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Abstract
We investigate the eigenvalue density in ensembles of large sparse Bernoulli
random matrices. Analyzing in detail the spectral density of ensembles of linear
subgraphs, we discuss its ultrametric nature and show that near the spectrum
boundary, the tails of the spectral density exhibit a Lifshitz singularity typical for
Anderson localization. We pay attention to an intriguing connection of the
spectral density to the Dedekind η-function. We conjecture that ultrametricity
emerges in rare-event statistics and is inherit to generic complex sparse systems.
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(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Some notions about ultrametricity

A metric space is a set of elements equipped by pairwise distances. Generically, the metric
d x y,( ) meets three requirements: (i) non-negativity, d x y, 0( ) > for x y¹ , and d x y, 0( ) =
for x=y, (ii) symmetry, d x y d y x, ,( ) ( )= , and (iii) the triangle inequality,
d x z d x y d y z, , ,( ) ( ) ( ) + . The concept of ultrametricity is related to a special class of
metrics, obeying the strong triangular inequality, d x z d x y d y z, max , , ,( ) { ( ) ( )} (this
condition allows the existence of acute isosceles and equilateral triangles only).
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The strong triangle inequality radically changes the properties of spaces in comparison
with our intuitive expectations based of Euclidean geometry. In ultrametric spaces, the sum of
distances does not exceed the largest summand, i.e. the Archimedean principle does not hold.
Few counterintuitive properties are related to ultrametric balls: every point inside a ball is its
center; the radius of a ball is equal to its diameter; there are no balls that overlap only
partially, if two balls have a common point, then one of them is completely embedded into the
other. The last property implies that any ultrametric ball can be divided into a set of smaller
balls, each of them can be divided into even smaller ones, etc. In other words, an ultrametric
space resembles not a line of segments, but a branching tree of hierarchically nested balls
(‘basins’). The terminal points of a tree, constituting the tree boundary, also obey the strong
triangle inequality: for any two points, A and B, the distance to the root of the minimal
subtree to which these points belong, determines the distance between A and B. As a result,
ultrametric geometry, in general, fixes taxonomic (i.e. hierarchical) tree-like relationships
between the elements and, speaking figuratively, is closer to Lobachevsky geometry, rather to
the Euclidean one.

Ultrametricity is tightly linked to the p-adic norm which originally arose in the context of
number theory [1]. The role of ultrametric spaces and p-adic numbers in number theory [2, 3]
and in other branches of mathematics, such as p-adic analysis [4] and non-Archimedean
analytic geometry [5], is growing. More recently, there have been numerous attempts to apply
p-adic numbers and ultrametric spaces to various branches of physics ranging from string
theory to inflationary cosmology (see e.g. [6–11]).

Perhaps most naturally ultrametric spaces emerge in the realm of complex systems.
Indeed, the ultrametric description is inherently multi-scale, thus it is not surprising that
ultrametricity provides a fertile framework for describing complex systems characterized by a
large number of order parameters. For instance, signatures of ultrametricity were discovered
in the context of spin glasses (see [12] for an earlier review). Spin glasses are characterized by
a huge number of metastable states and the equilibration in spin glasses proceeds via tree-like
splitting of the phase space into hierarchically nested domains. When the temperature
decreases, the most distant groups of spin-glass states get factorized first. Then, each of these
groups splits into a number of subgroups, etc. The scales of hierarchically nested sets of
equilibrated states satisfy the strong triangle inequality, i.e. the multi-scale splitting of spin-
glass phases obey ultrametric relations.

The physical origin behind the emergence of ultrametricity in spin-glass systems is quite
general. In a complex system with an extremely large number of metastable states, the phase
trajectories cannot totally explore all states: they cover only a tiny part of phase space almost
without returns to already visited regions. For this reason, the factorization of spin-glass
phases is similar to random branching in a high-dimensional (infinitely dimensional in the
thermodynamic limit) space. The factorization of spin-glass phases is specified only by
branching points because once two branches are dispersed in a high-dimensional space, they
never join. The ultrametric ansatz [13, 14] proposed to describe the spin-glasses by infinite (in
the thermodynamic limit) number of order parameters, was proven in [15] to be an exact
ground state of the Sherrington–Kirkpatrick model [16].

