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COPULA STRUCTURAL SHIFT IDENTIFICATION 
 

This paper aims at presenting the research results of revealing a structural shift in copula-models of 

multivariate time-series. A nonparametric method of structural shift identification and estimation is 

used. The asymptotical characteristics (the probabilities of the I-type and II-type errors, and the 

probability of the estimation error) of the proposed method are analyzed. The simulation method 

verification results for Clayton and Gumbel copulas are presented and discussed. The empirical part 

of the paper is devoted to structural shift identification for multivariate time series of interest rates 

for Euro-, US Dollar- and Ruble-zones. The empirical application provides strong evidence of the 

efficiency for the proposed method of structural shift identification. 
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            1. Introduction 

Let us take a continuous random vector 1{ , , }dX XX  with the joint cumulative 

distribution function (d.f.) marked as V  and the marginal distribution functions of its components 

1, , dF F .  The copula for the joint d.f. V  then can be written as follows: 

                                   1 1 1( , , ) ( ( ), , ( ))d d dV x x G F x F x , 

 where G  is the only continuous cumulative d.f. which has univariate marginals equally 

distributed on [0,1] . 

Copula belongs to unknown G -type function: 

                                  { : }G  A , 

where   - is an open set  in pR  space. 

The two most well-known books containing detailed descriptions of parametric copula 

families are those of Harry Joe [Joe (1997)] and Roger Nelsen [Nelsen (2006)]. Copulas are often 

of use in empirical applications in modern actuarial calculations, econometrics and hydrology (see 

for example [Frees and Valdez (1998)], [Cui and Sun (2004)], [Genest and Favre (2007))]. 

Nevertheless, they are increasingly applied to solving financial and risk-management tasks (e.g. 

[Cherubini et al. (2004)], [McNeil et al. (2005)]). 
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This paper aims at the problem of structural shift identification in copula models. Non-

stationary copulas in discrete time are analyzed for their structural stability (structural parameters 

may change abruptly at some unknown time). This problem is of vital importance, because the 

majority of real financial time series are unstable and subject to structural shifts (the notorious 

example is the world financial crisis of 2007 – 2009 which revealed the inadequacies of most of 

copula models used in financial calculations). We argue that structural shift identification in copula 

models is of vital importance for furthering empirical research of financial markets. 

Recent scientific findings made in the field of copula modeling can be generally classified 

into two principal groups: 

(1) Papers devoted to the estimating and goodness-of-fit testing of parametric copula 

models (e.g. for Gaussian copulas [(Malevergne and Sornette (2003))], for Clayton 

copulas [(Shih, (1998)], [Glidden, (1999)]; [Cui and Sun, (2004)]); and 

(2) Articles on non-parametric methods of goodness-of-fit testing of the copula-models, 

including blanket tests (e.g. [Genest et al. (2006)], [Breymann et al. (2003)], [Dobric 

and Schmid (2005)], [Junker and May (2005)]). 

This paper proposes a non-parametric way of a change-point (an instant of a structural shift) 

estimation in copula models. The exact problem statement is formulated below. 

 

             2. Problem Statement and Proposed Solution 

We start from the selection 1{ , , }NX X  of independent dR -dimensional vectors with the 

cumulative d.f. NVV ,...,1 .  

Suppose there exist two alternatives. The null hypothesis 0H (cf. (2) below) is that the 

copula remains the same, that is 21 GG  . The alternative is that the copula changes after some 

instant [ ]m N . Here we suppose that all the marginal d.f.s dFF ,...,1  remain unchanged. To 

summarize, the joint d.f. ),...,( 1 di xxV  at each time i can be represented by the following system (1):  










.)),(),...,((

,1)),(),...,((
),...,(

112

111

1
nimxFxFG

mixFxFG
xxV

dd

dd

di                 (1)    

 Thus we want to test the following null hypothesis (2): 

                          0 1 2:H G G                                              (2) 

Given 0H  is rejected we are interested in estimating the instant m  of copula structural shift.  In 

other words, we are testing whether there exists a structural shift in a pattern of comovement of 

observed vector components. The goal is to propose a method having: 
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(1) I
st
 (“false alarm”) and II

nd
 (“false calmness”) type estimation errors relatively small 

(tending to zero with increasing sample size N );  

(2) the change-point parameter estimate ˆ
N  to be consistent, that is tending to the true value 

of    given the increase of the sample size  N . 

