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Abstract At the end of the 19th century Bricard discovered the phenomenon of flex-
ible polyhedra, that is, polyhedra with rigid faces and hinges at edges that admit non-
trivial flexes. One of the most important results in this field is a theorem of Sabitov,
asserting that the volume of a flexible polyhedron is constant during the flexion. In
this paper we study flexible polyhedral surfaces in R

3, doubly periodic with respect
to translations by two non-collinear vectors, that can vary continuously during the
flexion. The main result is that the period lattice of a flexible doubly periodic surface
that is homeomorphic to the plane cannot have two degrees of freedom.
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Fig. 1 Simplest examples of
flexible polyhedral surfaces

1 Introduction

We denote by R
3 the three-dimensional Euclidean space. Let S ⊂ R

3 be a polyhe-
dral surface that is homeomorphic to a plane and is situated “near” the horizontal
plane R

2. Suppose that S has rigid faces and hinges at the edges. This means that S

is allowed to flex so that the faces remain congruent to themselves, while the dihedral
angles at the edges change continuously. For example, let S be the horizontal plane,
z = 0, with hinges at the lines y = k, k ∈ Z. Then S can be shrunk in the direction of
the x-axis, as is shown in Fig. 1(a). Now, let S be the horizontal plane with hinges
at both the lines y = k and the lines x = k, k ∈ Z. Then S can be shrunk either in
the direction of the x-axis, or in the direction of the y-axis. However, once we have
already started to shrink S in the direction of the x-axis, we are not able anymore to
shrink it in the direction of the y-axis, and vice versa; see Fig. 1(b). In this paper we
consider the following natural question.

Is it possible to construct a polyhedral surface S ⊂ R
3 that can be shrunk near

the horizontal plane independently in two different directions? In other words: is it
possible that there exists a two-parametric flexion of S such that, on varying the first
parameter, we shrink S in the first direction, and on varying the second parameter,
we shrink S in the second direction?

The authors are indebted to the architect Sergei Kolchin who suggested this ques-
tion to them.

In this paper we focus on the case of a doubly periodic polyhedral surface, i.e., a
polyhedral surface S invariant under the translations by two non-collinear vectors a

and b. We allow the surface S to flex so that it remains doubly periodic and the
period vectors a and b change continuously. During the last years, flexible periodic
frameworks have been studied in [1, 6, 8, 12].
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Now we proceed with some rigorous definitions and results.

Definition 1.1 An embedded polyhedral surface is a surface S ⊂ R
3 without bound-

ary, consisting of polygons glued along their sides. These polygons are called faces
of S.

Definition 1.2 An embedded doubly periodic polyhedral surface is a triple (S, a, b)

such that S ⊂ R
3 is an embedded polyhedral surface, and a, b ∈R

3 are non-collinear
vectors such that

(1) S is invariant under the translations by a and b,
(2) the action of the lattice Λ generated by a and b on the surface S is cocompact,

i.e., the quotient S/Λ is compact.

In this definition we do not require that S be homeomorphic to the plane. If S is
homeomorphic to the plane, then condition (2) follows from condition (1). Indeed,
S/Λ must be homeomorphic to the torus, since it is a two-dimensional manifold
without boundary with fundamental group Z⊕Z.

Until Sect. 3 we consider only embedded polyhedral surfaces, and we omit the
word “embedded”.

Definition 1.3 A flex of a doubly periodic polyhedral surface (S, a, b) is a continuous
deformation (S(t), a(t), b(t)), t ∈ [0,1], S(0) = S, a(0) = a, b(0) = b, such that, for
each t , the triple (S(t), a(t), b(t)) is a doubly periodic polyhedral surface and every
face of S(t) is congruent to the corresponding face of S.

Up to rotations of R3 the period lattice Λ of the doubly periodic polyhedral surface
(S, a, b) is determined by the Gram matrix G of the vectors a and b. We are inter-
ested in the deformations of the period lattice Λ under flexes. However, we would
like to neglect rotations. So we are interested in the deformations of the Gram ma-
trix G induced by flexions of (S, a, b). The main result of the present paper says that
if S is homeomorphic to a plane, then only one-parametric deformations of G may
occur. This means that we cannot find a two-parametric flexion that yields a truly
two-parametric deformation of G. This can be formulated more formally as follows.
Consider all possible doubly periodic polyhedral surfaces (S′, a′, b′) that can be ob-
tained from (S, a, b) by flexions. Let G = G(S, a, b) be the set of all matrices G′ that
appear as the Gram matrices of the vectors a′, b′ for such doubly periodic surfaces
(S′, a′, b′).

Theorem 1.4 Let (S, a, b) be an embedded doubly periodic polyhedral surface
homeomorphic to a plane. Then the set G(S, a, b) is contained in a one-dimensional
real affine algebraic variety.

This theorem can be generalized to the case of a non-embedded polyhedral sur-
face; see Theorem 4.1.