Shortly after the formulation of the ultrametric ansatz in the context of spin glasses,
similar ideas were proposed for the description of native states of protein molecules [17, 18].
Proteins are highly frustrated polymer systems characterized by rugged energy landscapes of
very high dimensionality. The ultrametricity of proteins implies a multi-scale representation
of the protein energy landscape by means of ranging the local minima into hierarchically
embedded basins of minima. Ultrametricity follows from the conjecture that the equilibration
time within the basin is significantly smaller than the time to escape the basin. As a result, the
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transitions between local minima obey the strong triangle inequality. In such an approx-
imation, dynamics on a complex energy landscape can be modelled via a jump-like random
process, propagating in an ultrametric space of states. The approximation of the protein
energy landscape by a self-similarly branching tree of basins has been shown to be very
fruitful for describing a large body of experimentally justified features of protein con-
formational dynamics and protein fluctuation mobility at temperatures covering very wide
range from room temperatures up to the deeply frozen states [19].

With respect to ultrametricity and the self-similarity of protein energy landscapes, it is
important to keep in mind that proteins are functional systems. Proteins precisely operate at
the atomic level using sparse-event statistics, which is a bridge between non-local protein
dynamics in high-dimensional conformational space and low-dimensional movements of
particular atomic units related to protein functionality.

For completeness, let us mention, that recently the ultrametric concepts based on gen-
eralized Parisi ansatz, emerged in description of hierarchical DNA folding in chromo-
somes [20].

1.2. Ultrametricity and rare-event statistics

In the context of high dimensionality, randomness, and rare-event statistics, ultrametricity
emerges in diverse subjects, e.g., in genetic trees, in the behavior of hierarchically organized
ecological, social, and economic systems, etc. The fact that ultrametricity is naturally rooted
in high dimensionality, randomness, and sparse statistics, has been unambiguously shown
recently in [21]. It was proven that in a D-dimensional Euclidean space the distances between
points in a highly sparse sampling tend to the ultrametric distances as D  ¥.

In this work we bring another intriguing connection between rare-event statistics and
ultrametricity. We demonstrate that ultrametricity is inherit for ensembles of sparse graphs. In
particular, we compare a limiting behavior of spectral density of bi-diagonal random matrices
with the behavior of the function f z zlog( ) ( )h= - , where z( )h is the Dedekind η-
function and z tends to rational points on real axis, and conjecture that the eigenvalue
distribution of sparse ensembles shares some number-theoretic properties related to
ultrametricity.

Our finding provides an example of a nontrivial manifestation of rare-event Bernoullian
noise in some collective observables in large systems (like spectral density, for example).
From this point of view, our work should warn researchers working with effects of ultra-low
doses of chemicals: in the statistical analysis of, say, absorption spectra of extremely diluted
solutions of chain-like polymer molecules, the valuable signal should be clearly purified from
the background noise, which itself could have a very peculiar ultrametric shape.

The paper is organized as follows. In the section 2 we formulate the model under
consideration and describe the results of our numerical simulations. In what follows we pay
attention to statistics of linear subgraphs, presented by bi-diagonal matrices. We derive the
distribution of the fraction of linear subgraphs at the percolation threshold in the section 3,
and study the spectral properties of Bernoulli ensembles of bi-diagonal matrices in the
section 4. The number-theoretic structure of limiting spectral statistics in ensembles of ran-
dom bi-diagonal matrices is discussed at length of the section 5. The results of the work and
the relation with other natural systems shearing similar number-theoretic properties, are
summarized in the Discussion.
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2. The model

The Bernoulli matrix model is defined as follows. Take a large N×N symmetric matrix A.
The matrix elements, a aij ji= , are assumed to be independent, identically distributed, binary
random variables, such that diagonal elements vanish, a 0ii = , and

a
q

q
1 with probability
0 with probability 1

1ij ( )
⎧⎨⎩=

-

for i j¹ . The matrix A can be regarded as an adjacency matrix of a random Erdős–Rényi
graph,  , without self-connections. The eigenvalues, nl (n N1, ,= ¼ ), of the symmetric
matrix A are real. Let ( )r l be the eigenvalue density of the ensemble of such matrices. For
N 1 the limiting shape of ( )r l is known in various cases. If q 1( )= , the function ( )r l
tends to the Wigner semicircle law, N4 2l- , typical for the Gaussian matrix ensembles.
For q = c/N (c 1> ), the matrix A is sparse and the density ( )r l of the sparse matrix
ensemble has singularities at finite values of c [22–24]. In [25–28], the behavior of the
spectral density, ( )r l , has been analyzed near c=1 (N 1 ). It has been pointed out that the
function ( )r l becomes more and more singular as c approaches 1 from above.