The proposed method is based on the non-parametric approach. Let us take empirical 

copula-processes so that for every 1, , 1l N   we have the following: 

 

, ,

1 1 1

, ,

1 1 1

1 1
( ) ( ) ( )

1 1
( ) ( ) ( ),

dl l

l i l ij l j

i i j

dN N

N l i N l ij N l j

i l i l j

D u I U u I U u
l l

D u I U u I U u
N l N l

  

  

    

   

   
 

 

 

             (3) 

where   , 1, ,( , , )i l i l id lU U U  and for every [1, , ]j d  

 
, ,

,

( ) ( ) /( 1), 1 ,
1

( ) /( 1), 1 .

ij l j l ij ij

ij N l ij

l
U F X rank X l i l

l

U rank X N l l i N

    


     

              (4) 

Aiming at a step-by-step structural shift identification we fix the constant N and use the 

following statistics as a modification of the Kolmogorov-Smirnov test:  

 , ( ) ( ( ) ( )) ( ) /l N l l N lu D u D u l N l N                    (5) 

and 

 ,
[ ] [(1 ) ]

max sup| ( ) |N l N l
N l N u

T u
 


  

  .                              (6) 

Therefore we arrive at the following estimate (7) of an unknown change-point: 

 ,
[ ] [(1 ) ]

ˆ arg max sup| ( ) |N l N l
N l N u

m u
 


  

 
  

 
,               (7) 

Then the structural shift parameter estimate will be as follows ˆ ˆ /N Nm N  . 

To verify whether the change-point found is a good estimate of the true structural shift 

point, we are using three performance measures listed below:  

1) I
st
 type error probability (“false alarm”): 

 

 0{ },N NP T C                         (8) 

 where 0C  is the decision threshold that we accept in order to test the null hypothesis of 

structural shift absence; 

 

2) II
nd

 type error probability: 

 { }N m NP T C   .                     (9) 

3) The probability of estimation error: for 0 1/ 2   we use the following measure: 

 ˆ{| | }N m NP      .                     (10) 



 5 

             3. Major Findings 

 

To review, the major assumption is that 
1, , nX X  are independent random d -dimensional 

vectors with continuous univariate marginal d.f. Then it follows that random variables ,i lU  being 

defined above in (3) – (4) are independent at different times 1, ,i l . Besides, their distributions 

are the same under the null hypothesis meaning the absence of structural shift. The Cramer 

condition 0 ,exp( )i lE tU   given | |t T for some 0T   is still satisfied. 

Theorem 1 provides an upper exponential estimate for the I
st
 type error probability of the 

proposed method. 

Theorem 1. 

 2

1 2exp( ),N L L C N                     (11) 

where 1 2,L L    are positive constants not dependent on N . 

The proof of theorem 1 comes from the logic described below. Given continuous marginal 

distributions, it is true (cf. [Tsukahara (2005)]) that under the null hypothesis 0 1 2:H G G  and 

[ ] [(1 ) ]N l N     we have the following: 

1 1

1 2

( ( ) ( )) ( ),

( ( ) ( )) ( ),

l

N l

l D u G u W u

N l D u G u W u

 

  
 

where 1 2( ), ( )W W   are independent Wiener processes on [0,1]d , and the symbol “” is used to 

signify weak convergence in [0,1]dD   space as N  . Therefore it is true that: 

   1/ 2 1/ 2

1 2

( ) 1
( ( ) ( )) ((1 ) ( ) ( ) ( ))l N l

l N l l l
D u D u W u W u

N N NN



     

Based on the result above and using the exponential estimates for the probability of the 

Wiener process intersecting the horizontal border we arrive at the theorem 1 result. 

