ЭКОНОМИКО-МАПТЕМАПТИЧЕСКИЕ МОДЕЛИ

Д.С. Власов, аспирант,¹ г. Москва

МОДЕЛИРОВАНИЕ ИНВЕСТИЦИЙ В ОСНОВНОЙ КАПИТАЛ НА ПРИМЕРЕ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ: ВЛИЯНИЕ КОНЦЕНТРАЦИИ ПРОИЗВОДСТВА И ИНОСТРАННОЙ СОБСТВЕННОСТИ

В работе рассматривается влияние концентрации производства в отрасли и наличия иностранных собственников в уставном капитале предприятия на инвестиции в основной капитал промышленных предприятий на примере пищевой промышленности. Дается характеристика инвестиционной активности предприятий пищевой отрасли в период с 2004 по 2012 г., исследуется влияние кризиса на инвестиционный процесс. Впервые используется динамическая модель инвестиционной стохастической границы для моделирования инвестиций в основной капитал.

Ключевые слова: инвестиции в основной капитал, пищевая промышленность, концентрация производства, иностранная собственность, модель стохастической границы, промышленная политика.

Ввеление

С 2004 по 2012 гг. инвестиции в постоянных ценах в экономике России возросли на 70 %, благоприятная экономическая ситуация на внутреннем рынке привела к тому, что многие компании изменили свои инвестиционные стратегии и стали осуществлять инвестиции в основной капитал в значительно большем объеме. При этом пищевую промышленность данные тенденции коснулись лишь частично. Так, с 2004 по 2008 г. рост инвестиций в основной капитал в пищевой промышленности составил лишь 26 %, а к 2012 г. наблюдалось увеличение инвестиций лишь на 12 % к 2004 г., что говорит о наступлении инвестиционного кризиса в пищевой промышленности.

На фоне медленного роста инвестиций в пищевой промышленности саму отрасль

затронули серьезные структурные изменения. В последние 8 лет в пищевой промышленности наблюдалось большое количество сделок слияний и поглощений (табл.1), что привело к увеличению доли рынка крупнейших компаний. Продолжился процесс прихода в пищевую промышленность иностранных инвесторов. Так, количество иностранных предприятий (больше 50 % в собственности которых принадлежит иностранному юридическому лицу) в пищевой отрасли увеличилось за последние 8 лет почти в 2 раза. При этом, как мы можем заметить, инвестиции в основной капитал росли не столь значительными темпами, поэтому остается открытым вопрос, повлияло ли увеличении концентрации производства на пищевом рынке и приход иностранных инвесторов на рост инвестиций в основной капитал. Также открытым остается вопрос о влиянии кризиса на инвестиции в основной капитал.

В связи с этим целью исследования является выявление и обоснование влияния

¹ Власов Дмитрий Сергеевич – аспирант факультета экономики Национального исследовательского университета «Высшая школа экономики»; e-mail: vl.dmits@gmail.com.

концентрации производства и иностранной собственности на выбор уровня инвестиций в основной капитал промышленными предприятиями (на примере пищевой отрасли). Предметом исследования являются факторы инвестиционного спроса и предложения.

В соответствии с поставленной целью исследование должно решить следующие задачи:

- Используя современные теоретические подходы к моделированию инвестиций, вывести модель инвестиционной стохастической границы.
- 2. На основе панельных данных найти факторы, определяющие уровень инвестиций в основной капитал, и провести их эмпирическое тестирование.
- 3. С помощью полученных результатов определить основные направления

государственной политики по стимулированию инвестиций.

Для решения поставленных задач мы будем проверять следующие гипотезы:

Компании со значимым иностранным участием инвестируют в основной капитал в среднем больше, чем аналогичные российские компании. Для целей работы значимое иностранное участие понимается как участие в капитале свыше 50 %. Основой гипотезы являются результаты исследований, демонстрирующих конкурентные преимущества компаний с иностранным участием в российских отраслях, особенно на рынках потребительских товаров со значительным влиянием бренда на конкурентоспособность [3, 8].

Таблица 1 Основные производственные и инвестиционные показатели пищевой промышленности в 2004–2012 гг.