Interest in results of this kind originated with the famous result of Sabitov [9, 10]
that the volume of a (compact) flexible polyhedron in R

3 remains constant under the
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Fig. 2 Doubly periodic
connected sum of the plane with
flexible polyhedra

flexion. Sabitov obtained this result by proving that the volume V of every simplicial
polyhedron satisfies a polynomial relation of the form

V 2N + a1(�)V
2N−2 + · · · + aN(�) = 0, (1)

where ai(�) are polynomials with rational coefficients in the squares of the edge
lengths of the polyhedron. (The number N and the polynomials ai depend on the
combinatorial structure of the polyhedron.) The same result for polyhedra of dimen-
sions n ≥ 4 has recently been obtained by one of the authors [3, 4].

A natural question is which other invariants of polyhedra satisfy polynomial rela-
tions of the form (1). For a doubly periodic polyhedral surface, the natural invariants
are the coefficients g11, g12, and g22 of the Gram matrix of the period lattice. Though
we cannot obtain a polynomial relation of the form (1) for any of these coefficients,
we shall prove that the three coefficients g11, g12, and g22, and the set � of the squares
of edge lengths are subject to two polynomial relations such that, for any given �,
these relations yield an affine variety of dimension not greater than 1.

Some ideas of our proof of Theorem 1.4 are inspired by Sabitov’s theorem, and
especially by another proof of Sabitov’s theorem obtained by Connelly, Sabitov,
and Walz [2]. The main tool is the theory of places (see Sect. 3). It is standard to
use places to prove that a certain element is integral over the given ring. Our sit-
uation is more difficult, namely, we need to prove that among the three given ele-
ments g11, g12, and g22 there exist at least two independent relations over the given
ring.

Notice that we can easily construct doubly periodic polyhedral surfaces with an
arbitrarily large number of degrees of freedom by taking connected sums of the plane
with flexible polyhedra (see Fig. 2). Such flexes can be called ‘local’, since they
do not change the surface off some small disks, and, in particular, do not affect the
period lattice. Theorem 1.4 describes the ‘global behavior’ of flexible doubly periodic
polyhedral surfaces.

Now, we would like to formulate two natural open questions.

Question 1.5 Does the assertion of Theorem 1.4 hold for an arbitrary doubly periodic
polyhedral surface, not necessarily homeomorphic to a plane?
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Question 1.6 Let (S, a1, . . . , ak) be a k-dimensional k-periodic polyhedral submani-
fold in R

n. What is the maximal possible dimension of G(S, a1, . . . , ak)?

2 Examples

The set G(S, a, b) depends not only on the polyhedral surface S, but also on the
vectors a and b. If ã, b̃ is another basis of the same lattice Λ, (ã, b̃) = (a, b)C,
then the usual formula ˜G = CT GC provides a canonical affine isomorphism of the
sets G(S, a, b) and G(S, ã, b̃). We shall identify them and denote this set by G(S,Λ).

Now, let us consider a sublattice ˜Λ of the lattice Λ. Let a, b be a basis of Λ

and let ã, b̃ be a basis of ˜Λ. Then the same formula, ˜G = CT GC, yields the affine
embedding G(S,Λ) ↪→ G(S, ˜Λ). Nevertheless, this embedding is not necessarily an
isomorphism, since the polyhedral surface S may have flexes S(t) such that S(t) re-
mains doubly periodic with respect to a continuous deformation ˜Λ(t) of the lattice ˜Λ,
but it does not remain doubly periodic with respect to any continuous deformation of
the lattice Λ.

Example 2.1 Consider a plane and fix a point p in it and two non-collinear vectors a

and b parallel to it. Let us divide this plane into triangles by the straight lines parallel
to a through the points p+kb, k ∈ Z, the straight lines parallel to b through the points
p+ka, k ∈ Z, and the straight lines parallel to a−b through the points p+ka, k ∈ Z.
Let S be the polyhedral surface consisting of all these triangles. It is easy to see that
the doubly periodic polyhedral surface (S,Λ) is not flexible, where Λ = Za +Zb.

However, the surface S will become flexible if we replace Λ by a sublattice of it.

Example 2.2 Consider the same surface S and the period lattice ˜Λ = Za + 2Zb.
Then the doubly periodic polyhedral surface (S, ˜Λ) admits only one type of flexion.
We can shrink it in the direction orthogonal to a. Then for the Gram matrix of the

basis of ˜Λ, we have g11 = const , g12 = const , and g22 varies from 4〈a,b〉2

|a|2 to 4|b|2.

Hence G(S, ˜Λ) is a segment.

Example 2.3 Consider the same surface S and the period lattice ̂Λ = 2Za + 2Zb.
Then we can shrink (S, ̂Λ) in the direction orthogonal to a, in the direction orthogonal
to b, or in the direction orthogonal to a − b. Hence G(S, ̂Λ) contains three segments.
(We do not claim that G(S, ̂Λ) consists only of these three segments.)