 

By analogy we obtain the exponential upper estimates for the II
nd

 type error and the 

estimation of the probability of the error. The following theorem holds true: 

 

Theorem 2. 

Denote 1 2sup| ( ) ( ) |
u

G u G u    and assume that 0 / 4C   . Let / 4d C  . Then the 

following is true: 

 

2

1 2

2

1 2

exp( min( , ) )

exp( min( , ) )

N

N

L L d d N

C C N



  

 

 
,           (12) 



 6 

       where 
1 2 1 2, , ,L L C C  are positive constants not dependent on N . 

 

Proof. 

Below the main idea of the proof of theorem 2 is presented.  

We start from the case of [ ]N l m   . Since 
,

1

1
( ) ( )

l

l i l

i

D u I U u
l 

  , we can write 

                                                  1( ) ( )lED u G u . 

Then we conclude that:  

                  
, ,

1 1

1
( ) ( ( ) ( ))

m N

N l i N l i N l

i l i m

D u I U u I U u
N l

  

   

   


   

Therefore, 

                                   1 2

1
( ) (( ) ( ) ( ) ( ))N lED u m l G u N m G u

N l
    


.  

Then, 

            1 2 1 2( ( ) ( )) ( )(1 ) ( ) ( ( ) ( ))l N l

m l N m N m
E D u D u G u G u G u G u

N l N l N l


  
     

  
. 

Thus, 

                 , 1 2

( )
maxsup ( ) sup | ( ) ( ) |l N l

l m u u

m N m
E u G u G u

N





   . 

The case [(1 ) ]m l N   is considered in the same way. Note that 

                                                    max ( ) / 1/ 4
m

m N m N  . 

 We have obtained the upper estimate for the expectation for the NT  statistics. With regard to 

the stochastic additive component of the statistics (like in theorem 1), the upper exponential 

estimates for the error probability (12) comes from the upper exponential estimates for the sums of 

independent, identically distributed and centered random variables satisfying the Cramer condition 

(see [Petrov (1987)]). 

Now the simulation method verification results will be discussed. 

            4.  Simulation Method Verification 

The proposed method was tested using bidimensional vectors whose joint d.f. were 

characterized by (1) Clayton copula; and (2) Gumbel copula. 

Clayton copula: for any , (0,1)u v  and 0  : 

 
1/( , ) ( 1)C u v u v  



      

    

Gumbel copula: for any , (0,1)u v  and 0  : 

 1/ 1/( , ) exp[ {( log ) ( log ) } ]C u v u v  

       
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We assume copula function does not change throughout the period, whereas its parameter   might 

change at some time [ ]m N . 

We begin from the analysis of the critical bounds for the method proposed for different 

sample sizes and copula types. Initially, we deal with a homogeneous sample, that is, without a 

structural shift. For each sample size N , the experiment was independently simulated 500 times. 

The 95
th

 and 99
th

 quantiles for NT  statistics maximum were estimated. 95
th

 quantile values were 

then used as critical bounds for the rejection of the null hypothesis given the existence of structural 

shift. Simulation results are presented in tables 1-2. 

                                                                                                                                  Table 1 

           Critical Bounds, Clayton Copula, Homogeneous Set 0,3   

N 50 100 200 300 500 700 1000 1500 2000 

95% 0,1156 0,0850 0,0615 0,0492 0,0372 0,0314 0,0278 0,0213 0,0197 

99% 0,1343 0,0945 0,0674 0,0550 0,0426 0,0348 0,0323 0,0232 0,0214 

 

                                                                                                                                Table 2  

          Critical Bounds, Gumbel Copula, Homogeneous Set 0,3   

N 50 100 200 300 500 700 1000 1500 2000 

95% 0,1033 0,0749 0,0508 0,0402 0,0313 0,0243 0,0206 0,0158 0,0146 

99% 0,1187 0,0836 0,0585 0,0461 0,0343 0,0292 0,0233 0,0168 0,0154 

 

As tables 1-2 show, the critical bounds are not very sensitive to the concrete copula 

underlying the observations. It permits us to undertake robust parameter calibration procedure for 

the purpose of structural shift identification and estimation. The respective results are provided in 

tables 3-4 below. 

