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Abstract The distribution of the sum of independent random variables plays
an important role in many problems of applied mathematics. In this chapter we
concentrate on the case when random variables have a continuous distribution with
a discontinuity (or a probability mass) at a certain point r. Such a distribution
arises naturally in actuarial mathematics when a responsibility or a retention limit
is applied to every claim payment. An analytical expression for the distribution
of the sum of i.i.d. random variables, which have a uniform distribution with a
discontinuity, is reported.

Keywords Mixed distribution • Sum of random variables • Sum of uniform
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1 Introduction

There are a number of problems in different fields of applied mathematics where
it is required to calculate the distribution of the sum of independent random
variables. This distribution for the case of uniform variables appears in such
problems as handling data drawn from measurements characterized by different
levels of precision, change point analysis, and aggregating scaled values with
differing numbers of significant figures [3]. The solution for a simpler case of
independent identically distributed uniform variables was obtained by Lagrange in
the theory of geometric probabilities [4]. This distribution is also known as Irwin–
Hall distribution for two different proofs of its formula given in Irwin [7] and
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Hall [6]. An analytical expression for the distribution of non-identically distributed
uniform variables is first found in Olds [9]. A number of subsequent works are
devoted to this distribution and different proofs of its formula: Bradley and Gupta
[2], Sadooghi–Alvandi et al. [11], Potuschak and Muller [10], and Buonocore
et al. [3].

In this chapter we consider the case of independent identically distributed
random variables, which have a uniform distribution, but with a discontinuity (or a
probability mass) at a certain point r. Such a distribution arises naturally in actuarial
science, where r plays a role of a responsibility or a retention limit applied to every
claim payment [1, 8]. The probability density of the sum of n payments is the n-
fold convolution of the mixed density and mass function. For the case of mixed
exponential density and mass function, the analytical solution is derived in Haehling
von Lanzenauer and Lundberg [5] by means of Laplace transform. In this chapter
we use an inductive procedure to get an analytical formula for the case of a mixed
uniform density and mass function.

2 Uniform Distribution with Discontinuity

Let us consider a mixed uniform distribution at [0,1] with a probability mass at point
r (Fig. 1).

F(x) =

⎧
⎨

⎩

0, x < 0,
x, 0≤ x≤ r,
1, x > r.

The distribution function of the sum Sn = X1 +X2 + · · ·+Xn is denoted as Fn(x):

Xi ∼ F(x), Sn ∼ Fn(x).

The goal is to find an analytical formula for Fn(x). Note that for the case r = 1 there
is no discontinuity and the formula is well known [4]:

Fn(x) =
1
n!

k−1

∑
i=0

(−1)i Ci
n (x− i)n, x ∈ [k− 1,k] , k = 1,2, . . . ,n.

Fig. 1 Mixed uniform
distribution
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2.1 Recurrent Formula

We denote the probability of event E as P(E). The sums of n+ 1 and n variables Xi

and their distributions are connected by the following relations:

Sn+1 = Sn +Xn+1 ∼ Fn+1(x) = P(Sn < x−Xn+1),

Sn ∼ Fn(s) = P(Sn < s),

Xn+1 ∼ F(t) = P(Xn+1 < t).

Since F(x) has a discontinuity at point r it is necessary to find out how it is reflected
on Fn(x). The probability density of Xi (generalized function) is equal to

f (t) =

{
1+(1− r)δ (t− r), 0 < t ≤ r,
0, t ≤ 0, t > r,

where δ (t− r) is the Dirac delta function. As soon as Xi can take values only from
[0, r] segment then the sum Sn = X1 + · · ·+Xn belongs to [0, nr] segment:

P(Sn < 0) = P(Sn > nr) = 0,

P(Xi = r) = 1− r,

P(Sn = nr) = (1− r)n ,

P(Sn < nr) = 1− (1− r)n .

As a result we have that function Fn(x) has a jump of (1− r)n height at point x = nr:

Fn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x≤ 0,
Fn(x), 0 < x < nr,
1− (1− r)n , x = nr,
1, x > nr.

Here and after we will consider function Fn(x) only on [0,nr] segment.