Example 2.4 Now, let us give an example of (S,Λ) such that the Zariski closure
of G(S,Λ) has an irreducible component which is not a straight line. This example
is a well-known flexible surface consisting of parallelograms (see Fig. 3). Initially
the surface is flat. Then it can be folded so that the full lines are mountain foldings
and the dashed lines are valley foldings, cf. [11]. Such a folding was known in the
ancient Japanese origami technique and is called the Miura-ori folding after Miura,
who suggested applying this type of folding to solar panels. The polyhedral surface S

shown in Fig. 3 will be considered with the period lattice Λ = Za +Zb.
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Fig. 3 The Miura-ori folding

Since the period lattice Λ changes during the flexion, we shall further denote the
initial basis vectors a and b by a0 and b0, respectively, and we shall use the notation a

and b for the period vectors after the flex. Let α be the acute angle of a parallelogram
of S. Take the orthonormal basis e1 = a0|a0| , e2 = b0|b0| , e3 in R

3. Since S is doubly
periodic, there are four classes of equal vectors of edges of S with representatives ξ ,
η, ξ ′, and η′; see Fig. 3. The initial positions of the vectors ξ and η are the vectors
ξ0 = (

|a0|
2 ,0,0) and η0 = ( 1

2 |b0| cotα,
|b0|

2 ,0).
We shall show that S admits a flexion such that the period vectors a and b remain

parallel to a0 and b0, respectively. We shall find a relation between |a| and |b| that is
satisfied under this flexion. Let us give the flexion by

ξ =
( |a|

2
,0, z

)

, ξ ′ =
( |a|

2
,0,−z

)

,

η =
(

x,
|b|
2

,0

)

, η′ =
(

−x,
|b|
2

,0

)

,

where x = |a0||b0| cotα
2|a| , z =

√
|a0|2−|a|2

2 . It is easy to see that a and b are in fact period
vectors of S. Let us write down the conditions that the parallelograms of S remain
congruent to themselves during the flexion. It is easy to see that these conditions
for all parallelograms follow from the conditions for the parallelogram with sides ξ

and η. We have

〈ξ, ξ 〉 = |a|2
4

+ z2 = |a0|2
4

= 〈ξ0, ξ0〉,

〈ξ, η〉 = 1

2
|a|x = 1

4
|a0||b0| cotα = 〈ξ0, η0〉.

The condition 〈η,η〉 = 〈η0, η0〉 gives

x2 + |b|2
4

= |b0|2
4 sin2 α

.
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Hence,

|a|2|b|2 sin2 α − |a|2|b0|2 + |a0|2|b0|2 cos2 α = 0.

Therefore, the Gram matrix elements of the period vectors a and b satisfy the system
of equations

{

g11g22 sin2 α − g11|b0|2 + |a0|2|b0|2 cos2 α = 0,

g12 = 0.

Thus, G(S,Λ) contains a segment of a hyperbola.
Certainly, G(S,Λ) also contains a straight segment, corresponding to the shrinking

in the direction orthogonal to a.

3 Notation

We recall some basic facts on places of fields. For more detailed information and
proofs, see [5, 7].

Suppose L and F are fields. Let us add an extra element ∞ to the field F . The
elements of F are called finite elements of F ∪ {∞}. Extend the addition and the
multiplication in F to partially defined operations in F ∪ {∞} by

z + ∞ = ∞ + z = ∞ for all z ∈ F,

z · ∞ = ∞ · z = ∞ for all z ∈ (

F \ {0}) ∪ {∞}.
The expressions ∞ + ∞, ∞ · 0, and 0 · ∞ are undefined.

Definition 3.1 A mapping ϕ : L → F ∪ {∞} is called a place of L into F if for all
x, y ∈ L we have

(1) ϕ(x + y) = ϕ(x) + ϕ(y),
(2) ϕ(xy) = ϕ(x)ϕ(y),
(3) ϕ(1) = 1

whenever the right-hand sides are defined.

It follows immediately from the definition that ϕ(0) = 0 for any place ϕ. The
following properties of places are also standard.

Lemma 3.2 Let ϕ : L → F ∪ {∞} be a place and let x ∈ L. Then

(1) ϕ(x) = ∞ if and only if ϕ(−x) = ∞,
(2) ϕ(x) = ∞ if and only if ϕ(x−1) = 0, where x = 0.

Proof (1) Assume that ϕ(x) = ∞ and ϕ(−x) = ∞. Then ϕ(x) + ϕ(−x) is defined
and equals ∞. Hence ϕ(0) = ∞, which yields a contradiction.

(2) Assume that ϕ(x) = ∞ and ϕ(x−1) = 0. Then ϕ(x) · ϕ(x−1) is defined and
equals ∞. Hence ϕ(1) = ∞, which yields a contradiction. The opposite implication
is similar. �
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It is clear that the restriction of a place to a subfield is a place, and the composition
of places is a place. (Taking the composition of places ϕ : L → F ∪{∞} and ψ : F →
E ∪ {∞}, we always put ψ(∞) = ∞.)