Поморожати	Годы								
Показатель	2004	2005	2006	2007	2008	2009	2010	2011	2012
Объем отгруженных товаров, млрд руб.	1 340	1 485	1 729	2 143	2 656	2 822	3 262	3 601	4 001
Численность заня- тых, тыс. чел.	1 542	1 447	1 436	1 457	1 411	1 344	1 317	1 292	1 206
Объем основных фондов, млрд руб.	458	523	589	701	830	919	1057	1 224	н/д
Инвестиции в основной капитал в постоянных ценах 2002 г., млрд руб.	75.1	81,6	83,0	97,5	94,5	72,2	76,9	76,3	84,5
Доля первых 10 крупнейших компаний в отраслевом выпуске, в процентах	8.8	9,9	10,8	12,4	12,.6	13,1	13,0	13,5	14,1
Количество ино- странных компа- ний среди 500 крупнейших, ед.	47	52	55	56	64	68	75	74	74

Источники: Госкомстат, SPARK-Interfax

концентрации производства (доли рынка) отдельной компании приводит к росту инвестиций в основной капитал данной компании, так как в условиях конкурентного рынка для удержания завоеванной доли рынка компания вынуждена будет инвестировать больше чем раньше. В соответствие с теорией эндогенной структуры рынка [13] повышение концентрации отрасли может служить результатом усиления конкуренции. Именно усиление конкуренции рассматривается как наиболее адекватное истории слияний в российской пищевой промышленности [1]. В этом контексте более быстрый рост компании - свидетельство более агрессивной конкурентной стратегии, - частью которой является ускоренный рост инвестиционных затрат.

Более развернутая формулировка гипотез представлена в эмпирической части работы.

Эмпирической базой исследования выступает аналитическая база SPARK-Interfax. База сформирована по 500 крупнейшим предприятиям (95 % из них — акционерные общества) по размеру выручки на основе ОКВЭД пищевой промышленности. Информация об инвестициях взята из бухгалтерского баланса по строке «инвестиции в нефинансовые активы». Для проверки наших гипотез обратимся к моделям, представленным ниже. Нами было построено несколько моделей. Все три модели — панельные, оценены для периодов t: от 2004 до 2012 г., и для 500 наблюдений i.

1. Подходы к моделированию факторов инвестирования российских промышленных предприятий

Первая простейшая теория для моделирования инвестиций промышленных предприятий на микроуровне была предложена Кларком в 1917 г. [5]. Кларк предполагал,

что уровень инвестиций, который выбирает отдельное предприятие, просто пропорционален изменению в выпуске продукции этого предприятия. То есть инвестиции пропорциональны росту/снижению выпуска, при этом все фирмы находятся в равновесии:

$$I_{t} = a(Q_{t} - Q_{t-1}), (1)$$

где Q_t – выпуск в период t;

a – коэффициент пропорциональности; I – объем инвестиций.

Эта модель представляет простейшую разновидность модели акселератора инвестиций. К сожалению, предпосылки теории оказались очень ограничивающими, и поэтому большинством исследователей эта теория была отвергнута. К таким неправдоподобным предпосылкам можно отнести: а) мгновенное изменение капитала в соответствии с объемом выпуска (в реальности капитал изменяется медленно и постепенно); б) аппроксимация роста спроса на продукцию с помощью роста выпуска (что не учитывает загруженность мощностей предприятия и возможностей по наращиванию выпуска).

Модель Кларка не выдержала критики исследователей, но на ее место пришла более правдоподобная модель: модель гибкого акселератора инвестиций.

Впервые теория гибкого акселератора инвестиций была разработана рядом авторов [4, 11]. Им удалось преодолеть недостаток простейшей теории акселератора (мгновенное изменение капитала до его желаемого уровню). Теперь капитал не будет меняться мгновенно, изменение будет происходить лишь в некоторой пропорции относительно разницы между желаемой величиной капитала и его текущим значением:

$$K_{t} - K_{t-1} = (1 - a)(K_{t}^{*} - K_{t-1}),$$
 (2)

где K_t – величина капитала в период t;

 $0 \le a \le 1$ — коэффициент пропорциональности;

 K_{t}^{*} – желаемая величина капитала.