                                                                                                                          Table 3 

Structural Shift Identification and Estimation, Clayton Copula, Parameter Values Before and 

After the Structural Shift 1 20,3; 1,0   ; Structural Shift Parameter 0,3  , C – Critical 

Bound; 2w  - II
nd

 Type Error. 

0,3   
1 20,3; 1,0    

N  500 700 1000 1500 

C  0,037 0,031 0,027 0,020 

2w  0,56 0,43 0,15 0,02 

N  0,337 0,335 0,303 0,30 
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                                                                                                                 Table 4  

Structural Shift Identification and Estimation, Gumbel Copula, Parameter Values Before and 

After the Structural Shift 1 20,3; 1,0   ; Structural Shift Parameter 0,3  , C – Critical 

Bound; 2w  - II
nd

 Type Error. 

0,3   
1 20,3; 0,7    

N  100 200 300 500 700 1000 1500 

C  0,07 0,05 0,04 0,03 0,02 0,017 0,015 

2w  0,69 0,60 0,44 0,33 0,04 0,01 0 

N  0,45 0,40 0,35 0,33 0,31 0,305 0,30 

 

Based on simulation results above, we can summarize the major findings: 

1) The proposed method enables us to properly identify the structural shifts in copula models 

and to arrive at their parameter estimates. Note, we do understand any unpredicted (rapid) 

change in the multivariate copula reflecting certain type of dependence in-between 

univariate components, 

2) The critical bounds estimated do not depend either on the copula type (Clayton, Gumbel or 

other), or on the copula parameters under the null hypothesis. It makes them of great value 

when carrying out non-parametric tests for structural shift identification in copula models.

  

       5.  Application to Real World Data 

The proposed method was applied to multivariate financial time series of interest rates to 

test the existence of a structural shift. The basic data set contained 21 time series for 7 maturity 

buckets and 3 currencies (interest rates for borrowing in a certain currency). The maturities were 

taken (1) overnight, (2) 1 month, (3) 3 months, (4) 6 months, (5) 1 year, (6) 3 years, (7) 5 years. For 

short-term maturities (less than one year) interbank rates (EURIBOR, USD LIBOR, MosPrime) 

were used. For long-term maturities, the interest-rate swap contract quotes for the respective 

interbank rates. The initial set contained daily data announced by the respective organisations 

(European Banking Federation for EURIBOR, British Bankers Association for USD LIBOR, 

National Currency Association (NVA) for MosPrime) from August 6, 2007 to May 21, 2009. 

Bloomberg was used as a data source. Time series graphical representations are provided in 

Appendix 1. 
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Methodology Used: 

 Copulas for joint distributions were estimated by a semiparametric
4
 method in order to 

avoid marginal d.f. misspecification. Thus empirical marginals of daily log-returns were taken, and 

the copula was estimated parametrically. Six major copulas were regarded: Archimedean (Clayton, 

Gumbel), extreme value (Cochi, or Student’s t with 1 degree of freedom (d.o.f.)) and elliptical 

(Gaussian and Student’s t with 5 and 10 d.o.f.).  Copula parameter estimates
5
 for both methods used 

(IFM and ITAU)
 6

 can be found in Appendices 2.1 and 2.2. 

 

Econometric Findings Interpretation. 