Lemma 1. The following recurrent formula is true for the sum distribution function
Fn(x):

Fn+1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x∫

0
Fn(t)dt, 0≤ x≤ r,

x∫

x−r
Fn(t)dt +(1− r)Fn(x− r), r ≤ x≤ nr,

nr∫

x−r
Fn(t)dt +(x− nr)+ (1− r)Fn(x− r), nr ≤ x≤ (n+ 1)r.
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Fig. 2 Integration region for
the case x≤ nr

Proof. To find distribution function Fn+1(x) = P(Sn < x−Xn+1) it is necessary to
calculate the integral of the joint probability density of Sn and Xn+1 over region
D : Sn < x−Xn+1 (see Fig. 2).

We calculate Fn+1(x) on [0, (n+ 1)r] segment taking into account the special
values s = nr and t = r:

P(Sn < x−Xn+1) = P((Sn < x−Xn+1)&(Sn = nr)&(Xn+1 = r))

+ P((Xn+1 = r)&(Sn < xr)&(Sn = nr))

+ P((Sn = nr)&(Xn+1 < x− nr)&(Xn+1 = r)) ,

Fn+1(x) =
∫∫

D

fn(s) f (t)dsdt +(1− r)Fn(x− r)+ (1− r)n F(x− nr).

Note that F(x− nr) = 0 for x < nr and thus

Fn+1(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫∫

D
fn(s) f (t)dsdt +(1− r)Fn(x− r)+ (1− r)n (x− nr) ,

nr ≤ x≤ (n+ 1)r,

∫∫

D
fn(s) f (t)dsdt +(1− r)Fn(x− r), 0≤ x≤ nr.

To get the integral over region D we will consider three cases:

1. r ≤ x≤ nr (see Fig. 2):

∫∫

D

fn(s) f (t)dsdt =

r∫

0

dt

x−t∫

0

fn(s)ds =

r∫

0

Fn(x− t)dt =

x∫

x−r

Fn(t)dt.
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Fig. 3 Integration region for
the case x≥ nr

2. 0≤ x≤ r (see Fig. 2):

∫∫

D

fn(s) f (t)dsdt =

x∫

0

dt

x−t∫

0

fn(s)ds =

x∫

0

Fn(t)dt.

In this case we also have x− r ≤ 0 and hence Fn(x− r) = 0.
3. nr≤ x≤ (n+1)r (see Fig. 3). The integral is equal to the sum of two ones because

region D has two parts (divided by the dashed line on Fig. 3):

∫∫

D

fn(s) f (t)dsdt =

x−nr∫

0

dt

nr∫

0

fn(s)ds+

r∫

x−nr

dt

x−t∫

0

fn(s)ds

= (1− (1− r)n) (x− nr)+

nr∫

x−r

Fn(t)dt.

As a result we have the required recurrent formula for the sum distribution function:

Fn+1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x∫

0
Fn(t)dt, 0≤ x≤ r,

x∫

x−r
Fn(t)dt +(1− r)Fn(x− r), r ≤ x≤ nr,

nr∫

x−r
Fn(t)dt +(x− nr)+ (1− r)Fn(x− r), nr ≤ x≤ (n+ 1)r.

	

It the next lemma it is shown that this distribution is a piece-wise function having
(n+ 1) pieces on [0, (n+ 1)r] segment.
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Lemma 2. The following recurrent formula is true for the sum distribution function
Fn(x):

Fn+1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1
n+1(x) =

x∫

0
F1

n (t)dt, 0≤ x≤ r,

F2
n+1(x) =

r∫

x−r
F1

n (t)dt +
x∫

r
F2

n (t)dt +(1− r)F1
n (x− r),

r ≤ x≤ 2r,
. . .

Fk
n+1(x) =

(k−1)r∫

x−r
Fk−1

n (t)dt +
x∫

(k−1)r
Fk

n (t)dt +(1− r)Fk−1
n (x− r),

(k− 1)r≤ x≤ kr,
. . .

Fn
n+1(x) =

(n−1)r∫

x−r
Fn−1

n (t)dt +
x∫

(n−1)r
Fn

n (t)dt +(1− r)Fn−1
n (x− r),

(n− 1)r≤ x≤ nr,

Fn+1
n+1 (x) =

nr∫

x−r
Fn

n (t)dt +(x− nr)+ (1− r)Fn
n (x− r),

nr ≤ x≤ (n+ 1)r.