Используя стандартное балансовое соотношение между инвестициями и капиталом: $K_t - K_{t-1} = I_t + \delta K_t (\delta - \text{норма выбытия основного капитала}), авторы получают зависимость инвестиционных расходов от желаемого уровня капитала:$

$$I_{t} = (1 - a)(K_{t}^{*} - K_{t-1}) + \delta K_{t-1}.$$
 (3)

Инвестиции в модели полностью расходуются на замену изношенных фондов плюс изменение капитала до желаемого уровня. Если вслед за рядом авторов задаться вопросом: «Какие показатели определяют желаемый уровень капитала?», мы получим три модификации модели гибкого акселератора.

Допустим, желаемая величина капитала пропорциональна выпуску, в таком случае мы получим теорию акселератора инвестиций. Альтернативно, если предположить зависимость желаемого уровня основных фондов от прибыли, мы придем к теории ликвидности инвестиций. И наконец, предполагая, что уровень K_i зависит от ожидаемой величины прибыли, а не от ее фактического значения, мы получим теорию ожидаемой прибыли.

Однако все модели гибкого акселератора имеют один значительный недостаток: они не учитывают цены факторов производства и цену инвестиционных товаров, а поэтому не способны оценить влияние ценовых факторов, в том числе цены предложения капитала на инвестиции. Этот серьезный недостаток призвана преодолеть неоклассическая теория.

Альтернативным подходом, пришедшим на смену моделям акселератора инвестиций, является неоклассическая теория инвестиций. Детальную проработку теория получила в моделях Йоргенсена [10]. Теория базируется на оптимальном траектории движения капитала, которая определяется как желаемый уровень капитала в каждый период времени на основе решения задачи максимизации чистой приведенной стоимости будущей прибыли предприятия за конечный период времени.

Дальнейшее развитие неоклассическая теория получила в идеях Джеймса Тобина [14], который с помощью эмпирики вывел, что для многих компаний существует прямая зависимость между отношением стоимости компании на рынке к капиталу и инвестициями. В модели Тобина:

$$I_{t} = F\left(\frac{M_{t}}{K_{t}}\right),\tag{4}$$

где I_{t} – объем инвестиций в период t;

 M_{\star} – стоимость компании на рынке;

 K_{t} — восстановительная стоимость капитала, то есть объем инвестиций является функцией от рыночной стоимости компании и балансовой стоимости капитала.

Как было показано выше, моделирование факторов инвестирования отталкивалось от разных типов предпосылок: зависимости инвестиций от изменения выпуска, от желаемого уровня капитала, от прибыли, от сто-имости компании на рынке. В то же время данные предпосылки оказались очень ограничивающими, так как не учитывали неэффективность инвестиционного процесса, а также использовали переменные, не наблюдаемые для большинства компаний, такие как стоимость компании на рынке в модели Тобина. Недостатки озвученных подходов способна преодолеть модель стохастической инвестиционной границы.

2. Модель стохастической инвестиционной границы

Для эмпирического моделирования инвестиций в основной капитал пищевой промышленности мы будем использовать модель стохастической инвестиционной границы, которая является модификацией классической модели стохастической производственной границы. Эта модель позволяет учесть неэффективность инвестиционного процесса и получить более точные оценки параметров спроса предприятия на инвестиции.

Остановимся подробней на модели стохастической производственной границы. Пусть y – это фактически наблюдаемый выпуск предприятия, f(x) – производственная функция, x – вектор затрат, C – фактически наблюдаемый уровень издержек, а функция издержек предприятия имеет вид: g(y; w), где w – вектор цен затрат, тогда мы можем сформулировать базовую предпосылку метода стохастической производственной границы следующим образом [7]:

$$y = f(x^*) \Leftrightarrow C = g(y^*; w), \tag{5}$$

где при x^* , y^* достигаются максимальный уровень выпуска и минимальный затрат.

Таким образом, метод стохастической производственной границы предполагает, что в идеальном мире фактический уровень выпуска всегда равен максимальному выпуску, а фактический уровень издержек равен минимальным издержкам.

Однако в действительности производственный процесс почти всегда является неэффективным, это приводит к тому, что фактический выпуск становится меньше максимального, а фактические затраты выше минимально возможных. То есть

$$y < f(x^*) \Leftrightarrow C > g(y^*; w)$$
 [12].