1. The structural shift in the ruble-zone interest rate copula was estimated to be on December 

3, 2008. Before the shift the joint comovement of interest rates was best characterized by a 

Cochi copula, afterwards by a Gaussian one. A Cochi copula has the strongest tail 

dependence compared to other elliptical copulas. Tail dependence indices (both upper and 

lower as the copula is symmetric) equaled to 85% for the IFM method and 96.2% for the 

rank-transformed data (ITAU method). On the contrary a Gaussian (Normal) copula has 

zero tail dependence, that is, the conditional probability of a simultaneous rise or fall (in the 

highest and lowest quantiles) of copula components is nil. Evidently, the pooled estimation 

provided biased results by indicating Student’s t with 8 d.o.f. to fit the data best, that is, the 

average between the Gaussian and the Cochi copulas. 

To comment on the sources of the interest rate joint behavior it is necessary to trace 

the principal interest rate determinant: the refinance rate. Though in Russia it is not as 

linked to interbank lending rates as in case of The European Central Bank or The US 

Federal Reserve, it still provides a government indication of changes in the economic 

environment, particularly in the amount of accessible liquid funds. 

Before December 1, 2008 the Central Bank of Russian Federation (CBRF) was 

constantly raising the refinance rate, up to 13 % p.a. Thus the regulator was affirming that it 

was necessary to limit lending activity in order to limit the increase in the monetary base 

and to prevent the future escalation in inflation. Instead the market needed to facilitate 

                                                 
4
 Authors [Kim G., Silvapulle M., Silvapulle P. (2007)] argue that a semiparametric approach is preferred, enabling 

consistent and robust estimates compared to parametric approaches in cases when the marginal d.f. is unknown. 
5
 R software was used to undertake the estimation described. The codes and data are readily available from the authors 

upon request. 
6
 ITAU method enables researches to estimate copula parameters based not on the probability space, but on the 

transformed-to-ranks probability space. Would like to remark that the parameter estimate did not depend on the d.o.f. 

number when using ITAU method. The only thing that was influenced by the number of d.o.f. was the value of tail 

dependence index. Therefore we would recommend using inference-for-margins (IFM) method in R when carrying out 

the estimation procedure in R. 
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lending (starting with interbank lending) which could have been possible by decreasing the 

refinance rate. 

 

Figure 1. Key Statistics , ( )l N l u  Dynamics Revealing the Structural Shift Point in Ruble-Zone Interest Rates 

Copula 

The observation number can be found on horizontal axis, the statistics value – on the vertical one. 

 We would also like to point out the shift-even points on the figure 1 above indicating 

the search of structural shift moment. It can be seen that though the global maximum 

belongs to observation No. 348 (December 3, 2008), the local maximum exists at about 

November 12, 2008 (observation No. 300). That is on November 11 and 12 the CBRF 

initiated two consecutive up-shifts in the refinance rate to 11% and 12%, respectively (see 

Figure 2). If the economic environment was not characterized by a shortage of liquidity, the 

interest rates co-movement could probably have satisfied the normal copula assumption 

subsequently. Nevertheless it was that period of October-November 2008 which was called 

the ‘banking liquidity crisis’ when the interest rate up and down comovement was 

extremely strong, proving the Cochi copula to fit the data best. 
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Figure 2. Key Dates of Refinance Rate Changes by the Central Bank of Russia 

Horizontal axis marks the time schedule and the vertical one – the refinance rate in percentage points. 

Source: http://cbr.ru/print.asp?file=/statistics/credit_statistics/refinancing_rates.htm  

 

http://cbr.ru/print.asp?file=/statistics/credit_statistics/refinancing_rates.htm
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2. As for US Dollar-linked interest rates, the structural shift was estimated to be on July 17, 

2008 (see Figure 3, Observation No. 225). For the first part of the data set (before the shift-

date) the Clayton copula was found to fit best, whereas afterwards it was also a Gaussian 

copula. To recap a Clayton copula has a positive lower tail dependence (equal to 89.5% for 

the IFM method and 99% for the rank-transformed method in our case) of the components 

and zero for the upper tail ones. 

 

Figure 3. Key Statistics , ( )l N l u  Dynamics Revealing the Structural Shift Point in US Dollar-Zone Interest 

Rates Copula 

The observation number can be found on horizontal axis, the statistics value – on the vertical one. 

