I}\left(10 ; 0 ;-\frac{4}{3}\right), \\
& \mathrm{H}_{A}^{1,0}=\mathrm{H}_{\mathrm{D}}^{0,-2}=\mathrm{I}(00 ; 0 ;-2), \tag{4.33}\\
& \mathrm{H}_{\mathrm{D}}^{-1,-1}=\mathrm{H}_{\mathrm{D}}^{-1,-2}=\mathrm{I}(00 ; 1 ; 1) \oplus \mathbb{C} .
\end{align*}
$$

The proof is similar to that of the analogous $\mathrm{E}(3,6)$-result in [3]. Note that this theorem gives the following explicit construction of all degenerate irreducible $\mathrm{E}(3,8)$ modules:

$$
\begin{equation*}
I\left(p q ; r ; y_{x}\right)=M\left(p q ; r ; y_{x}\right) / \operatorname{Ker} \nabla, \tag{4.34}
\end{equation*}
$$

where ∇ is the corresponding map in the modified Figure 4.1.

5 Three series of degenerate Verma modules over $E(5,10)$

As in [3] and in Section 3, we use for the odd elements of $E(5,10)$ the notation $d_{i j}=$ $d x_{i} \wedge d x_{j}(i, j=1,2, \ldots, 5)$; recall that we have the following commutation relation (f, $g \in$ $\left.\mathbb{C}\left[\left[x_{1}, \ldots, x_{5}\right]\right]\right):$

$$
\begin{equation*}
\left[\mathrm{fd}_{j k}, \mathrm{gd}_{\ell m}\right]=\epsilon_{i j k \ell m} \partial_{i} \tag{5.1}
\end{equation*}
$$

where $\epsilon_{i j k \ell m}$ is the sign of the permutation $\mathfrak{i j k \ell m}$ if all indices are distinct and 0 otherwise.

Recall that the Lie superalgebra $\mathrm{E}(5,10)$ carries a unique consistent irreducible \mathbb{Z}-gradation $E(5,10)=\oplus_{j \geq-2} p_{j}$. It is defined by

$$
\begin{equation*}
\operatorname{deg} x_{i}=2=-\operatorname{deg} \partial_{i}, \quad \operatorname{deg} d_{i j}=-1 . \tag{5.2}
\end{equation*}
$$

We have that $p_{0} \simeq \mathfrak{s l}_{5}(\mathbb{C})$ and the p_{0}-modules occurring in the L_{-}part are

$$
\begin{align*}
& p_{-1}=\left\langle d_{i j} \mid i, j=1, \ldots, 5\right\rangle \simeq \Lambda^{2} \mathbb{C}^{5}, \\
& p_{-2}=\left\langle\partial_{i} \mid i=1, \ldots, 5\right\rangle \simeq \mathbb{C}^{5 *} . \tag{5.3}
\end{align*}
$$

Recall also that p_{1} consists of closed 2 -forms with linear coefficients, that p_{1} is an irreducible p_{0}-module and $p_{j}=p_{1}^{j}$ for $j \geq 1$.

We take for the Borel subalgebra of p_{0} the subalgebra of the vector fields $\left\langle\sum_{i \leq j} a_{i j} x_{i} \partial_{j} \mid a_{i j} \in \mathbb{C}, \operatorname{tr}\left(a_{i j}\right)=0\right\rangle$, and denote by $F\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ the finite-dimensional irreducible p_{0}-module with the highest weight ($\left.m_{1}, m_{2}, m_{3}, m_{4}\right)$. Let

$$
\begin{equation*}
M\left(m_{1}, m_{2}, m_{3}, m_{4}\right)=M\left(F\left(m_{1}, m_{2}, m_{3}, m_{4}\right)\right) \tag{5.4}
\end{equation*}
$$

denote the corresponding generalized Verma module over $E(5,10)$.
Conjecture 5.10. The following is a complete list of generalized Verma modules over $E(5,10)\left(m, n \in \mathbb{Z}_{+}\right):$

$$
\begin{equation*}
M(m, n, 0,0), \quad M(0,0, m, n), \quad M(m, 0,0, n) \tag{5.5}
\end{equation*}
$$