Такое отклонение фактического выпуска от максимального вызвано двумя составляющими: случайным отклонением и неэффективностью производственного процесса. При этом классическая модель стохастической производственной границы приобретает следующий вид [9]:

$$y^* = f(x; \theta) \exp(\varepsilon),$$
 (6)

где у – фактический выпуск;

x – вектор затрат;

 θ – вектор параметров;

 $\varepsilon = v - u -$ случайная ошибка;

v и u — случайные ошибки, первая из которых характеризует случайное отклонение от производственной границы, а вторая — отклонение от производственной границы из-за неэффективности производства.

Теперь мы модифицируем данную модель, чтобы применить ее к инвестициям.

По аналогии с тем, что эффективность производственного процесса определяется отношением максимального объема выпуска к фактическому, можно заключить, что эффективность инвестиций в основной капитал определяется отношением максимального увеличения основных фондов к фактическому.

Пусть в простейшем случае инвестиции года t (I_p) предприятия расходуются полностью на прирост капитала K_t в году t до уровня капитала в году t+1 (K_{t+1}), при этом уровень износа основных средств составляет постоянную величину δ , тогда выражение: K_{t+1} - K_t определяет фактический прирост капитала, а выражение: I_t - δK_t — его максимально возможный прирост. В идеальном мире фактический прирост капитала всегда будет равен его максимально возможному приросту:

$$K_{t+1} - K_t = I_t - \delta K_t. \tag{7}$$

Фактически из-за неэффективности инвестиционного процесса это равенство почти никогда не выполняется, и мы имеем:

$$K_{t+1} - K_t \le I_t - \delta K_t.$$
 (8)

Также мы знаем, что инвестиции не полностью конвертируются в рост основного капитала в силу наличия издержек коррекции капитала. Тогда рост основных фондов определяется следующим соотношением:

$$K_{t+1} - K_t = g(I_t, K_t) - \delta K_t,$$
 (9)

или

$$K_{t+1} - K_t + \delta K_t = g(I_t, K_t).$$
 (10)

Здесь $g(I_t,K_t)$ представляет собой функцию издержек коррекции капитала [15]. Функция $g(I_t,K_t)$ обладает стандартными свойствами: возрастает по I_t и K_t с убывающей отдачей.

При этом из-за неэффективности инвестиционного процесса можно заключить:

$$K_{t+1} - K_t + \delta K_t \le g(I_t, K_t).$$
 (11)

Более низкий рост основных фондов объясняется как издержками коррекции капитала, так и неэффективностью производственного процесса.

Тогда, используя следующие обозначения: $\Delta K_t = K_{t+1} - K_t + \delta K_t$ и учитывая стохастическую ошибку ε , отвечающую за случайное отклонение и неэффективность инвестиционного процесса, модель можно представить следующим образом:

$$\Delta K_t = g(I_t, K_t) \exp(-\varepsilon_t). \tag{12}$$

При этом в простейшем случае функция издержек коррекции капитала имеет вид функции Кобба — Дугласа [15]: $g(I_t, K_t) = I_t^0 K_t^{1-\theta}$, зная это, получим:

$$\Delta K_t = I_t^0 K_t^{1-\theta} \exp(-\varepsilon_t),$$
 перейдем к логарифмам: (13)

$$\ln(\Delta K_{t}) = \theta \ln(I_{t}) + (1-\theta) \ln(K_{t}) - \varepsilon_{t}, \quad (14)$$
выразим переменную инвестиций:

$$\ln(I_t) = \frac{1}{\Theta} \ln(\Delta K_t) - \frac{1 - \theta}{\Theta} \ln(K_t) + \frac{\varepsilon_t}{\Theta}. \quad (15)$$

Теперь мы можем переобозначить коэффициенты: $a=\frac{1}{\theta}$, $b=-\frac{(1-\theta)}{\theta}$ и разделить ошибку ε_{t} на случайную ошибку и составляющую неэффективности: $\frac{\varepsilon_{t}}{\theta}=v_{t}+u_{t}$, таким образом, мы получим окончательный вид модели для одного предприятия:

$$\ln(I_t) = a \ln(\Delta K_t) + b \ln(K_t) + v_t + u_t, \quad (16)$$

где
$$v_t \in iidN(0; \sigma_v^2)$$
 и $u_t \in iidN(\mu; \sigma_u^2)$.

В данном случае случайная компонента u_t характеризует отклонение инвестиций от оптимального уровня за счет неэффективности инвестиционного процесса на конкретном предприятии.