 

Thus the comovement of US Dollar-zone interest rates tended to simultaneously fall, 

rather than to rise. It is closely related to the dynamics of the US Dollar interest rates’ 

principal determinant – the Fed funds rate (see Figure 4). 
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Figure 4. Key Dates of Refinance Rate Changes by the US Federal Reserve 

 
Horizontal axis marks the time schedule and the vertical one – the refinance rate in percentage points.  

Source: www.cbonds.info/index/index_detail/type_id/160/  

 

http://www.cbonds.info/index/index_detail/type_id/160/
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From the very rise of credit crunch the US Federal Reserve was decreasing the 

refinance rate to stimulate the market participants. Nevertheless, the two periods (before and 

after the shift) do differ. The prior period was marked by a comparably greater decrease in 

refinance rate (from 4.75% to 2%, i.e. by 2.75%). The period following, by a lesser decrease 

(from 2% to 0.25%, i.e. by 1.75%).  

Therefore we tend to interpret the results obtained as follows. During the first period 

before the structural shift on July 17, 2008 the market participants were expecting and were 

in need of a federal fund rate decrease. By contrast in the subsequent period a further 

decrease was not as desirable nor as vital as before. That is why a Clayton copula was 

identified to fit the data best for the first period and a Gaussian for the second. 

 

3. The analysis of Euro-zone interest rate co-dynamics was not as evident, as those with the 

ruble-zone and USD-zone ones. Nevertheless, the period before and after the estimated 

structural shift date (September 24, 2008; see Figure 5, observation No. 275) can be 

differentiated based on the copula parameters’ estimates. For the first period a Clayton 

copula seems to be most relevant in describing the interest rates comovement pattern (based 

on the maximum likelihood function value). For the second period there is no strictly 

preferable copula found as IFM method was unable to complete the calculation because of 

the infinite value of all copulas’ likelihood functions (it was obtained only for the Clayton 

one). In addition the Clayton copula parameter estimated value decreased three times using 

ITAU method from 75.27 to 22.16. It can be interpreted as the decrease in the tightness of 

interest rate comovement. Nevertheless, the parameter significance has tripled from 1.6 to 

4.81 (on the contrary, for the Student’s t copula the significance of its parameter was four 

times lower using ITAU method). Thus we may conclude that disregarding the decrease in 

the measure of associativity of euro-zone interest rates, the Clayton copula has revealed 

itself to be more adequate in describing the joint rates dynamics.  
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Figure. 5. Key Statistics , ( )l N l u  Dynamics Revealing the Structural Shift Point in Euro-Zone Interest Rates 

Copula 

The observation number can be found on horizontal axis, the statistics value – on the vertical one. 

 

To add economic interpretation of the structural shift moment estimate, we have to trace 

the European Central Bank’s (ECB) policy towards the refinance rate (see Figure 6). 
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Figure 6. Key Dates of Refinance Rate Changes by the European Central Bank 

The horizontal axis marks the time schedule and the vertical one – the refinance rate in percentage points. 

Source: www.cbonds.info/index/index_detail/type_id/161/  

 

    

During the ‘before-the-shift’ period (before September 24, 2008) the ECB was perpetually 

increasing the refinance rate in order to tighten inflationary pressures, but it was on October 

8, 2008 when the ECB first cut the rate by 0.5%. Hereafter the ECB continued rate-cutting 

to arrive at 1% on May 5, 2009, an overall decrease by 3.25%. We argue that it was this 

downward movement that might be best described by a Clayton copula, rather than a 

Gaussian. 

http://www.cbonds.info/index/index_detail/type_id/161/
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To conclude we would like to comment on the findings presented above and those found in 

the previous research. For example [Penikas, Simakova and Titova (2009)] stated that a Gumbel 

copula best fits the interest rate joint distribution. Current research has revealed Gaussian and 

Clayton copulas to be the best candidates. Aiming at understanding the differences three major 

issues must be accounted for. 