In this section, we construct three complexes of generalized $E(5,10)$ Verma modules which shows, in particular, that all modules from the list given by Conjecture 5.10 are degenerate. Let

$$
\begin{equation*}
S_{A}=S\left(\mathbb{C}^{5}+\Lambda^{2} \mathbb{C}^{5}\right), \quad S_{B}=S\left(\mathbb{C}^{5 *}+\Lambda^{2} \mathbb{C}^{5 *}\right), \quad S_{C}=S\left(\mathbb{C}^{5}+\mathbb{C}^{5 *}\right) \tag{5.6}
\end{equation*}
$$

Denote by $x_{i}(i=1, \ldots, 5)$ the standard basis of \mathbb{C}^{5}, and by $x_{i j}=-x_{j i}(i, j=1, \ldots, 5)$ the standard basis of $\Lambda^{2} \mathbb{C}^{5}$. Let x_{i}^{*} and $x_{i j}^{*}=-x_{j i}^{*}$ be the dual bases of $\mathbb{C}^{5 *}$ and $\Lambda^{2} \mathbb{C}^{5 *}$, respectively. Then S_{A} is the polynomial algebra in 15 indeterminates x_{i}, and $x_{i j}, S_{B}$ is the polynomial algebra in 15 indeterminates x_{i}^{*} and $x_{i j}^{*}$, and S_{C} is the polynomial algebra in 10 indeterminates x_{i} and x_{i}^{*}.

Given two irreducible p_{0}-modules E and F, we denote by $(E \otimes F)_{\text {high }}$ the highest irreducible component of the p_{0}-module $E \otimes F$. If $E=\oplus_{i} E_{i}$ and $F=\oplus_{j} F_{j}$ are direct sums of irreducible p_{0}-modules, we let $(E \otimes F)_{\text {high }}=\oplus_{i, j}\left(E_{i} \otimes F_{j}\right)_{\text {high }}$. If E and F are again irreducible p_{0}-modules, then $S(E \oplus F)=\oplus_{m, n \in \mathbb{Z}_{+}} S^{m} E \otimes S^{n} F$, and we let $S_{\text {high }}(E \oplus F)=$ $\oplus_{m, n \in \mathbb{Z}_{+}}\left(S^{m} E \otimes S^{n} F\right)_{\text {high }}$. We also denote by $S_{\text {low }}(E \oplus F)$ the complement to $S_{\text {high }}(E \oplus F)$.

It is easy to see that we have as p_{0}-modules:

$$
\begin{align*}
& S_{A, h i g h} \simeq \oplus_{m, n} \in \mathbb{Z}_{+} F(m, n, 0,0) \\
& S_{B, h i g h} \simeq \oplus_{m, n \in \mathbb{Z}_{+}} F(0,0, m, n) \tag{5.7}\\
& S_{C, h i g h} \simeq \oplus_{m, n \in \mathbb{Z}_{+}} F(m, 0,0, n)
\end{align*}
$$

Introduce the following operators on the spaces $M\left(\operatorname{Hom}\left(S_{X}, S_{X}\right)\right), X=A, B$, or C :

$$
\begin{equation*}
\nabla_{\mathrm{X}}=\sum_{i, j=1}^{5} \mathrm{~d}_{\mathrm{ij}} \otimes \theta_{i j}^{\mathrm{X}} \tag{5.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{i j}^{\mathrm{A}}=\frac{\mathrm{d}}{\mathrm{dx} x_{i j}}, \quad \theta_{i j}^{\mathrm{B}}=x_{i j}^{*}, \quad \theta_{i j}^{\mathrm{C}}=x_{i}^{*} \frac{\mathrm{~d}}{\mathrm{~d} x_{j}}-x_{j}^{*} \frac{\mathrm{~d}}{\mathrm{~d} x_{i}} . \tag{5.9}
\end{equation*}
$$