In ensemble of matrices A the percolation point is q N1c = (the true phase transition is
defined in the thermodynamic limit, N  ¥, only). For q qc> , the graph  has a giant
component whose size is proportional to N, accompanied with numerous small components
(almost all of them are trees); for q qc< , the graph  is composed of the collection of small
components (almost all of them are again trees). For qN 1 the isolated vertices dominate,
contributing to the trivial spectral density, ( ) ( )r l d l= . The most interesting region is close
to qc. In the scaling window q q O Nc

4 3( )- = - , the size of the largest component scales as
N 2 3. In what follows we discuss the behavior of the spectral density ( )r l for q in this region.

An example of a random graph with a randomly generated N N 500 500´ = ´ adja-
cency matrix at q 2.0028 10 3= ´ - is shown in figure 1. Note that the components are
predominantly linear subgraphs. In other realizations we observed components with a single
loop, but they are rare, usually a few per realization; more complicated components, namely
those with more than one loop, appear very rarely.

The whole spectrum of a symmetric matrix A in a sparse regime just below the perco-
lation point consists of singular peaks coming from the graph components (maximal disjoint
subgraphs constituting the random graph). For a subgraph of size k, the corresponding
adjacency matrix Ak is of size k×k, and the spectrum is determined by the equation

A Idet 0k k( )l- = , where Ik is the k×k identity matrix. There are k eigenvalues; apart from
k, the eigenvalues depend on the topology of the subgraph. The heights of peaks are the
eigenvalue multiplicities, the eigenvalue 0l = appears with the highest multiplicity. For
instance, the graph shown in figure 1 has 222 subgraphs of size one (isolated vertices) each of
them contributing to 0l = . There are also 10 linear chains of length three, 3 chains of size
five, and 1 chain of size seven contributing to 0;l = generally any chain of odd length has
eigenvalue 0. Trees which are not linear chains also can have eigenvalue 0. One can bipartite
any tree into two disjoint parts X1 and X2 with edges only between X1 and X2. If the sizes
n X1 1= and n X2 2= of parts are different, say n n1 2> , the adjacency matrix has eigen-
value 0 with multiplicity at least n n1 2- .

The singular spectral density, ( )r l , for an ensemble of 1000 random symmetric matrices
A, each of size 500×500 and generated with probability q 2.0028 10 3= ´ - , is shown in
figure 2(a). The spectrum possesses the regular ultrametric hierarchical structure which
becomes even more profound while plotting ln ( )r l , as shown in figure 2(b). Near the value
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2l =  the enveloping curve of the function ln ( )r l exhibits a fracture, clearly visible in the
insert of figure 2(a), where the spectrum is replotted as 1 3 ( )r l and the slops are depicted by
the dashed lines s1 and s2. (The choice of the exponent 1/3 for the curve 1 3 ( )r l is an
‘experimental’ selection: we have just noted that such a scaling gives the best linear shape for
the enveloping curve and clearly demonstrates the fracture of the shape near 2l =  .)

The largest eigenvalue of a tree can be roughly estimated as p2 1max
treel = - , where p

is the maximal vertex degree of a tree (see e.g. [29–32]). For linear chains, the maximal
degree is p=2 (when the chain length is at least three) and the maximal eigenvalue
is 2max

linl = .
In the bulk of the spectrum of sparse ensemble, the randomly branching trees (with

p=3) and linear chains (with p=2) dominate (some estimates are given in the following

Figure 1. Typical sample of components constituting a random graph associated with
an adjacency matrix A generated by the rule (1); the parameters are N=500
and q 2.0028 10 3= ´ - .
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sections). For 2max
linl l> = , the linear chains do not contribute to the spectral density,

and only graphs with p 3 remain. For Erdős–Rényi random graphs, the fraction of trees
with p 4 is finite but numerically small. With a high probability, there are no such trees for
sufficiently small N. This explains the maximal eigenvalue 2 2 2.83max

treel = » , coming
from graphs with p=3, which we observed in simulations (figure 2(b)).

3. Distribution of linear chains at the percolation threshold

The spectral analysis of ensemble of random adjacency matrices A at the percolation threshold
is cumbersome since the spectra of the components depend on their topology. For random
Erdős–Rényi graphs, however, almost all components are trees (see e.g. [33, 34]). Further-
more, at the percolation point (and certainly below it) the majority of subgraphs are linear
chains as we show below. The spectrum of each linear chain is easy to compute, so to get the
spectral density, lin ( )r l , of an ensemble of chain-like subgraphs we should know the dis-
tribution, Qn, of linear chains of length n at the percolation point. Below we derive an explicit
expression for Qn. We first recall a kinetic theory approach which allows one to determine the
size distribution of generic clusters (irrespective of their topology) and then adopt this fra-
mework to the computation of the size distribution of linear chains.