Для оценки параметров a, b, μ , σ необходимо записать функцию максимального правдоподобия и найти ее максимум по заданным параметрам.

Теперь легко вывести модель стохастической инвестиционной границы для фирмы i в момент t:

$$\ln(I_{it}) = a \ln(\Delta K_{it}) + b \ln(K_{it}) + v_{it} + u_{it}$$

где
$$v_{it} \in iidN(0; \sigma_v^2)$$
 и $u_{it} \in iidN(\mu; \sigma_u^2)$, а $i \in [1, ..., T], t \in [1, ..., T]$.

Для решения такой задачи нужно применить метод максимального правдоподобия. При этом логарифм функции правдоподобия ln(L) примет следующий вид:

$$\ln(L) = const - \frac{IT}{2} \ln(\sigma^2) - IT \ln \Phi(\frac{\mu}{\sigma_u}) +$$

$$+ \sum_{t=1}^{T} \sum_{i=1}^{I} \ln \Phi(\frac{\mu}{\sigma \lambda} + \frac{\varepsilon_{tt} \lambda}{\sigma}) + \frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{I} \frac{(\varepsilon_{it} - \mu)^2}{\sigma^2},$$
 (17)
где $\lambda = \frac{\sigma_u}{\sigma_u}, \quad \sigma = \sqrt{\sigma_u^2 + \sigma_v^2}.$

Однако в данной модели величина u, отвечающая за неэффективность, не зависит от других факторов. Данная предпосылка модели является не реалистичной, поэтому мы предположим, что неэффективность производства определяется рядом факторов, так что: $u_n \in iidN(z_n^T\beta; \sigma_n^2)$.

В таком случае функция правдоподобия примет следующий вид:

$$\ln(L) = const - \frac{IT}{2} \ln(\sigma^{2}) - IT \ln \Phi(\frac{z_{ii}^{T}\beta}{\sigma_{u}}) + \sum_{t=1}^{T} \sum_{i=1}^{I} \ln \Phi(\frac{z_{ii}^{T}\beta}{\sigma\lambda} + \frac{\varepsilon_{ii}\lambda}{\sigma}) + \frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{I} \frac{(\varepsilon_{ii} - z_{ii}^{T}\beta)^{2}}{\sigma^{2}},$$
(18)

$$\Gamma_{IJE} \epsilon_{it} = v_{it} + u_{it}, = \ln I_{it} - a \ln(\Delta K_{it}) - b \ln K_{it}.$$

В дальнейшем используя модель инвестиционной стохастической границы, мы определим влияние факта иностранного участия в собственности на инвестиции предприятия и влияние концентрации производства на инвестиционный процесс.

К сожалению, в модели стохастической границы невозможно получить теорети-

ческое распределение статистик в явном виде, необходимых для построения доверительных интервалов и оценивания модели. Вывести статистики аналогичные t и F-статистике, как в обычной регрессионной модели не представляется возможным. В такой ситуации принято обращаться к бустраповскому подходу, который впервые был сформулирован в своей работе Эфроном [6]. Суть подхода состоит в том, чтобы случайным образом сформировать из исходной выборки N новых, вычислить N оценок параметров модели, и затем с помощью этих оценок построить доверительный интервал для оценок модели по исходной выборке. Подробнее данный метод описан в работе Анатольева [2]. Для оценивания значимости коэффициентов модели мы будем пользоваться бустраповским подходом.

3. Влияние иностранной собственности и концентрации производства на инвестиции: основные гипотезы и результаты

В начале 2000-х гг., во время бурного роста пищевой промышленности, множество международных компаний решило выйти на российский рынок, одни компании пытались строить свой бизнес с нуля, другие предпочитали стратегию поглощения успешных российских компаний. В результате этого на рынке пищевой промышленности было зафиксировано рекордное количество слияний и поглощений. Вторая волна выхода иностранных компаний на российский рынок состоялась после кризиса 2008 г., когда многие иностранные компании закрепляли свои позиции на рынке, скупая проблемные российские активы. Однако важным остается вопрос: привел ли приход международных компаний на рынок пищевой промышленности к значительному росту инвестиций в основной капитал и обновлению основных фондов?