The following basic fact on places can be found in [5, Chap. I, Theorem 1].

Lemma 3.3 Let L be a field containing a ring R. Let ψ be a homomorphism of R into
a field F , and suppose ψ(1) = 1. Then ψ can be extended to a place L → F ∪ {∞},
where F is the algebraic closure of F .

Definition 3.4 A mapping of a simplicial complex K1 to a simplicial complex K2 is
called simplicial if it maps every simplex of K1 linearly onto a simplex of K2. An
action of a discrete group Λ on a simplicial complex K is called simplicial if every
element of Λ acts by a simplicial mapping K → K .

Let K be a simplicial complex homeomorphic to a plane with a free simplicial
action of the group Λ ∼= Z ⊕ Z with generators α and β . We shall use the additive
notation for the group Λ. For an element λ ∈ Λ, we denote by Tλ the corresponding
simplicial automorphism of K . Then we have TλTμ = Tλ+μ.

Definition 3.5 Consider a mapping θ : K →R
3, linear on simplices of K , and equiv-

ariant with respect to an action of Λ on R
3 such that α and β act by translations by

some vectors a = a(θ) and b = b(θ). Then the pair (K, θ) is called a doubly periodic
polyhedral surface. If θ is injective, the polyhedral surface (K, θ) is called embedded.

This definition of an embedded doubly periodic polyhedral surface is equivalent
to Definition 1.2.

Let v1, . . . , vn be representatives of all Λ-orbits of the vertices of K . Consider the
field

L = L(K,Λ) = Q(xα, yα, zα, xβ, yβ, zβ, xv1, yv1, zv1 , . . . , xvn, yvn, zvn),

where xα, yα, zα, xβ, yβ, zβ, xv1, yv1, zv1 , . . . , xvn, yvn, zvn are independent variables
over Q. For λ = mα +kβ , we set xλ = mxα +kxβ , yλ = myα +kyβ , zλ = mzα +kzβ .
For u = Tλ(vi), we set xu = xλ + xvi

, yu = yλ + yvi
, zu = zλ + zvi

. It is not hard
to show that the field L(K,Λ) is independent of the choice of the representatives
v1, . . . , vn and the generators α and β of Λ.

If we have a doubly periodic polyhedral surface (K, θ), then we obtain the spe-
cialization homomorphism

τθ : Q[xα, yα, zα, xβ, yβ, zβ, xv1, yv1, zv1 , . . . , xvn, yvn, zvn ] → R

that takes xu, yu, and zu to the coordinates of the point θ(u) for every vertex u, that
takes xα , yα , and zα to the coordinates of the vector a, and that takes xβ , yβ , and zβ

to the coordinates of the vector b.
We shall find it convenient to identify a vertex v of K with a point (xv, yv, zv)∈L

3.
We shall also identify an element λ ∈ Λ with a vector (xλ, yλ, zλ) ∈ L

3. Then Tλ(v)

is identified with v + λ. Thus we obtain the linear embedding Λ ⊂ L
3.
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We endow the vector space L
3 with the standard inner product given by

〈ξ, η〉 = ξ1η1 + ξ2η2 + ξ3η3, ξ = (ξ1, ξ2, ξ3), η = (η1, η2, η3).

We introduce the following elements of the field L :

g11 = 〈α,α〉, g12 = 〈α,β〉, g22 = 〈β,β〉,
�uv = 〈v − u,v − u〉,

where u and v are vertices of K .
For any doubly periodic polyhedral surface (K, θ), the corresponding homomor-

phism τθ takes g11, g12, and g22 to the elements of the Gram matrix of the vectors
a(θ) and b(θ), and it takes �uv to the square of the distance between θ(u) and θ(v).

Let R = R(K,Λ) be a Q-subalgebra of the field L generated by all �uv such that
[uv] is an edge of K .

4 Main Result

Fix K and a set of numbers l = {luv}, luv = lvu ∈ R, where [uv] runs over all edges
of K . Consider all possible doubly periodic polyhedral surfaces (K, θ) with the set of
the squares of edge lengths equal to l. Let G = G(K,Λ, l) be the set of all matrices G

that appear as the Gram matrices of the vectors a(θ), b(θ) for such doubly periodic
surfaces (K, θ). (If l cannot be realized as the set of the squares of the edge lengths
of a polyhedral surface, then the set G(K,Λ, l) is empty.) The set G is contained in
the three-dimensional affine space R

3 with coordinates g11, g12, g22.
The following theorem is a strengthened version of Theorem 1.4 for polyhedral

surfaces that are not necessarily embedded.