3.1. General formalism: cluster size distribution

A cluster is a maximal connected component. To determine the cluster size distribution we
employ a dynamical framework (see e.g. [34]), namely we begin with a disjoint
graph represented by a collection of N separated vertices and start linking them with a
constant rate. When two vertices from distinct clusters become linked, the clusters join.

Figure 2. (a) Spectral density ( )r l for ensemble of 1000 symmetric random 500×500
Bernoulli matrices, generated at q 2.0028 10 3= ´ - possesses regular ultrametric
structure. The fracture of the enveloping curve near 2l =  is clearly visible in the
insert, where 1 3 ( )r l is plotted; (b) the plot of ln ( )r l shows the ultrametric structure
of the spectral density and terminates close to the maximal eigenvalue for 3-branching
trees, 2 2 2.83max

treel = » .
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Generally, there are i×j ways to join distinct clusters of size i and j. Hence, the clusters
undergo an aggregation process

i j i j, 2
ij N2

( ) ⟶ ( )
( )

+

which proceeds with a rate proportional to the product of their sizes. We want to determine
the cluster size distribution, ck(t). By definition, c t N t Nk k( ) ( )= , where Nk(t) is the total
number of components with k nodes. In (2) the linking rate is chosen to be N2 1( )- . With this
choice, the cluster size distribution ck(t) satisfies

c

t
c jc k c

d

d

1

2
i . 3k

i j k
i j k( )( ) ( )å= -

+ =

The initial condition is c 0k k,1( ) d= . The gain term in (3) accounts for clusters generated
by joining two smaller clusters whose sizes sum up to k. The second term on the right-hand
side of equation (3) represents loss due to linking of clusters of size k to other clusters. The
corresponding gain and loss rates follow from the aggregation rule (2). Stopping the aggre-
gation process at time t leads to a random graph with adjacency matrix characterized by the
connectivity probability q = t/N.

Equation (3) have been solved via various techniques [34]. Here we recall one approach
as we shall use it in the next sub-section to determine the distribution of linear chains. The
idea is to eliminate the time dependence. Solving (3) recursively one gets

c t c t t c t t c t te ; e ; e ; e ; etc. 4t t t t
1 2

1
2

2
3

1
2

2 3
4

2
3

3 4( ) ( ) ( ) ( ) ( )= = = =- - - -

This suggests to seek the solution in the form

c t C t e . 5k k
k kt1( ) ( )= - -

Substituting this form into (3), we find that the coefficients Ck can be obtained recursively
starting from C 11 = and using

k C c jC1
1

2
i 6k

i j k
i j( )( )( ) ( )å- =

+ =

for k 1> . Using a generating function technique [35, 36] one getsCk
k

k

k 2

!
=

-
. (The kk 2- factor

is the Cayley formula [36] for the number of labelled trees on k vertices; equation (7) can be
derived via a direct combinatorial computation.) Thus

c t
k

k
t e . 7k

k
k kt

2
1( )

!
( )=

-
- -

The large k tail is always exponential apart from the percolation point t t 1c= = where

c k k1 2 when 1. 8k
1 2 5 2( ) ( ) ( )p - - 

3.2. Distribution of linear chains

Consider now linear clusters (open chains). Let Qk(t) be the density of linear clusters of length
k 2 . We have Q c2 2= . For k 3 the chain size distribution evolves according to

Q

t
c Q Q Q k Q

d

d
2 2 , 9k

k
i j k

i j k1 1 ( )å= + --
+ =

where the summation is taken over i j2, 2  . It is convenient to define Q c1
1

2 1= . This
allows us to rewrite (9) as
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Q

t
Q Q k Q

d

d
2 10k

i j k
i j k ( )å= -

+ =

here the summation runs over all i j, satisfying i j k+ = . Another virtue of the agreement
Q c1

1

2 1= is that (10) is valid for all k 2 . Computing the first few densities we get

Q c Q c t Q c t Q te ; e ; e ; e 11t t t t
1

1
2 1

1
2 2 2

1
2

2
3 3

1
2

2 3
3

1
2

3 4 ( )= = = = = = =- - - -

etc (we have used (10) to determine Q4). One is led to the conjectural behavior

Q t t e . 12k
k kt1

2
1( ) ( )= - -

This indeed provides the solution to (10) and the initial condition Q 0k k
1

2 ,1( ) d= .
Thus, the linear chain length distribution (12) is purely exponential. Rewriting (12) as