Также в 2000-е гг. в результате слияний и поглощений наблюдался рост концентрации производства на рынке (значительно

возросла рыночная доля крупнейших компаний). Однако нераскрытыми остаются вопросы: является ли увеличение концентрации производства стимулом к росту инвестиций как отдельной компании, так и отрасли в целом, и должно ли государство поощрять рост концентрации для стимулирования инвестиций в основной капитал?

Мы попытаемся дать исчерпывающий ответ на эти вопросы. Для этого проверим сформулированные ранее гипотезы:

- 1) Компании со значимым иностранным участием инвестируют в основной капитал в среднем больше, чем аналогичные российские компании. Под значимым иностранным участием мы будем понимать долю в 50 % и более в собственности компании, принадлежащую иностранным юридическим лицам.
- 2) Рост концентрации производства в отрасли приводит к росту инвестиций в основной капитал, так как в условиях конкурентного рынка для защиты своих рыночных позиций компании нужно быть впереди конкурентов и иметь крупные инвестиции. Рыночная доля компаний рассчитывается нами на основе отношения выручки компании к объему отгруженной продукции в целом по пищевой промышленности.

В первой модели мы рассматриваем зависимость удельного уровня инвестиций в основной капитал.

Модель 1:

$$UdelInv_{it} = \beta + \alpha_1 Prirostvyruch\%_{it} + + \alpha_2 \text{ Re } ntab\%_{it-1} + \alpha_3 Interest\%_{it} + + \alpha_4 Sobstvennik_{it} + \alpha_5 MarketShare\%_{it} + + \alpha_i + \varepsilon_{it},$$
 (19)

где $\varepsilon_{it}, \alpha_i \in iidN(0; \sigma^2)$.

В данных обозначениях: $UdelInv_{it}$ – отношение инвестиций в ОК к основному капиталу в период t компании i; $Prirostvyruch\%_{it}$ – прирост выручки за год относительно основного капитала; $Rentab_{it}$ – рентабельность активов; $Interest_{it}$ – проценты к уплате (показатели, перечисленные выше, в процен-

тах) относительно объема основного капитала; $Sobstvennik_{it}$ — бинарная переменная, принимающая значения 1, если собственник компании иностранная компания, 0 — в любом другом случае; $MarketShare\%_{it}$ — рыночная доля компании по объему выручки в пищевой промышленности; ε_{it} — ошибка наблюдения; α_{it} — ошибка индивидуального эффекта.

Модель 2: $\ln(Inv_{ii}) = \beta + \alpha_1 \ln(OsnSredstva_{ii}) + + \alpha_2 \ln(Rostvyruch_{ii}) + \alpha_3 \ln(Prib_{ii-1}) + + \alpha_4 \ln(Interest_{ii}) + \alpha_5 Sobstvennik_{ii} + + \alpha_6 MarketShare\%_{ii} + \alpha_i + \varepsilon_{ii},$ (20)

где ε_{ii} , $\alpha_i \in iidN(0; \sigma^2)$.

В данных обозначениях: $Ln(Inv_{ii})$ – логарифм инвестиций в основной капитал в период t компании i; $Ln(OsnSredstva_{ii})$ – логарифм основных средств; $Ln(RostVyruch_{ii})$ – логарифм проста выручки за год; $Ln(Prib_{ii-1})$ – логарифм прибыли; $Ln(Interest_{ii})$ – логарифм процентов к уплате; $Sobstvennik_{ii}$ — бинарная переменная, принимающая значения 1, если собственник компании — иностранная компания, 0 — в любом другом случае; $MarketShare\%_{ii}$ — рыночная доля компании по объему выручки в пищевой промышленности.

Модель 3 (стохастической инвестиционной границы):

$$\begin{split} &\ln(Inv_{ii}) = \beta_1 \ln(deltaOsnSredstva_{ii}) + \\ &+ \beta_2 \ln(OsnSredstva_{ii}) + v_{ii} + u_{ii}, \\ &u_{ii} = \alpha_1 \ln(\Pr ib_{ii-1}) + \alpha_2 \ln(Interest_{ii}) + \\ &+ \alpha_3 Sobstvennik_{ii} + \alpha_4 MarketShare\%_{ii} + \varepsilon_{ii}, \end{aligned} \tag{21}$$
 где $\varepsilon_{ii} \in iidN(0; \sigma^2)$, $v_{ii} \in iidN(0; \sigma^2)$.