Theorem 4.1 Let K be a simplicial complex homeomorphic to R
2 with a free sim-

plicial action of the group Λ ∼= Z ⊕ Z with generators α and β . Then for each set
of numbers l = {luv}, luv = lvu ∈ R, there is a one-dimensional real affine algebraic
subvariety of R3 containing G(K,Λ, l).

To prove this theorem we shall study polynomial relations among the elements
g11, g12, g22 ∈ L = L(K,Λ) with coefficients in the ring R = R(K,Λ). Any such
polynomial relation has the form f (g11, g12, g22) = 0, where f ∈ R[X,Y,Z]. The
free R-algebra R[X,Y,Z] has a natural Z-grading given by degX = degY =
degZ = 1. For each f ∈ R[X,Y,Z], f ≡ 0, we denote by ̂f the homogeneous com-
ponent of f of maximal degree.

Proposition 4.2 Let K be a simplicial complex homeomorphic to R
2 with a free

simplicial action of a group Λ ∼= Z⊕Z with generators α and β , L = L(K,Λ), and
R = R(K,Λ). Then the elements g11, g12, g22 ∈ L satisfy a system of two non-trivial
polynomial equations,

{

f (g11, g12, g22) = 0,

h(g11, g12, g22) = 0,
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with coefficients in R such that ̂f and ̂h have coefficients in Q, and ̂f and ̂h are
coprime in Q[X,Y,Z].

Proof Let us formulate a key lemma.

Lemma 4.3 Let K be a simplicial complex homeomorphic to R
2 with a free simpli-

cial action of a group Λ ∼= Z ⊕ Z, and let L = L(K,Λ). Let ϕ : L → F ∪ {∞} be a
place such that charF = 2 and ϕ(�uv) = ∞ for all edges [uv] of K . Then there exists
a basis λ,μ of Λ such that ϕ is finite on the inner products 〈λ,λ〉 and 〈λ,μ〉.

This lemma will be proved in the next section, and now we shall use it to prove
Proposition 4.2.

Recall that an element λ ∈ Λ is called primitive if it does not have the form qμ for
an integer q > 1 and μ ∈ Λ. An element mα + kβ is primitive if and only if m and k

are coprime.
Let us construct two Q-subalgebras R1 and R2 of L. The algebra R1 is obtained

by adjoining to R the inverted inner squares of all primitive elements of Λ:

R1 = R

[

1

〈λ,λ〉
∣

∣

∣ λ ∈ Λ is primitive

]

.

The algebra R2 is obtained by adjoining to R the inverted inner products of all pairs
of non-proportional primitive elements of Λ:

R2 = R

[

1

〈λ,μ〉
∣

∣

∣ λ,μ ∈ Λ are primitive, λ = ±μ

]

.

Let us consider the ideal

I1 =
(

1

〈λ,λ〉
∣

∣

∣ λ ∈ Λ is primitive

)

� R1.

There are two cases: I1 = R1 and I1 = R1.
If I1 = R1, then there exists a maximal ideal m1 ⊃ I1. Consider the field F =

R1/m1. Since R1 contains Q, we have charF = 0. By Lemma 3.3, the quotient ho-
momorphism R1 → F can be extended to a place ϕ : L → F ∪ {∞}. The place ϕ is
finite on R1 and vanishes on m1. Hence ϕ is finite on R. Besides, by Lemma 3.2,
ϕ is infinite on 〈λ,λ〉 for all primitive elements λ ∈ Λ. This contradicts Lemma 4.3.
Consequently, this is not the case.

If I1 = R1, then 1 ∈ I1. Hence

1 =
p

∑

i=1

ri

〈λi1, λi1〉〈λi2, λi2〉 · · · 〈λiqi
, λiqi

〉 ,

where ri ∈ R, qi ≥ 1, and λij are primitive elements of Λ. Multiplying both sides
by the product of all denominators, and putting λij = mijα + kijβ , mij , kij ∈ Z, we
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obtain an algebraic equation on gij :

p
∏

i=1

qi
∏

j=1

(

m2
ij g11 + 2mij kij g12 + k2

ij g22
)

= r1

p
∏

i=2

qi
∏

j=1

(

m2
ij g11 + 2mij kij g12 + k2

ij g22
) + · · · .

Taking all summands to the left-hand side, we obtain a relation of the form
f (g11, g12, g22) = 0. Since qi ≥ 1 for all i, we see that

̂f (X,Y,Z) =
p

∏

i=1

qi
∏

j=1

(

m2
ijX+2mijkij Y +k2

ijZ
) =

q
∏

i=1

(

m2
i X+2mikiY +k2

i Z
)

, (2)

where q = q1 + · · · + qp . (We have renumbered the pairs (mij , kij ) by a single in-
dex i.)

Similarly, consider the algebra R2 and the ideal

I2 =
(

1

〈λ,μ〉
∣

∣

∣ λ,μ ∈ Λ are primitive, λ = ±μ

)

.

