ISSN 0001-4370, Oceanology, 2011, Vol. 51, No. 4, pp. 568—573. © Pleiades Publishing, Inc., 2011.
Original Russian Text © I.1. Didenkulova, E.N. Pelinovsky, 2011, published in Okeanologiya, 2011, Vol. 51, No. 4, pp. 606—611.

MARINE
PHYSICS

Reflection of a Long Wave from an Underwater Slope

I. 1. Didenkulova®? and E. N. Pelinovsky*
@ Institute of Applied Physics, Russian Academy of Sciences, Nizhni Novgorod, 603950 Russia
b Institute of Kibernetics, Tallinn, 12618 Estonia
e-mail: dii@hydro.appl.sci-nnov.ru
Received September 10, 2009

Abstract—Reflection of long sea waves from and underwater slope described by a power law is studied within
the shallow water theory. The slope connects with the flat bottom. This model allows us to estimate the roles
of a pointwise reflection from the inflection point of the bottom profile and distributed reflection at the
underwater slope. The case in which the underwater slope is described by the so-called nonreflecting beach
(h(x) ~ x*3, where h is the depth of the basin and x is the coordinate) and the wave is reflected only from the
inflection line (pointwise reflection) is specially considered. The reflection and refraction coefficients over
the bottom topography were calculated, and it was shown that the sum of the squared absolute values of these
values differs from unity for all profiles except the nonreflecting one. This difference is related to the distrib-
uted repeated reflections (resonances) over the underwater slope that lead to the differences in the wave height

from the known Green’s law.
DOI: 10.1134/S0001437011040060

Investigation of the transformation of sea waves in
the coastal zone is a classical and well-developed
oceanographic problem [7—8, 10, 18]. The real coastal
topography, even in the case of a solitary wave
approach, leads to a very complex pattern of wave
motions (seiche oscillations, resonances, alongshore
waves), which is currently well modeled using modern
computers within the shallow wave theory and its non-
linear dispersion generalizations. The analytical solu-
tions important for the understanding of the wave
physics were obtained mainly for the simplest forms of
the plane slope. They are used for the demonstration
of the main peculiarities of the wave transformation.
For example, the well-known Green’s law (H ~ A=/,
where H is the wave height and /4 is the depth) is
obtained in the case of the smooth depth variation,
when we can neglect reflection from the slope. Inten-
sification of the wave over smooth slopes can be some-
times very significant. In the other limiting case of a
stepwise depth variation (steps), the reflection is suffi-
ciently strong and, if the depth jump is high, the wave
can completely reflect from the step. It was shown
recently that monotonous bottom profiles of the spe-
cial form exist where reflection is absent even if the
bottom slope is significant [4, 13—14]. In the transi-
tion zone with arbitrary variable depth, the effects of
the distributed and pointwise reflection from the slope
play comparable roles and, generally, it is impossible to
separate them. These effects lead to both variations in
the wave amplitude and its form. Here, we shall
present the model of the long wave transformation
over the bottom slope described by a power law, which
connects with the flat bottom. This model allows us to

see the influence of the underwater slope curvature on
the characteristics of wave reflection and refraction at
the boundary with the shelf that has an inflection point
and compare the role of the pointwise and distributed
reflections.

Let us consider the simplest geometry of the coastal
zone when the shelf of a constant depth 4, connects at
x = 0 with the zone of the monotonous depth increase
(underwater slope), which is described by the follow-
ing relation:

b
h(x)=h0(1+)l—c), x>0, b>0, QY

where parameters L and b characterize the steepness of
the slope (Fig. 1). At point x = 0, there is an inflection
of depth, which is characterized by inclination tan

tan(0) = dh/dx = bhy/L. For simplicity, we shall not
connect the zone of the variable depth with the region
of constant depth on the right (on the open ocean side)
assuming the finite value of the transition zone to sep-
arate in the pure form the effects of reflection only
from one point at the bottom. We can naturally assume
that the wave arrives from the open ocean; however,
owing to the causality principle, which is valid in the
linear problems, the locations of the source and the
receiver can be exchanged and the opposite process
considered in which the wave arrives from the shallow
zone; this is mathematically simpler. Such wave trans-
formation during the transition from the shallow water
to the deep ocean also has a physical sense and can be
considered, for example, for a tsunami when the wave
reflected from the coast propagates to the open ocean.
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Fig. 1. Geometry of the coastal zone.