Proof. At first we will prove by induction that function Fn(x) has n pieces on [0, nr]
segment:

Fn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

F1
n (x), 0≤ x≤ r,

F2
n (x), r ≤ x≤ 2r,

. . .

Fn
n (x), (n− 1)r≤ x≤ nr.

For n = 1 this statement is true: F1(x) = F1
1 (x) = x for 0 ≤ x ≤ r. Assume that it

is true for Fn(x) and prove that it is also true for Fn+1(x). We will use the recurrent
formula for r ≤ x≤ nr:

Fn+1(x) =

x∫

x−r

Fn(t)dt +(1− r)Fn(x− r).

As soon as Fn(x) has n pieces F1
n , . . . ,F

n
n then on every segment [(k−1)r, kr] (where

k = 2,n ) Fn+1(x) has different expressions. If x ∈ [(k− 1)r, kr], then

x− r ∈ [(k− 2)r, (k− 1)r],

Fn(x− r) = Fk−1
n (x− r),

x∫

x−r

Fn(t)dt =

(k−1)r∫

x−r

Fk−1
n (t)dt +

x∫

(k−1)r

Fk
n (t)dt.
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Thus for [(k− 1)r, kr] segment we have

Fn+1(x) = Fk
n+1(x) =

(k−1)r∫

x−r

Fk−1
n (t)dt +

x∫

(k−1)r

Fk
n (t)dt +(1− r)Fk−1

n (x− r).

For [0, r] segment,

Fn+1(x) = F1
n+1(x) =

x∫

0

F1
n (t)dt.

And for [nr, (n+ 1)r] segment,

Fn+1(x) =

nr∫

x−r

Fn(t)dt +(x− nr)+ (1− r)Fn(x− r),

Fn+1(x) = Fn+1
n+1 (x) =

nr∫

x−r

Fn
n (t)dt +(x− nr)+ (1− r)Fn

n (x− r).

This proves our statement for Fn+1(x). The desired recurrent formula follows
immediately from this proof. 	

This formula will be used later to get the main formula for Fn(x), but before we need
to derive an auxiliary formula for Fn

n (x).

2.2 Auxiliary Results

Lemma 3. The following formula is true for Fn(x) on [(n− 1)r, nr] segment:

Fn
n (x) = 1− (−1)n

n

∑
i=0

Ci
n (r− 1)i (x− nr)n−i

(n− i)!
.

Proof. Let us prove this formula by induction. For n = 1 it is true:

F1
1 (x) = 1− (−1)1

(

(r− 1)0 (x− r)1

1!
+(r− 1)1 (x− r)0

0!

)

= x.

Assuming that the formula is true for Fn
n we will show that it is also true for Fn+1

n+1
using the recurrent relation:

Fn+1
n+1 (x) = (x− nr)+

nr∫

x−r

Fn
n (t)dt +(1− r)Fn

n (x− r),

Fn
n (x) = 1− (−1)n

n

∑
i=0

Ci
n (r− 1)i (x− nr)n−i

(n− i)!
.
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After inserting the expression for Fn
n , taking the integral, and changing the index

variable in the last sum we obtain

Fn+1
n+1 (x) = (x− nr)+ nr− (x− r)− 0+(−1)n

n

∑
i=0

Ci
nVi

+(1− r)+ (−1)n
n+1

∑
i=1

Ci−1
n Vi,

where

Vi = (r− 1)i (x− (n+ 1)r)n+1−i

(n+ 1− i)!
.

And finally, using the relation Ci
n +Ci−1

n =Ci
n+1, we get the desired expression for

Fn+1
n+1 :

Fn+1
n+1 (x) = 1− (−1)n+1

(
n

∑
i=1

Ci
n+1Vi +V0 +Vn+1

)

= 1− (−1)n+1
n+1

∑
i=0

Ci
n+1 (r− 1)i (x− (n+ 1)r)n+1−i

(n+ 1− i)!
.

	

Now everything is ready for the main formula proof.

2.3 Main Result

Theorem 1. The following formula is true for Fn(x) on [(k− 1)r, kr] segment (k =
1,n):

Fk
n (x) =

k−1

∑
i=0

[

(−1)i CI
n

i

∑
j=0

C j
i (r− 1) j (x− ir)n− j

(n− j)!

]

.