There are two cases: I2 = R2 and I2 = R2. Again, I2 = R2 contradicts Lemma 4.3.
So we have 1 ∈ I2. Then

1 =
l

∑

i=1

si

〈λi1,μi1〉〈λi2,μi2〉 · · · 〈λiti ,μiti 〉
,

where si ∈ R, ti ≥ 1, and λij = ±μij are primitive elements of Λ. Since 〈λij ,μij 〉 =
Aijg11 + Bijg12 + Cijg22, Aij ,Bij ,Cij ∈ Z, B2

ij = 4AijCij , we obtain an equation
h(g11, g12, g22) = 0 such that

̂h(X,Y,Z) =
t

∏

j=1

(AjX + BjY + CjZ), B2
j = 4AjCj . (3)

Equations (2) and (3) immediately imply that the polynomials ̂f and ̂h have co-
efficients in Q and are non-zero. Hence the polynomials f and h are also non-zero.
Moreover, ̂f and ̂h both are the products of linear polynomials. It follows from the
condition B2

j = 4AjCj in (3) that no linear multiple can appear in the decompositions

for both ̂f and ̂h. Therefore ̂f and ̂h are coprime. �

Proof of Theorem 4.1 If the set of numbers l = {luv} cannot be realized as the set of
the squares of the edge lengths of a polyhedral surface (K, θ), then the set G(K,Λ, l)

is empty; hence, the assertion of the theorem is trivial.
Now, suppose that l is the set of the squares of the edge lengths of (K, θ). Let

η : R → R be the restriction of the specialization homomorphism τθ to R. Since

Author's personal copy



Discrete Comput Geom

η(�uv) = luv , the homomorphism η is independent of the choice of θ . Let f,h ∈
R[X,Y,Z] be the polynomials in Proposition 4.2, and let f ,h ∈ R[X,Y,Z] be their
images under η. Since ̂f ,̂h ∈ Q[X,Y,Z], and η|Q is the identity homomorphism, the
leading terms of f and h are again ̂f and ̂h, respectively. But ̂f and ̂h are coprime.
Therefore, f and h are coprime. Hence the set G(K,Λ, l) is contained in the one-
dimensional variety

{

f (X,Y,Z) = 0,

h(X,Y,Z) = 0. �

5 Proof of Lemma 4.3

Let V be the vertex set of the simplicial complex K . A vertex v ∈ V will be called
special if it is connected by an edge of K with another vertex in the orbit Λv. If
an edge e connects vertices v and Tλ(v), λ ∈ Λ, then the edge Tμ(e) connects the
vertices Tμ(v) and Tλ(Tμ(v)) for every μ ∈ Λ. Hence the property of being special is
invariant under the action of Λ. A Λ-orbit Λv ⊂ V will be called special if it consists
of special vertices.

Lemma 5.1 Suppose that a vertex v of K is connected by an edge with a vertex Tλ(v),
λ ∈ Λ. Then λ is primitive.

Proof The quotient surface K/Λ is homeomorphic to the torus. We have the natural
isomorphism H1(K/Λ,Z) ∼= Λ. We shall identify these two groups by this natural
isomorphism. Let e be an edge connecting v and Tλ(v), and let γ be the image of e

under the quotient mapping K → K/Λ. The endpoints of e lie in the same Λ-orbit,
and no other two points of e lie in the same Λ-orbit. Hence γ is a simple closed curve
of homology class λ. Therefore, λ is primitive. �

Lemma 5.2 Suppose that K contains at least one special vertex. Then there exists
a primitive element λ ∈ Λ such that every special vertex v of K is connected by an
edge with Tλ(v).

Proof Let v be a special vertex. Then there exists an element λ ∈ Λ such that the
vertices v and Tλ(v) are connected by an edge e. By Lemma 5.1, λ is primitive.

Let v′ be any other special vertex. If v′ = Tμ(v) for a μ ∈ Λ, then v′ is connected
with Tλ(v

′) by an edge Tμ(e). Suppose that v′ /∈ Λv. Since v′ is special, there exists
an element λ′ ∈ Λ such that the vertices v′ and Tλ′(v′) are connected by an edge e′.
Let γ and γ ′ be the images of e and e′, respectively, under the quotient mapping
K → K/Λ. Then γ and γ ′ are simple closed curves of the homology classes λ and λ′,
respectively. Since Λv′ = Λv, the simple closed curves γ and γ ′ are disjoint. Hence
either λ′ = λ or λ′ = −λ. Therefore, the vertices v′ and Tλ(v

′) are joined either by
the edge e′ or by the edge Tλ(e

′). �

We shall prove Lemma 4.3 by induction on the number n of non-special Λ-orbits
in V .
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Fig. 4 The torus K/Λ:
(a) decomposition into
cylinders, (b) triangulation

Fig. 5 The triangulation K

Basis of Induction Suppose that n = 0. Then all vertices v ∈ V are special. By
Lemma 5.2, there exists a primitive element λ ∈ Λ such that v and Tλ(v) are joined
by an edge for every v ∈ V . We denote this edge by ev .