В данных обозначениях: $Ln(Inv_{ii})$ – логарифм инвестиций в основной капитал в период t компании i; $Ln(deltaOsnSredstva_{ii})$ – логарифм роста основных фондов за год; $Ln(OsnSredstva_{ii})$ – логарифм основных средств; $Ln(Prib_{ii-1})$ – логарифм прибыли;

 $Ln(Interest_{ii})$ — логарифм процентов к уплате; $Sobstvennik_{ii}$ — бинарная переменная, принимающая значения 1, если собственник компании иностранная компания, 0 — в любом другом случае; $MarketShare\%_{ii}$ — рыночная доля компании по объему выручки в пищевой промышленности.

Результаты оценивания представлены в табл. 2. Посмотрим, насколько нам удалось подтвердить/опровергнуть выдвинутые гипотезы.

Как мы можем увидеть из 1-й модели, до кризиса 2008 г. на уровень удельных инвестиций не оказывал влияния ни один из рассматриваемых нами факторов, то есть фирмы не были скованны жесткими финансовыми ограничениями в силу достаточного количества ресурсов для инвестиций, в то же время после кризиса ситуация изменилась, и такие факторы, как рентабельность, прирост выручки, стоимость заемных средств, стали играть огромную роль. Ресурсов у компаний для инвестиций оказалось недостаточно.

Что касается влияния иностранной собственности в компании на рост инвестиций в основной капитал, в данном случае не все так просто. С одной стороны, 1-я модель показывает, что факт иностранной собственности не оказывал влияния на склонность предприятий к инвестициям, с другой стороны, 2-я модель показывает, что среди тех предприятий, которые все-таки осуществляли инвестиции, предприятия с иностранным участием инвестировали больше, чем все остальные. А это значит, что при принятии решения о том, инвестировать или нет, факт иностранного участия не играет никакой роли, но данный фактор начинает играть значимую роль уже после того, как компания определилась инвестировать в основной капитал.

Модель стохастической инвестиционной границы и модель в логарифмах подтверждают вторую гипотезу лишь частично. Как мы можем увидеть из таблиц 3 и 4, до кризиса рост доли рынка компании

П	Значения параметров при переменных			
Переменные	До кризиса 2008 г.	После кризиса 2008 г.		
PrirostVyruch% _{it}	-0,000005	0,0004**		
Rentab% _{it}	0,008	0,015***		
Interest% _{it}	-0,004	-0,001***		
Sobstvennik _{it}	-0,057	-0,004		
MarketShare% _{it}	-2,026	-0,043		
Константа	0,263***	0,159***		
Основные статистики				
σ_{α}	0,000001	0,016		
$\sigma_{_{\scriptscriptstyle{arepsilon}}}$	2,59	0,362		
WaldChi	0,36	13,52		
Probability	0,00	0,00		
Число наблюдений	1967	1517		

Таблица 3 Оценки параметров в модели 2 (зависимая переменная $ln(Inv_{_{\mathit{II}}}))$

Поположения	Значения параметров при переменных				
Переменные	До кризиса 2008 г.	После кризиса 2008 г.			
ln(OsnSredstva _{it})	0,79***	0,75***			
RostVyruch% _{it}	0,12***	0,07***			
Rentab% _{it}	0,07***	0,15***			
Interest% _{it}	-0,04***	-0,05***			
Sobstvennik _{it}	0,12**	0,15**			
MarketShare% _{it}	38,27***	18,4			
Константа	-1,30***	-1,14***			
Основные статистики					
$\sigma_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	0	0			
$\sigma_{_{\scriptscriptstyle{\epsilon}}}$	1,11	1,20			
R-Squared	0,61	0,58			
Probability	0,00	0,00			
Число наблюдений	1038	721			

(увеличении концентрации) положительно влиял на рост инвестиций, но после кризиса рост доли рынка перестал оказывать какое-либо влияние на инвестиции, а значит, увеличение концентрации на рынке не ведет к скачку инвестиций в отрасли и не повышает конкуренцию.