Q t
t

1

2
e 13k

k t tln( ) ( )( )= - -

we see that the least-steepest decay occurs at the percolation point t t 1c= = where

Q Q 1
1

2
e . 14k k

k( ) ( )º = -

The total chain density at the percolation point is

c Q
e

1
1

2

2 e

1
0.474 928 . 15

j
j1

2

1
( ) ( )


å+ =

-
-

= ¼
-

Comparing this result with the total cluster density at the percolation point, c 1
k k1

1

2
( )å = ,

we conclude that at the percolation point almost 95% of clusters are linear chains. This
justifies the abundance of linear chains (see figure 1).

Note that the total mass density of linear chains at the percolation point

c jQ
e

1
1

2
1 1 e 0.644 2765 , 16

j
j1

2

1 2( )( ) ( )⎡⎣ ⎤⎦

å+ = + - = ¼- -

is significantly smaller than unity. Large clusters are usually not linear and hence despite of
their rareness they provide a notable contribution to the mass density.

3.3. Comments on more complicated components and different random graph models

Below the percolation point, the total number of components which are not trees remains
finite in the thermodynamic limit N  ¥, so it greatly fluctuates from realization to reali-
zation. The components which are not trees are unicyclic: each such component contains one
loop. At the percolation point the total number of unicyclic components diverges but very
slowly, viz as Nln1

6
. These results were established using probabilistic techniques, see [33];

they are also easily derivable using above dynamical approach (see [37]). Overall we see that
the contribution of the non-trees is negligible.

The influence of the ‘shape’ of the tree on the spectra is more notable. We have shown,
however, that the majority of the clusters are not merely trees, but linear chains. In principle,
one can modify the definition (1) to ensure that all components are chains. If each row (and
column) of the adjacency matrix A has no more than two non-zero elements, a 2

j

N
ij1
å =

for

i N1, ,= ¼ , the corresponding graph is obviously the collection of linear chains (including
loops) of various lengths.

Equivalently, the chain model can be defined dynamically by using the same procedure
as before and checking that the constraint is obeyed. In other words, we attempt to link
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vertices randomly, but we actually draw a link only if the degrees of both vertices are smaller
than 2. The cluster size distribution characterizing the chain model evolves according to
master equation

c

t
K c c c K c

d

d

1

2
17k

i j k
ij i j k

j
kj j

1

( )


å å= -
+ =

with reaction rate matrix

K

1 2 2 2
2 4 4 4
2 4 4 4
2 4 4 4

. 18ij ( )

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
=



 

The initial condition is c 0k k,1( ) d= . A more general model with reaction rate matrix of
the type (18) composed of three arbitrary rates has been studied in [38].

Using (17) and (18) one finds that the density of isolated vertices c t1( ) and the total
cluster density c t c t

j j1
( ) ( )å= satisfy a pair of coupled rate equations:

c

t
c c c

c

t
c c

d

d
2 ,

d

d
2 . 191

1 1
1
2 1

2( ) ( ) ( )= - - = - -

The initial condition becomes c c0 0 11( ) ( )= = . Treating c as a function of c1 we recast
(19) into c

c

c

c

d

d

1

21 1
= - , from which

c c c1 ln . 201
1
2 1 ( )⎡⎣ ⎤⎦= -

Plugging this into the first equation (19) we obtain an implicit solution

u

u u
t

d

1 ln
. 21

c

1

2
1 ( )

( )ò -
=

The following densities can be found by re-writing the rate equations (17) in a manifestly
recursive form

c

t
c c c c

c

t
c c c c c

c

t
c c c c c c

c

t
c c c c c c c

d

d
2 2 ,

d

d
2 2 2 ,

d

d
2 2 2 2 ,

d

d
2 4 2 2 ,

2 1
2 1

2
2 1

3
1 2 3 1

4
1 3 2

2
4 1

5
1 4 2 3 5 1

( )

( )

( )

( )

= - -

= - -

= + - -

= + - -

etc, and solving them recursively.
We use the notation ck, but we emphasize that clusters generated by the above procedure

are linear chains. There is no percolation transition in this model, so when should we stop the
process? Recall that for Erdős–Rényi random graphs, the percolation occurs when the average
degree is equal to one. In the model (17) and (18), the fraction of vertices of degree zero (d0),
vertices of degree one (d1), and vertices of degree two (d2) are
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d c

d c c c

d d d c c c

,

2 2 ,

1 1 2 .
j

j

0 1

1
2

1

2 0 1 1 1

( )

( )

å

=
= = -

= - - = - - -

The average degree d d d21 2= + is therefore d c2 1( )= - . Thus, in analogy with
Erdős–Rényi random graphs, we stop the process when the average degree reaches unity, the
corresponding time ts is found from c ts

1

2
( ) = . Another choice is to run the process till the

very end when the system turns into a collection of closed loops, see [39] for this and other
models of ring formation.