The image of ev under the quotient mapping K → K/Λ is a simple closed
curve γΛv of the homology class λ. (Obviously, this curve depends only on the Λ-
orbit of v.) For distinct Λ-orbits Λv1 and Λv2, the curves γΛv1 and γΛv2 are disjoint.
Then the curves γΛv decompose the torus K/Λ into cylinders as shown in Fig. 4(a).
Let Λv1, . . . ,Λvq be all the different Λ-orbits in V , numbered so that the curves
γi = γΛvi

go successively around the torus K/Λ. We denote by Ci the cylinder
bounded by the curves γi and γi+1.

The quotient K/Λ is an ideal triangulation of the torus, i.e., a triangulation which
is not necessarily a simplicial complex. Vertices of K/Λ are in one-to-one corre-
spondence with the orbits Λv, v ∈ V . The restriction of the triangulation K/Λ to the
cylinder Ci is a triangulation with exactly two vertices Λvi and Λvi+1 whose bound-
ary consists of two edges γi and γi+1. Standard calculation of the Euler characteristic
yields the result that this triangulation has exactly two faces and four edges. It is easy
to see that such an ideal triangulation of the cylinder is unique up to an isomorphism.
Hence the triangulation K/Λ is isomorphic to the triangulation shown in Fig. 4(b).

Therefore, the triangulation K is isomorphic to the simplicial complex shown in
Fig. 5. The pre-image under the quotient mapping K → K/Λ of every curve γi is
a union of countably many lines Li+qj , j ∈ Z, each homeomorphic to R. The pre-
image of every cylinder Ci is a union of countably many strips Si+qj , j ∈ Z, each
homeomorphic to R× I . The vertices vi ∈ Li may be chosen so that the vertices vi ,
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v′
i = Tλ(vi), and vi+1 span a triangle in Si for every i. The line Li consists of the

vertices T k
λ (vi) and the edges T k

λ (evi
), k ∈ Z.

The orbit Λvi is the union of the vertex sets of the lines Li+qj , j ∈ Z. Let
vq = Tμ(v0). Then vi+q = Tμ(vi) for every i. It easily follows that any vertex in
the orbit Λvi has the form T k

λ T m
μ (vi) = Tkλ+mμ(vi). Therefore, λ,μ is a basis of Λ.

We have 〈λ,λ〉 = �v0v
′
0

and

〈λ,μ〉 = 〈λ,vq − v0〉 =
q−1
∑

i=0

〈

v′
i − vi, vi+1 − vi

〉 = 1

2

q−1
∑

i=0

(�viv
′
i
+ �vivi+1 − �v′

i vi+1
).

Since the place ϕ is finite on �vw for all edges [vw] of K , and charF = 2, using
Lemma 3.2, we conclude that ϕ is finite on 〈λ,λ〉 and 〈λ,μ〉.

Induction Step Let n be the number of non-special Λ-orbits in V . Let d be the
smallest degree of a non-special vertex in V . (The degree of a vertex is the number
of edges incident to it.) We assume that we have already proved the assertion of
Lemma 4.3 for all K with strictly smaller n, or with the same n and strictly smaller d .

We shall consider two cases.
1. Suppose that K contains an ‘empty triangle’, that is, three vertices u, v, and w

such that [uv], [vw], and [wu] are edges of K , but [uvw] is not a triangle of K . Since
K is homeomorphic to a plane, we see that the curve γ consisting of the edges [uv],
[vw], and [wu] decomposes K into two parts, one of which is homeomorphic to a
disk. We denote the closure of this part by D. Then D is a finite subcomplex of K .

Lemma 5.3 The interiors of the disks Dλ = Tλ(D), λ ∈ Λ, are disjoint.

Proof Obviously, it is sufficient to prove that the interiors of the disks D and Dλ

are disjoint whenever λ = 0. If D ⊃ Dλ, then D ⊃ Dkλ for all k > 0. Hence, D

contains infinitely many distinct vertices Tkλ(u), which is impossible, since D is a
finite simplicial complex. Therefore, D ⊃ Dλ. Similarly, D ⊂ Dλ. Suppose, Int(D)∩
Int(Dλ) = ∅; then the intersection ∂D∩∂Dλ must contain at least two distinct points.
But this intersection is a subcomplex of K . Hence it contains at least two distinct
vertices of K . This means that two of the three vertices Tλ(u), Tλ(v), and Tλ(w)

coincide with two of the three vertices u, v, and w. Since the action of Λ on K is
free, we obtain Tλ(s) = s for all vertices s, and, if Tλ(s) = t , then Tλ(t) = s. Hence,
permuting u, v, and w, we may achieve that Tλ(u) = v and Tλ(v) = w. Then the
vertices u and w = T2λ(u) are connected by an edge in K . But this is impossible by
Lemma 5.1. Thus, the interiors of D and Dλ are disjoint. �

Since [uvw] is not a triangle of K , we see that the interior of D contains at least
one vertex p. Lemma 5.3 implies that the vertex p is non-special. Consider the sim-
plicial complex K1 obtained from K by replacing every subcomplex Tλ(D) by the
triangle [Tλ(u)Tλ(v)Tλ(w)]. It is easy to see that K1 is a well-defined simplicial com-
plex that is homeomorphic to a plane and periodic with the same period lattice Λ. Let
V1 be the vertex set of K1. The number of non-special Λ-orbits in V1 is strictly less
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than the number of non-special Λ-orbits in V , since at least one non-special orbit Λp

has been deleted. By the inductive assumption, the assertion of Lemma 4.3 holds for
K1. Since all edges of K1 are edges of K , this immediately implies the assertion of
Lemma 4.3 for K .

2. Suppose that K contains no “empty triangles”. We shall use the following
lemma, due to Connelly, Sabitov, and Walz [2].

Lemma 5.4 Let u be a vertex of a two-dimensional simplicial manifold K , and let
v1, . . . , vd , d ≥ 4, be all vertices adjacent to u, in this cyclic order. Let ϕ be a place
that is defined on the field K = Q(xu, yu, zu, xv1 , yv1, zv1, . . . , xvd

, yvd
, zvd

) and is
finite on all squares of the edge lengths �uvi

, i = 1, . . . , d , �vivi+1 , i = 1, . . . , d − 1,
and �vdv1 . Then ϕ is finite on at least one of the squares of the diagonal lengths
�vivi+2 , i = 1, . . . , d − 2.

We shall take for u a non-special vertex of K of the smallest degree d , and we
define v1, . . . , vd as in the above lemma. Since K does not contain ‘empty triangles’,
we see that d ≥ 4, and [vivi+2] are not edges of K , i = 1, . . . , d − 2. We cannot
apply Lemma 5.4 immediately to our place ϕ : L → F ∪ {∞}, since the field K is
not necessarily a subfield of L. Indeed, some of the vertices vj may belong to the
same Λ-orbits, hence, their coordinates may be mutually dependent in L. Consider
the homomorphism

ψ : Q[xu, yu, zu, xv1, yv1, zv1 , . . . , xvd
, yvd

, zvd
] → L

taking independent variables xu, yu, . . . , zvd
to the elements of L denoted by the same

letters. By Lemma 3.3, this homomorphism can be extended to a place K → L ∪
{∞}, which we also denote by ψ . Besides, applying Lemma 3.3 to the subring of L
consisting of all elements with finite ϕ-values, we see that ϕ can be extended to a
place ϕ : L → F ∪ {∞}. Applying Lemma 5.4 to the composite place

ϕ̃ : K ψ−→ L∪ {∞} ϕ−→ F ∪ {∞},
we find that there is an i such that ϕ̃(�vivi+2) = ∞. Then ϕ(�vivi+2) = ∞.

We replace the two triangles [uvivi+1] and [uvi+1vi+2] by the two trian-
gles [uvivi+2] and [vivi+1vi+2]. Since [vivi+2] is not an edge of K , we ob-
tain a simplicial complex homeomorphic to a plane. To keep the simplicial com-
plex Λ-periodic we simultaneously replace every pair of triangles Tλ([uvivi+1])
and Tλ([uvi+1vi+2]) by the pair Tλ([uvivi+2]) and Tλ([vivi+1vi+2]). (All triangles
Tλ([uvivi+1]) and Tλ([uvi+1vi+2]), λ ∈ Λ, are pairwise distinct. Hence we actually
can perform all of these flips simultaneously.) We denote the resulting simplicial
complex by K ′. All edges of K ′ are edges of K except for the edges Tλ([vivi+2]).
Since ϕ(�vivi+2) = ∞, we see that ϕ is finite on all squares of the edge lengths of K ′.

The vertex set of K ′ coincides with the vertex set V of K . An edge of K is not
an edge of K ′ if and only if it coincides with one of the edges Tλ([uvi+1]). Since u

is non-special, any such edge connects vertices belonging to distinct Λ-orbits. Hence
any vertex w that is special in K is also special in K ′. Since u is non-special in K , we
see that none of the vertices Tλ(vj ), λ ∈ Λ, j = 1, . . . , d , coincides with u. Hence the
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degree of u in K ′ is equal to d − 1 and u is non-special in K ′. Therefore, the number
of non-special Λ-orbits of vertices of K ′ is not greater than n, and the smallest degree
of a non-special vertex of K ′ is strictly less than d . Applying the inductive assumption
for K ′, we obtain the result that there exists a basis λ,μ of Λ such that ϕ is finite
on 〈λ,λ〉 and 〈λ,μ〉, which completes the proof of Lemma 4.3.
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