Primarily, the earlier research did not consider the structural shift thus providing biased 

parameter estimates. 

Secondly, as presented above, the refinance rate is an important determinant of interest rates 

comovement pattern. The previous research dealt with the period January 17, 2007 to November 

17, 2008 when the CBRF was constantly increasing the rate. As stated above a Gumbel copula is 

characterised by a positive upper tail dependence, that is, there is a significant probability of 

simultanious realisations of high quantiles of all the copula components. 

Thirdly, the previous research data set contained five time series of Ruble-zone interest 

rates, the current one contains seven for each of the three currencies chosen. In addition 

Archimedean copulas (including Gumbel and Clayton) have the drawback of decreasing the 

parameter estimate significance given the rise in the copula dimension. Another problem is that the 

comovement pattern is characterised by the sole parameter (elliptical copulas additionally take into 

account the covariance matrix). To solve the multidimensionality problem hierarchical copulas 

might be constructed (as proposed in, for example [Savu, Trede (2006)]).  
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Appendix 1. Interest Rate Time Series Dynamics’ Graphical Representation. 

Ruble-Zone Interest Rates Dynamics
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Notes: The maturities presented are as follows: ON - overnight, 1M - 1 month, 3M - 3 months, 6M 

- 6 months, 1Y - 1 year, 3Y - 3 years, 5Y - 5 years. 
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Appendix 2.1. Copula Parameter Estimates Using Inference-For-Margins (IFM) Method for The Daily Log returns of Interest Rates 

Copula Before-the-

shift

After-the-shift Pooled Data Before-the-

shift

After-the-shift Pooled Data Before-the-

shift

After-the-shift Pooled Data

Gumbel Parameter 4,72            2,42              4,09            2,20            2,79              2,52             1,65            

Z-statistics 61,09         37,53            72,01         48,84         48,01            67,96           60,34         

ML 2 460,88    598,12          3 100,43    911,95       1 019,92      1 959,64     1 093,70    infinite infinite

UTDI 84,2% 66,8% 81,5% 62,9% 71,8% 68,3% 47,9%

LTDI 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%

Clayton Parameter 11,23         6,08              10,12         6,26            6,46              6,42             5,21            2,71              4,31             

Z-statistics 58,12         23,26            65,23         31,60         34,09            46,47           28,77         17,03            31,66           

ML 2 524,54    584,28          3 095,12    1 093,70    991,31          2 082,37     1 420,04    763,85          2 140,48     

UTDI 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%

LTDI 94,0% 89,2% 93,4% 89,5% 89,8% 89,8% 87,5% 77,4% 85,1%

Student's t Parameter 0,96            0,72              0,93            0,51            0,71              0,56            

1 d.o.f Z-statistics 325,61       29,87            236,42       21,80         37,82            27,05         

ML 2 880,78    538,74          3 488,68    426,46       880,44          infinite 925,83       infinite infinite

UTDI 85,1% 62,5% 81,2% 50,6% 62,1% 53,2%

LTDI 85,1% 62,5% 81,2% 50,6% 62,1% 53,2%

Student's t Parameter 0,98            0,88              0,97            0,78            0,88              0,75            

5 d.o.f Z-statistics 943,80       98,44            751,65       70,05         138,54          66,66         

ML 2 869,21    625,04          3 527,30    829,41       1 003,76      infinite 1 244,64    infinite infinite

UTDI 80,6% 55,8% 76,5% 42,6% 56,5% 39,4%

LTDI 80,6% 55,8% 76,5% 42,6% 56,5% 39,4%

Student's t Parameter 0,98            0,90              0,97 ** 0,82            0,90              0,78            

10 d.o.f Z-statistics 1 116,75    130,33          875,49 ** 96,05         187,49          84,43         

ML 2 854,39    636,73          3529,88 ** 871,51       1 030,76      infinite 1 262,99    infinite infinite