A multitude of such reflections (from Sri Lanka, the
Maldives and Seychelles Islands, and the Mascarene
Reef) were recorded during the Indonesia tsunami in
2004 [15—16]).

We assume that the surface waves are long every-
where (this assumption, which is formally not valid at
large depths, will not influence our conclusions,
because the wave field in infinity becomes vanishingly
small) and linear so that the linear theory in shallow
water can be used for their description. In the case of a
monochromatic wave with frequency o, it is reduced
to an ordinary differential equation,
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where 1 is the elevation of the water surface and gis the
acceleration due to gravity. We assume that the wave
propagates from the left to the inflection point, then,
in the zone of the flat bottom (x < 0), the solution of
Eq. (2) is the sum of the incident and reflected waves:

m(x 1) = Aexplio(i-x/c)]

_ 3)
+ A,explio(t+x/cy)],

where ¢, = ./gh, is the velocity of long waves over the
flat bottom, #is the time, and A; and A, are the ampli-
tudes of the incident and reflected waves, respectively.
In the region (x> 0), the solution of Eq. (2) for the bot-
tom profile described by (1) can also be found explic-
itly as the Bessel functions

n2(xa t)
2kL
y ( z) H(z)( [1+—D
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Here, H? is the Hunkel function of the second kind
[3] and A,. determines the height (amplitude) of the
wave immediately near the inflection. We actually used
the boundary condition of the wave in infinity (the
Sommerfeld radiation condition) to select solution (4)
so that solution (4) at a large distance from the inflec-
tion point has the form of a progressive wave in the
direction to the right and it is described by an approx-
imate relation

(6)

nZ(x’ t) =

H( 2L

It is clear that the asymptotic solution can be obtained
using the method of slowly varying amplitudes
(WKB). In particular, the wave amplitude in (6) is pro-
portional to A~'/* (the Green’s law) and the phase
multiplier in (6) is the wave phase proportional to the
time of the wave propagation over the bottom topogra-
phy, i.e., Jdx/[gh(x)]"/2.

In it important to note that the wave solution (4)
exists only at b < 2, which is assumed everywhere (in
the opposite case, the solution decays exponentially
due to a strong depth increase, which destructs the
shallow water approximation).

In the class of the power law profiles of depth vari-
ation considered here, we can distinguish one case
OCEANOLOGY Wol. 51
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(b= 4/3) in which the wave propagates over variable
bottom topography without reflection (nonreflecting
beach). In this case, the strict solution of (4) is written
in the elementary functions and actually coincides
with the asymptotic solution (6):

nx, 1) = A,,L%Jmexp[zw(t— J.M } @)

The existence of such a nonreflecting beach for mono-
chromatic waves has been known for a long time [9—
11]. Mathematically, the initial wave equation for such
beaches with variable coefficients is reduced to a wave
equation with constant coefficients [12—14]; there-
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Fig. 2. Amplitude and phase components of the reflection coefficient for different slopes.

fore, its solution can also be obtained for the more
general type of sea waves. It was shown recently [13—
14], that the form of a progressive wave over an under-
water slope should have alternating sign. It is worth
noting that the wave over a nonreflecting beach prop-
agates without reflection even if the slope of the bot-
tom is steep enough so that the Green’s law deduced
for a smoothly varying depth (on a wave length scale)
is valid here for any arbitrary value of the angle. If the
real bottom topography is approximated by a set of
nonreflecting beaches, all reflections become concen-
trated at the points where profiles are sewed, which
allows us to reduce the problem of the wave propaga-
tion over complex topography to a system of algebraic
equations for the amplitude and phase of the wave.
The accuracy of such an approach can be estimated by
comparing the obtained solutions for the bottom pro-
files of different form, which we are doing in this work
using the example of reflection from an underwater
slope.

We sew together solutions (3) and (4) at the inflec-
tion point using the standard boundary conditions of
the water level and discharge (current velocity) conti-
nuity and obtain the sought expression for the complex
coefficient of wave reflection from an underwater

slope:
= ;4—’ = , (8)
2- 2 -
where
7= Kb ©)
tan(0)

Parameter k#h, is always small within the shallow water
theory, while the bottom slope can vary in the wide
limits; therefore, argument Zalso changes in wide lim-

its. Relation (8) allows us to estimate the total reflec-
tion of the wave from the slope not separating it on the
reflection from the slope (distributed reflection) and
reflection from the depth inflection point (pointwise
reflection).