To simplify the expressions used in the proof we will introduce the following
notations:

Vi, j(x) = (r− 1) j (x− ir)n− j+1

(n− j+ 1)!
,

Ui(x) = (−1)i
i

∑
j=0

C j
i Vi, j(x) = (−1)i

i

∑
j=0

C j
i (r− 1) j (x− ir)n− j+1

(n− j+ 1)!
.

The proof is divided into several parts.
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Lemma 4. The formula from Theorem 1 is true for k = n.

Proof. We will prove the formula for Fn
n (x) by induction. For n = 1 it is true:

F1
1 (x) = (−1)0 (r− 1)0 x1

1!
= x.

Assume that formula is true for Fn
n (x):

Fn
n (x) =

n−1

∑
i=0

[

(−1)iCi
n

i

∑
j=0

C j
i (r− 1) j (x− ir)n− j

(n− j)!

]

. (1)

Also we have an auxiliary formula (Lemma 3):

Fn
n (x) = 1− (−1)n

n

∑
j=0

C j
n (r− 1) j (x− nr)n− j

(n− j)!
. (2)

Subtracting these two equalities (1)–(2) we obtain

1 =
n

∑
i=0

[

(−1)iCi
n

i

∑
j=0

C j
i (r− 1) j (x− ir)n− j

(n− j)!

]

. (3)

Again to prove the formula for Fn+1
n+1 (x) we apply the recurrent formula from

Lemma 2:

Fn+1
n+1 (x) = (x− nr)+

nr∫

x−r

Fn
n (t)dt +(1− r)Fn

n (x− r). (4)

Replacing (x− nr) with
x∫

nr
1 dt and inserting the expression (3) instead of (1) into

this integral, we have

(x− nr) =

x∫

nr

[
n

∑
i=0

(

(−1)iCi
n

i

∑
j=0

C j
i (r− 1) j (t− ir)n− j

(n− j)!

)]

dt

=
n

∑
i=0

Ci
nUi(x)−

n

∑
i=0

Ci
nUi(nr).



60 M. Batsyn and V. Kalyagin

Inserting the expression (1) for Fn
n (x) to the second and third items of the recurrent

formula (4), we have

nr∫

x−r

Fn
n (t)dt =

n−1

∑
i=0

Ci
nUi(nr)−

n−1

∑
i=0

[

(−1)iCi
n

i

∑
j=0

C j
i Vi+1, j(x)

]

,

(1− r)Fn
n (x− r) = −

n−1

∑
i=0

[

(−1)i Ci
n

i+1

∑
j=1

C j−1
i Vi+1, j(x)

]

.

Note that Un(nr) = 0 and thus

n

∑
i=0

Ci
nUi(nr) =

n−1

∑
i=0

Ci
nUi(nr).

So summing all the three items of Eq. (4) we obtain

Fn+1
n+1 (x) =

n

∑
i=0

Ci
nUi(x)−

n−1

∑
i=0

[

(−1)i Ci
n

i

∑
j=0

C j
i Vi+1, j(x)

]

−
n−1

∑
i=0

[

(−1)i Ci
n

i+1

∑
j=1

C j−1
i Vi+1, j(x)

]

.

Joining the last two sums into one and using relation C j
i +C j−1

i =C j
i+1, we have

Fn+1
n+1 (x) =

n

∑
i=0

Ci
nUi(x)−

n−1

∑
i=0

×
[

(−1)i Ci
n

(
i

∑
j=1

C j
i+1Vi+1, j(x)+Vi+1,0(x)+Vi+1, i+1(x)

)]

=
n

∑
i=0

Ci
nUi(x)−

n−1

∑
i=0

[

(−1)iCi
n

i+1

∑
j=0

C j
i+1Vi+1, j(x)

]

=
n

∑
i=0

Ci
nUi(x)+

n

∑
i=1

Ci−1
n Ui(x).

Finally making some transformations with these two sums, joining them into one
and using relation Ci

n +Ci−1
n =Ci

n+1, we get the required expression:

Fn+1
n+1 (x) =U0(x)+

n

∑
i=1

Ci
n+1Ui(x) =

n

∑
i=0

Ci
n+1 Ui(x)

=
n

∑
i=0

(−1)iCi
n+1

i

∑
j=0

C j
i (r− 1) j (x− ir)n− j+1

(n− j+ 1)!
.