Заключение

- В результате моделирования получены следующие важные результаты:
- 1. Важными факторами в инвестиционной активности предприятий являются рост выручки компании, доступность кредитных ресурсов и рентабельность активов компании. Так высокая рентабельность компании наряду с возможностью получить долгосрочную кредитную линию положительно сказывается на величине инвестиций. Рост выручки также оказывает положительное влияние на инвестиции.
- 2. Рост концентрации производства в отрасли ведет к росту инвестиций лишь в благоприятных экономических условиях, в условиях же кризиса и после кризисного периода увеличение концентрации в отрасли не влияет на уровень инвестиций, а лишь подрывает конкуренцию на рынке. Таким образом, государство в условиях растущей экономики может стимулировать рост инвестиций в промышленности, поощряя концентрацию в отрасли. Однако в долгосрочной перспективе это может вести к снижению конкуренции в отрасли, а концентрация перестает влиять на рост инвестиций в основной капитал.
- 3. Факт иностранного участия в собственности компании оказывает воздействие на уровень инвестиций только в том случае, если компания решает инвестировать. Тогда при прочих равных условиях компании с иностранным участием инвестируют больше, чем аналогичные отече-

Таблица 4 Оценки параметров в модели 3 (зависимая переменная $ln(Inv_{ii})$)

П	Значения параметров при переменных			
Переменные	До кризиса 2008 г.	После кризиса 2008 г.		
ln(OsnSredstva _{it})	0,076***	0,065***		
ln(DeltaOsnSredstva _{it})	1,087***	0,89***		
ln(Prib _{it})	2,32***	1,44**		
ln(Interest _{it})	-0,517***	-0,637**		
Sobstvennik _{it}	0,56**	0,43**		
MarketShare% _{it}	0,099***	0,055***		
Константа	-0,63***	-0,72***		
Основные статистики				
$\sigma_{_{u}}$	0,008***	0,004***		
$\sigma_{_{_{\!\scriptscriptstyle \mathcal{V}}}}$	1,463***	1,232***		
R-Squared	0,54	0,52		
Probability	0,000	0,000		
Число наблюдений	990	890		

ственные. Это открывает для государства еще один способ стимулирования инвестиций в промышленности. Для этого государство должно снижать барьеры входа на российский пищевой рынок иностранных компаний, что повлечет за собой рост конкуренции и увеличение инвестиций в основной капитал.

Список использованных источников

- Авдашева С.Б., Шаститко А.Е., Кузнецов Б.В. Конкуренция и структура рынков: что мы можем узнать из эмпирических исследований о России // Российский журнал менеджмента. 2006. Т. 4, № 4. С. 3–26.
- 2. Анатольев С.А. Асимптотические приближения в современной эконометрике // Экономика и математические методы. 2005. № 41 (2).
- Chacar A., Celo S., Thams Y. The Performance of Multinational Affiliates versus Domestic Firms // J. of Management Policy and Practice. Vol. 11 (4). 2010.
- Chenery H. Overcapacity and the Acceleration Principle // Econometrica. 1952.
 № 20.
- Clark J. Business Acceleration and the Law of Demand // J. of Political Economy. 1917. P. 25.
- 6. Efron B. Bootstrap methods: another look at the jacknife // Annals of Statistics. 1979. № 7. P. 1–26.
- Fried H., Lovell C., Schmidt S. Efficiency and Productivity. New-York: NYU Stern School of business, 1977. № 106.
- 8. Girma S., Thompson S., Wright P. Why are Productivity and Wages Higher in

- Foreign Firms? // The Economic and Social Review. Vol. 3, No. 1. Spring, 2002. P. 93–100.
- 9. Greene W. The Econometric Approach to Efficiency Analysis. Oxford: Oxford University Press, 2008.
- Jorgenson D. Capital Theory and Investment Behavior // American Economic Review. 1963. № 53.
- 11. Koyck L. Distributed Lags and Investment Analysis. Amsterdam: North Holland Publishing Company, 1954.
- 12. Kumbhakar S., Lovell C. Stochastic Frontier Analysis. Cambridge: Cambridge University Press, 1994.
- Sutton J. Sunk Costs and Market Structure, Advertising and the Evolution of Concentration. Cambridge, MA: MIT Press, 1991.
- 14. Tobin J. A General Equilibrium Approach to Monetary Theory // J. of Money, Credit and Banking. 1969. № 1. P. 15–29.
- 15. Wang P., Wen Y. Hayashi Meets Kiyotaki and Moore: A Theory of Capital Adjustment Costs // Federal Reserve Bank of St. Louis. WorkingPaperSeries. 2010. № 1. P. 1–45.