In the case of sewing of a nonreflecting profile with
the region of constant depth the reflection coefficient
is determined by means of elementary functions (the
same expression can be obtained from (8) at b = 4/3)

4, 1
1+8iZ

(10)

and it determines the pointwise reflection from the
point of the depth inflection [4]. Let us separate the
amplitude and phase parts of the reflection coefficient

1
J(82) +1
In the limiting case of a very steep slope 6 — — 7/2
(Z — 0), the wave completely reflects with the
change of the sign (polarity), but when the inflection is

very small the reflection of the wave energy is almost
absent.

The reflection coefficients of the wave from a slope
for different profiles of the bottom topography calcu-
lated from general relation (8) are shown in Fig. 2. We
see that in the general case the total reflection charac-
terized by the absolute value R can be either greater or
smaller than the pointwise reflection at the nonreflect-
ing beach (b = 4/3). In particular, if the bottom profile
is steeper (for example, 4 ~ x'%), the wave would more
strongly reflect from the slope than in the case of a
nonreflecting beach at the same values of the inflec-
tion angle and wavelength (frequency); and if the bot-
tom profile is more flat as at # ~x or & ~x%%, the reflec-
tion would be smaller. Thus, the distributed reflection
can be either added to the pointwise reflection (at
steep slopes) or it can be subtracted from it (at flat

|R| = Arg(R) = —arctan(82) + n.(11)
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Fig. 3. Amplitude and phase components of the transformation coefficient for different slopes.

slopes). In the limiting case (Z— 0), when the depth
increases sharply, the wave reflects completely from
any profile, and when Z — oo (very flat slope) the
reflection is almost absent as was expected.

The phase of the reflected wave changes in the
range (mt/2, 7); this means that at least the leading part
of the wave changes its polarity when reflected from
the underwater slope. In principle, the change in the
wave polarity during the reflection from the large
depth zone was known earlier. It is easily obtained
analytically for the case of a stepwise depth change [8].
This limiting case is obtained from relation (8) when
Z — 0 and the phase tends to ©. Naturally, this does
not depend on the details of the underwater slope
(exponent b). In the other limiting case of a gradual
slope (Z — ), asymptotic /2 is valid for the phase.
It is also seen from Fig. 2 that, when exponent b
changes, the phase does not change in the same man-
ner at large and small values of Z, which leads to the
crossings of the phase curves in the transition region.

Similarly to (8) a general expression for the coeffi-
cient of wave transformation over the slope can be
found, which we define as

2H(2)(2bZ)
tr ' 2 _b

4, 207\ . VAR
mz)(z-b) * ’H(Vz*)‘(z—b)

so that this coefficient characterizes the wave ampli-
tude immediately after the inflection point. The wave
field here is formed due to the effects of repeated
reflections at the underwater slope. Beyond the inflec-
tion point, the wave is described by relation (4) and in
the general case its amplitude as function of depth dif-
fers from the known Green’s relation (we shall discuss
this below). Here, we also separate the nonreflecting
beach (b = 4/3). In this case, the wave amplitude
exactly satisfies the Green’s law [4, 14]. We give the
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relation for the coefficient of wave transformation at
the inflection point to a nonreflecting profile,

= Ay = ﬂ (13)

A, 1+8iZ
Naturally, expression (14) can be deduced from (13) at
b=4/3. At very steep slopes (Z— 0), the wave almost
does not propagate to the zone of the variable depth,
while, at smooth (Z — ) slopes, it always propagates
without change in polarity.

The coefficient of the wave transformation through
the inflection point for different profiles of the bottom
calculated from relation (13) is shown in Fig. 3. In the
general case, the wave that passed the point is weak if
the slope is sufficiently steep (Z — 0). If the slope is
gentle (Z — ), the entire wave energy is transferred
to the slope. It is interesting to note that, at steep
slopes, the wave phase is equal to /2, which, in prin-
ciple, should lead to the appearance of a negative tail
in the case of positive momentum incidence. At gentle
slopes, the wave phase does not differ from the phase
of the incident wave. These conclusions are valid for
the slopes with arbitrary values of exponent b. The
influence of the slope form is manifested in the char-
acter of the curves in Fig. 3. Unlike Fig. 2 for the coef-
ficient of reflection where the phase lines crossed,
here, the phase changes monotonously when expo-
nent b changes; however this non-monotonous change
is manifested in the amplitude component.