	

The next special case to be proved for the main formula is k = 1.



The Sum of Random Variables with a Mixed Uniform Density and Mass Function 61

Lemma 5. The formula from Theorem 1 is true for k = 1.

Proof. The case k = 1 is the simplest one, and the formula to be proved is the
following:

F1
n =

xn

n!

For n = 1 it is true:

F1
1 =

x1

1!
= x

Assuming it is true for F1
n , we show that it is also true for F1

n+1 by means of the
recurrent relation from Lemma 2:

F1
n+1 =

x∫

0

F1
n (t)dt =

x∫

0

tn

n!
dt =

xn+1

(n+ 1)!
.

	

Now we are going to consider the general case for the main formula, k =
2, 3, . . . , n− 1 and prove the theorem.

Proof. For proving of the main formula for k = 2, 3, . . . , n− 1 we again use
induction by n. The formula is true for n= 1,2 because for F1

1 ,F
1
2 it satisfies Lemma

5 and for F2
2 it satisfies Lemma 4. Now assuming that the formula is true for Fk

n ,
k = 1, 2, 3, . . . , n it is necessary to prove it for Fk

n+1, k = 2, 3, . . . , n− 1. So from
this assumption and from the recurrent formula we have

Fk
n (x) =

k−1

∑
i=0

[

(−1)iCi
n

i

∑
j=0

C j
i (r− 1) j (x− ir)n− j

(n− j)!

]

,

Fk−1
n (x) =

k−2

∑
i=0

[

(−1)iCi
n

i

∑
j=0

C j
i (r− 1) j (x− ir)n− j

(n− j)!

]

,

Fk
n+1(x) =

(k−1)r∫

x−r

Fk−1
n (t)dt +

x∫

(k−1)r

Fk
n (t)dt +(1− r)Fk−1

n (x− r).

The items of the sum in the recurrent relation can be rewritten as

(k−1)r∫

x−r

Fk−1
n (t)dt =

k−2

∑
i=0

Ci
nUi(t)

∣
∣(k−1)r
x−r

=
k−2

∑
i=0

Ci
nUi ((k− 1)r)−

k−2

∑
i=0

(−1)iCi
n

i

∑
j=0

C j
i Vi+1, j(x),
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x∫

(k−1)r

Fk
n (t)dt =

k−1

∑
i=0

Ci
nUi(t)

∣∣x
(k−1)r =

k−1

∑
i=0

Ci
nUi(x)−

k−1

∑
i=0

Ci
nUi ((k− 1)r),

(1− r)Fk−1
n (x− r) = −

k−2

∑
i=0

(−1)i Ci
n

i+1

∑
j=1

C j−1
i Vi+1, j(x).

Note, that Uk−1 ((k− 1)r) = 0 and hence

k−1

∑
i=0

Ci
nUi ((k− 1)r) =

k−2

∑
i=0

Ci
nUi ((k− 1)r).

So after summation we obtain

Fk
n+1(x) = −

k−2

∑
i=0

(−1)i Ci
n

i

∑
j=0

C j
i Vi+1, j(x)+

k−1

∑
i=0

Ci
nUi(x)

−
k−2

∑
i=0

(−1)i Ci
n

i+1

∑
j=1

C j−1
i Vi+1, j(x).

Joining of the first and the last sum and applying relation C j
i +C j−1

i =C j
i+1 give us

Fk
n+1(x) =

k−1

∑
i=0

Ci
nUi(x)−

k−2

∑
i=0

(−1)iCi
n

(
i

∑
j=1

C j
i+1Vi+1, j(x)+Vi+1,0+Vi+1,i+1

)

=
k−1

∑
i=0

Ci
nUi(x)+

k−2

∑
i=0

Ci
nUi+1(x).

Finally these two sums are also joined and relation Ci
n+Ci−1

n =Ci
n+1 is applied after

some simple transformations:

Fk
n+1(x) =U0(x)+

k−1

∑
i=1

Ci
n+1Ui(x) =

k−1

∑
i=0

[

(−1)iCi
n+1

i

∑
j=0

C j
i (r− 1) j (x− ir)n+1− j

(n+ 1− j)!

]

.

This completes the induction and proves the main result for all n and k. 	
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