UTDI 73,9% 45,2% 71,9% 31,3% 46,5% 26,5%

LTDI 73,9% 45,2% 71,9% 31,3% 46,5% 26,5%

Guassian Parameter 0,98            0,91              0,97            0,84 * 0,92              0,79 *

Z-statistics 1 374,01    187,98          1 199,99    136,30 * 279,67          112,8 *

ML 2 803,58    652,71          3 507,54    908,0962 * 1 074,85      infinite 1282,31 * infinite infinite

Period Period Period

Euro-zone RatesUS Dollar-zone RatesRuble-zone Rates

 

Notes: ML - the value of the maximum likelihood function; UTDI and LTDI stand for the vaule of the upper and lower tail dependence indexes; *  the estimate for 
the Student's t copula with 100 d.o.f. was taken as the first proxy for the Gaussian copula estimate; **  the maximum ML value presented belongs to the 8 d.o.f. 
Student's t copula case; yellow marks the best copula chosen based on the maximum ML value. 
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Appendix 2.2. Copula Parameter Estimates Using ITAU Method for The Rank-Transformed Probabilities of Daily Log returns of Interest 

Rates. 

 

Copula Before-the-

shift

After-the-shift Pooled Data Before-the-

shift

After-the-shift Pooled Data Before-the-

shift

After-the-shift Pooled Data

Gumbel Parameter 49,92         14,16             52,93         36,07         11,03               42,53         38,63         12,08               45,09         

Z-statistics 3,32            5,68                5,65            1,83            4,98                 2,05            1,64            5,25                 1,83            

UTDI 98,6% 95,0% 98,7% 98,1% 93,5% 98,4% 98,2% 94,1% 98,5%

LTDI 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%

Clayton Parameter 97,85         26,33             103,86       70,14         20,07               83,07         75,27         22,16               88,19         

Z-statistics 3,25            5,28                5,55            1,78            4,53                 2,00            1,60            4,81                 1,78            

UTDI 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%

LTDI 99,3% 97,4% 99,3% 99,0% 96,6% 99,2% 99,1% 96,9% 99,2%

Student's t Parameter 0,9971       0,9901           0,9982       0,9989       0,9832             0,9992       0,9988       0,9830            0,9993       

1 d.o.f Z-statistics 1 389         362                 3 148         884             188                  1 403         832             216                  1 352         

UTDI 96,2% 93,0% 97,0% 97,6% 90,8% 98,0% 97,6% 90,8% 98,1%

LTDI 96,2% 93,0% 97,0% 97,6% 90,8% 98,0% 97,6% 90,8% 98,1%

Student's t Parameter 0,9971       0,9901           0,9982       0,9989       0,9832             0,9992       0,9988       0,9830            0,9993       

5 d.o.f Z-statistics 1 389         362                 3 148         884             188                  1 403         832             216                  1 352         

UTDI 92,9% 86,9% 94,3% 95,6% 82,9% 96,3% 95,4% 82,8% 96,4%

LTDI 92,9% 86,9% 94,3% 95,6% 82,9% 96,3% 95,4% 82,8% 96,4%

Student's t Parameter 0,9971       0,9901           0,9982       0,9989       0,9832             0,9992       0,9988       0,9830            0,9993       

10 d.o.f Z-statistics 1 389         362                 3 148         884             188                  1 403         832             216                  1 352         

UTDI 90,2% 82,0% 92,2% 93,9% 76,6% 94,9% 93,7% 76,4% 95,0%

LTDI 90,2% 82,0% 92,2% 93,9% 76,6% 94,9% 93,7% 76,4% 95,0%

Guassian Parameter 0,9971       0,9901           0,9982       0,9989       0,9832             0,9992       0,9988       0,9830            0,9993       

Z-statistics 1 389         362                 3 148         884             188                  1 403         832             216                  1 352         

Ruble-zone Rates US Dollar-zone Rates Euro-zone Rates

Period Period Period

 

Notes: UTDI and LTDI stand for the value of the upper and lower tail dependence indexes; 
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