The new fact revealed here is the nonmonotonous
character of the transformation coefficient as function
of the slope angle variation if exponent b > 4/3 so that
it exceeds unity at some angles (values of nondimen-
sional parameter Z). It is known that, in the case of the
pointwise reflection effect (for example, when the
wave passes over a step or over a zone of variable
depth), the sum of the squared absolute values of the
reflection and transformation coefficients is equal to
unity, which reflects the wave energy balance at both
sides of the transition zone. In the case of the variable
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Fig. 4. Sum of the squared amplitude components of the
reflection and transformation coefficients for different
slopes.

depth, the wave energy would not be determined by its
amplitude only as over the constant depth. The calcu-
lated sum of the squared absolute values of the reflec-
tion and transformation coefficients for the bottom
profiles described by a power law is shown in Fig. 4. We
see, that in the case of a nonreflecting beach (b =4/3),
this sum is equal to unity emphasizing the pointwise
character of the reflection and transformation of the
wave. The distortions from unity are found for all other
profiles; the distortions can make the sum either
smaller or greater than unity.

It was already noted above that in the general case,
solution (4) does not correspond to the wave that
passed the region in the pure form due to the distrib-
uted reflection along the slope described by a power
law and amplitude A4,. has no simple physical sense in
the energy balance equation. It is our opinion that the
nonmonotonous character of the curves in Fig. 4 is
related to the resonance phenomenon, caused by a
complex pattern of the repeated wave reflection over
the slope beyond the edge. It was already mentioned in
the beginning of the paper that, at large distances from
the inflection point, the wave amplitude satisfies the
Green’s law for an arbitrary profile and the wave is
progressive. In the case of nonreflecting beach, when
the transformed wave is progressive at any distance
from the inflection point, its amplitude also satisfies
the Green’s law (Fig. 5). For all the rest profiles, the
deviations to both sides from this law are observed
(Fig. 5). The differences to the greater values are
observed for the profiles when b < 4/3 and the sum of
the squared absolute values of the transformation and
reflection coefficients exceeds unity (Fig. 4); visa
versa, the amplitude of the wave decreases with the
depth faster than the Green’s law if the sum of the
squared absolute values of the transformation and
reflection coefficients is less than unity. These differ-
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Fig. 5. Variation in the amplitude of the transformed wave
versus distance from the inflection point; triangles corre-
spond to the profile with b = 1/4, circles correspond to a
flat slope (b = 1), asterisks correspond to a nonreflecting
profile (b = 4/3), and squares correspond to the profile
with b = 1.9; the straight line corresponds to the Green’s
law (Z=0.1).

ences are related to the distributed reflection from the
slope, its value, and phase.

Thus, even for the simple geometrical forms of the
underwater slope connected with the shelf of constant
depth the distributed reflection competes with the
pointwise reflection at the inflection point. In the pure
form, the pointwise reflection at the inflection point can
be separated only for a nonreflecting beach (b =4/3). In
the general case, their ratio is characterized by the
deviations from the Green’s law in the amplitude of
the transformed wave and in the value of the sum of the
squared absolute values of the transformation and
reflection coefficients at the inflection point, which
differs from unity. In this sense, the natural expecta-
tions that the greatest variation in the height should
occur at nonreflecting beaches can be weakened by the
presence of the inflection point where pointwise
reflection appears comparable with the distributed
reflection at the underwater slope. At the same time,
the results presented here demonstrate only slight dif-
ference in the reflection and transformation coeffi-
cients for the flat (b = 1) and nonreflecting (b = 4/3)
slopes. The wave field for the flat slope is described by
the Bessel functions, while elementary functions
describe the wave field for the nonreflecting beach.
The authors of [17] suggested using the approximation
of the bottom topography by intervals of the constant
slope angle for the calculations of the wave field. We
think that application of the nonreflecting bottom
profile even at individual segments can simplify the
calculations and give an even clearer presentation of
the physical results rather than application of seg-
ments with the constant slope angles.

In conclusion, we note that these results can also be
applied for the other types of oceanic waves, in partic-
2011
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ular, for the internal waves propagating into the deep
ocean [2, 6], as well as for the acoustic waves in a het-
erogeneous medium [1, 5]. The existence of a solution
of type (7) [1-2, 5—6] was found for them, although
their correlation with the propagating (nonreflecting)
waves remained unnoticed.
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