One can generalize above model by requiring that each row (and column) of the adja-
cency matrix A has no more than p non-zero elements: a p

j

N
ij1
å =

for i N1, ,= ¼ . This
model can be investigated in the dynamic framework. Unfortunately, it has proved to be much
more difficult for the analysis [40] than the extreme versions corresponding to the chain
model (p=2) and the Erdős–Rényi variant (p N 1= - ).

4. Spectral density of canonical ensemble of bi-diagonal random matrices

4.1. General formalism: spectral density

We have seen in the section 3 that the fraction of linear clusters of various lengths is about
95% at the percolation threshold in the ensemble of all sparse graphs. This justifies our study
of ensembles of linear clusters (open chain and loops) only.

It is convenient to represent the linear cluster ensemble at the percolation point (with the
distribution Qk in chain lengths) by the bi-diagonal N×N symmetric matrix B bij{ }= ,
where

B

x
x x

x x
x

0 0 0
0 0

0 0
0 0 0

22

1

1 2

2 3

3

( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
=



 

and the distribution of each b b xi i i i i, 1 1,= =+ + (i N1, ,= ¼ ) is Bernoullian:

x
q

q
1 with probability
0 with probability 1 .

23i ( )
⎧⎨⎩=

-

Due to ergodicity, the spectral density, lin ( )r l , of the ensemble of N N´ matrices B in the
limit N  ¥ coincides with the spectral density of an individual matrix B and can be
computed straightforwardly. Note that for any xk = 0, the matrix B splits into independent
fragments. So, it is instructive to consider subchains consisting of sequential set of xk = 1.
The probability to have a subchain with n consecutive 1 is Q qn

n˜ = , as it follows from (23).
Comparing Qn

˜ with the distribution Q en
n1

2
= - of linear subchains in ultra-sparse matrix

ensemble at the percolation point (see (14)), we conclude that q e 1= - .
In what follows we derive lin ( )r l for arbitrary values of q. This allows us to investigate

the spectral density of the ensemble of bi-diagonal random operators in the limit q→ 1 and
uncover it number-theoretic structure.

The spectrum of linear chain of length n (i.e. of symmetric n× n bi-diagonal matrix B
with all xk = 1, k n1, ,= ¼ ) reads
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The spectral density of the ensemble of N×N random matrices B with the Poissonian
distribution of matrix elements can be written as

N

N
G

N
Q G

lim
1

lim Im i

lim Im i , 25

N k

N

k

N
N

N
n

N

n n
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1

0

0 1

( )( )
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˜ ( ) ( )

å

å

r l d l l

e
p

l e

e
p

l e
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= -

e

e

¥ =
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¥
 =

where we have used an identity

lim Im
1

i
i .

0
( )

l e
pd l


=

e+


The Green function

G i
1

i
26n

k

n

k1

( ) ( )ål e
l l e

- =
- -=

with kl given by (24), is associated with each particular gapless matrix B of n sequential ones
on the sub-diagonals, while ... means averaging over the distribution Q qn

n˜ = .
Collecting (24)–(26), we find an explicit expression for the density of states, lin ( )r l :

N
q

k

n

lim
1

2 cos
1

. 27
N

n

N
n

k

n
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0 1 1
2

2

( ) ( )⎛
⎝⎜

⎞
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å år l
e
p

l
p

e
=

-
+

+e
¥
 = =

The sample plots lin ( )r l for two different values of q, namely for q = 0.7 and
q e 0.371= »- computed numerically via (27) with 3 10 3e = ´ - are shown in the figure 3
for N 103= .