It is immediate to see that $p_{0} \cdot \nabla_{\mathrm{x}}=0$. In order to apply Proposition 2.1, we need to check that

$$
\begin{equation*}
p_{1} \cdot \nabla_{X}=0 \tag{5.10}
\end{equation*}
$$

This is indeed true in the case $X=C$, but it is not true in the cases $X=A$ and B. In fact (5.10) applied to $f \in S_{X}, X=A$ or B, is equivalent to the following equations, respectively ($a, b, c, d=1, \ldots, 5$):

$$
\begin{align*}
& \left(\frac{d}{d x_{a b}} \frac{d}{d x_{c d}}-\frac{d}{d x_{a c}} \frac{d}{d x_{b d}}+\frac{d}{d x_{a d}} \frac{d}{d x_{b c}}\right) f=0, \tag{5.11}\\
& \left(x_{a b}^{*} x_{c d}^{*}-x_{a c}^{*} x_{b d}^{*}+x_{a d}^{*} x_{b c}^{*}\right) f=0 . \tag{5.12}
\end{align*}
$$

It is not difficult to check the following lemma.
Lemma 5.11. (a) The subspace of S_{A} defined by (5.11) is $S_{A, \text { high }}$.
(b) Equations (5.12) hold in $S_{B} / S_{B, \text { low }}$.
(c) Equation $\nabla_{\mathrm{X}}^{2}=0$ is equivalent to the system of equations ($a, b, c, d=1, \ldots, 5$):

$$
\begin{equation*}
\theta_{\mathrm{ab}} \theta_{\mathrm{cd}}-\theta_{\mathrm{ac}} \theta_{\mathrm{bd}}+\theta_{\mathrm{ad}} \theta_{\mathrm{bc}}=0 \tag{5.13}
\end{equation*}
$$

Let
$\mathrm{V}_{\mathrm{A}}=\mathrm{S}_{\mathrm{A}, \text { high }}, \quad \mathrm{V}_{\mathrm{B}(\text { resp. C) }}=\mathrm{S}_{\mathrm{B}(\text { resp. C) }} / \mathrm{S}_{\mathrm{B}(\text { resp. C),low }}$
The above discussion implies the following proposition.
Proposition 5.12. (a) The operators ∇_{X} define $E(5,10)$-morphisms $M\left(V_{X}\right) \rightarrow M\left(V_{X}\right)(X=$ A, B or C).
(b) $\nabla_{X}^{2}=0(X=A, B$ or $C)$.
(c) $\nabla_{X}=0$ if and only if $X=A$ and $n=0$, or $X=C$ and $m=0$.

The nonzero maps ∇_{x} are illustrated in Figure 5.1. The nodes in the quadrants A, B, and C represent generalized Verma modules $M(m, n, 0,0), M(0,0, m, n)$, and $M(m, 0,0, n)$, respectively. The arrows represent the $E(5,10)$-morphisms $\nabla_{x}, X=A, B$, or C in the respective quadrants.

Figure 5.1

Acknowledgment

The first author was supported in part by the National Science Foundation (NSF) grant DMS-9970007.

References

[1] S.-J. Cheng and V. G. Kac, Structure of some Z-graded Lie superalgebras of vector fields, Transform. Groups 4 (1999), no. 2-3, 219-272.
[2] V. G. Kac, Classification of infinite-dimensional simple linearly compact Lie superalgebras, Adv. Math. 139 (1998), no. 1, 1-55.
[3] V. G. Kac and A. N. Rudakov, Representations of the exceptional Lie superalgebra $\mathrm{E}(3,6)$ II: Four series of degenerate modules, Comm. Math. Phys. 222 (2001), 611-661.
[4] ——, Representations of the exceptional Lie superalgebra $\mathrm{E}(3,6)$ I: Degeneracy conditions, Transform. Groups 7 (2002), 67-86.
[5] ——,Representations of the exceptional Lie superalgebra $\mathrm{E}(3,6)$ III: Classification of singular vectors, in preparation.
[6] S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, vol. 114, Springer-Verlag, New York, 1975.
[7] A. N. Rudakov, Irreducible representations of infinite-dimensional Lie algebras of Cartan type, Math. USSR-Izv. 8 (1974), 836-866, translated from Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 835-866.

Victor G. Kac: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail address: kac@math.mit.edu

Alexei Rudakov: Department of Mathematics, Norges Teknisk-Naturvitenskapelige Universitet, Gløshaugen, N-7491 Trondheim, Norway
E-mail address: rudakov@math.ntnu.no