4.2. Analysis of enveloping curves and tails of spectral density ρlin λð Þ

One can compute the enveloping curves for any monotonic sequence of peaks. In figure 3, we
show two series of sequential peaks: S 1 2 3 4 5 ...1 { }= - - - - - and
S 2 6 7 ...2 { }= - - - . Any monotonic sequence of peaks corresponds to the set of
eigenvalues kl constructed on the basis of Farey sequence [41]. For example, as shown

below, the peaks in the series S1 are located at
k

k
2 cos

1
kl

p
= -

+
, (k 1, 2,= ¼), while the

peaks in the series S2 are located at 2 cosk
k

k2 1
l = - p

¢
¢

¢ -
, (k 2, 3,¢ = ¼). Positions of peaks

obey the following rule: let , ,k k k1 1{ }l l l- + be three consecutive monotonically ordered
peaks (e.g., peaks 2-3-4 in figure 3), and let

p

q

p

q
2 cos , 2 cosk

k

k
k

k

k
1

1

1
1

1

1

l
p

l
p

= - = --
-

-
+

+

+
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where pk and qk (k N1, ,= ¼ ) are coprimes. The position of the intermediate peak, kl , is

p

q

p

q

p

q

p

q

p p

q q
2 cos , . 28k

k

k

k

k

k

k

k

k

k k

k k

1

1

1

1

1 1

1 1

( )l
p

= - = Å º
+

+
-

-

+

+

- +

- +

The sequences of coprime fractions constructed via the ⊕ addition are known as Farey
sequences. A simple geometric model behind the Farey sequence, known as Ford circles [42],
is shown in figure 4(a). Take the segment 0, 1[ ] and draw two circles O1 and O2 both of radius

r
1

2
= , which touch each other, and the segment at the points 0 and 1. Now inscribe a new

circle O3 touching O1, O2 and 0, 1[ ]. Where is the position of the new circle along the

Figure 3. The spectral density lin ( )r l for the ensemble of bi-diagonal matrices of size
N 103= at q = 0.7 (a) and q e 0.371= »- (b); the regularization parameter e is
taken 2 10 3e = ´ - .

Figure 4. Ford circles as illustration of the Farey sequence construction: (a) each circle
touches two neighbors (right and left) and the segment; (b) determination of the
position of newly generated circle via the ⊕ addition:

p

q

p

q

p p

q q
k

k

k

k

k k

k k

1

1

1

1

1 1

1 1
Å =

+

+
-

-

+

+

- +

- +
.
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segment? The generic recursive algorithm is shown in figure 4(b) and constitutes the Farey
sequence construction.

Consider two examples related to the set of eigenvalues.

• The monotonic series S1 is can be constructed recursively by taking

2 cos
2

0, 2 cos
1

2.1l
p

l
p

º - = º - =¥

The next-to-highest peak 2 is located at

2 cos
1

2

1

1
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2

3
1.2 ⎜ ⎟

⎡
⎣⎢

⎛
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⎞
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⎤
⎦⎥l p

p
= - Å = - =

Peak 3 is located at

2 cos
2

3

1

1
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3

4
2 .3 ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥l p

p
= - Å = - =

Peak 4 is located at

2 cos
3

4

1

1
2 cos

4

5

5 1

2
4 ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥l p

p
= - Å = - =

+

etc. The generic expression for kl in the series S1 reads

k

k
k2 cos

1
, 1, 2, . 29k ( ) ( )l

p
= -

+
= ¼

• The monotonic series S2 is can be constructed similarly by taking as reference points 1l
and 2l . For peak 6 we have

2 cos
1

2

2

3
2 cos

3

5

5 1

2
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⎠
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Peak 7 is located at

2 cos
1

2

3

5
2 cos

4

7
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⎡
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⎛
⎝

⎞
⎠

⎤
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p
= - Å = -

etc. The generic expression for kl ¢ in the series S2 reads

k

k
k2 cos

2 1
, 2, 3, . 30k ( ) ( )l

p
= -

¢
¢ -

¢ = ¼¢

As follows from (27), the function lin ( )r l is nonzero only at kl . In figure 5 we show the

set of eigenvalues k 2 cosn
k

n 1
( )l = - p

+
for n 1, , 50= ¼ . Every point designates some

eigenvalue, kl (see (24)); the points along each curve correspond to different values k for a
specific value n. The collection of eigenvalues in each horizontal line, coming from different
n, gives the multiplicity of corresponding eigenvalue kl and contributes to the height of a
peak in the spectral density lin ( )r l .

The heights of peaks in any monotonic sequence (like S1 or S2) can be computed directly
from (27) by summing geometric series along each horizontal line in figure 5. For example,
for the sequences S1 and S2 we have:
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Note that the expressions (31) and (32) are tightly linked to so-called visibility diagram
(our notion is slightly modified with respect to a visibility diagram defined in [43]). Consider
the square lattice of integer points (m, n) and add a weight qm to each vertical row. Emit rays
at rational slopes

p

q
from the point 0, 0( ) within the wedge 4, 2[ ]p p in the positive

direction as shown in figure 6.
Let us sum up the weights, qm, of integer points along each ray emitted at the rational

slope p

q
. For example, consider the sequence of slopes k

k 1+
with k 1, 2,= ¼ and k

k2 1

¢
¢ -

shown in figure 6. One can verify that these geometric series exactly reproduce the sequences
S1 and S2 in equations (31) and (32) at corresponding k and k¢.

Figure 5. Family of 20 curves w k 2 cosn
k

n 1
( ) = - p

+
. Each curve corresponds to a

particular n 1, , 20= ¼ from left to the right, the points along the curves mark values
k n1, ,= ¼ . Each horizontal dashed line is the multiplicity of the corresponding root
and contributes to the height of the peak in the spectral density.
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Two parametrically defined enveloping curves, namely k,k
S1( ( ))l r for the sequence

S1 k 1, 2,( )= ¼ and k,k
S2( )( )l r ¢¢ for the sequence S2 k 2, 3,( )¢ = ¼ , are shown in

figure 3(a) by dashed lines. Equations (31) and (32) allow to find the singular tails of
distributions S1 ( )r l as 2l  and S2 ( )r l as 0l  . Expand now S

k1 ( )r l in (31) at k  ¥
and S

k
2 ( )r l ¢ at k¢  ¥:

S q

S q
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: 2 cos , . 33
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k k
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p p
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- ¥ ¥

Expressing k and k¢ in (33) in terms of λ and l¢, we get

k k
2

,
2

. 34( )p
l

p
l


-

¢ 
¢

Asymptotics (34) together with (33) permit us to find the singular tails of the eigenvalue
distribution lin ( )r l at 2l  and 0l¢  :

q q2 , 0 . 35S S
lin

2
lin

1 2 ( )( ) ( )r l r l  ¢   ¢p l p l-

The edge singularity 2S
lin

1 ( )r l  at 2l  in equation (35) of the eigenvalue distribu-
tion reproduces the corresponding Lifshitz tail of the one-dimensional Anderson localization
in random Schrödinger operator [44, 45]:

E e E1 d 2( )r ~ -

where E 2 l= - and d=1. The appearance of the edge singularity E e E1( )r ~ - in our
situation is purely geometric, it is not relied on any entropy-energy-balance consideration like
optimal fluctuation [44]. Moreover, we would like to emphasize some universality of the
Lifshitz tail: typically, Anderson localization of type (35) appears for random three-diagonal

Figure 6. Visibility diagram. Each point in the vertical row m carries a weight qm.
Integer points within the wedge 4, 2[ ]p p are designated by circles. The dashed rays
are drawn at rational slopes p

q
. The weights qm corresponding to marked integer points,

are summed up along the rays.
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operators with the randomness on the main diagonal, while in our case we have a randomness
in off-diagonal symmetric ‘hopping rate’.

5. Spectral density of bi-diagonal matrices in the limit q → 1 and the Dedekind
η-function

In this Section we present arguments demonstrating that the singular spectral density, ( )r l , of
ensemble of random bi-diagonal operators B defined in (22) and (23), in the asymptotic
regime q 1 is connected to the limiting behavior of some well-known modular function,
namely of Dedekind η-function. Our conclusion is based on observation that ( )r l at sin-
gularities can be expressed in terms of Dedekind η-function at rational points near the real
axis. Since our derivation is far from being rigorous, we support it by numeric computations,
which demonstrate striking similaritie of ( )r l in the limit q 1 and a profile constructed on
the basis of z( )h for zIm 0 .

5.1. Tails of bi-diagonal matrices at q→1

Generic expressions (31) and (32) allow to analyze the tails of the distribution lin ( )r l when
q 1 and k is fixed. Namely, taking the limit q 1 in (31) and (32), we arrive at:

q
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These expressions lead us to the following asymptotics of tails of the distribution ( )r l at

2 2
k k 1

2

2l » - p
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k k2 1l¢ » p
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Similarly, any monotonic sequence, can be analyzed, and corresponding degeneracy of
eigenvalue λ (i.e. height of every peak) can be obtained. The figure 6 makes this statement
transparent: we sum lattice points with proper weights along rays emitted at rational slopes
from the origin. We see that all tails of intermediate monotonic sequences have scaling
behavior as in the sequence S

1
2 ( )r l . Note also an essential difference of (37) with (35).

5.2. Limiting properties of the Dedekind η-function via duality relation

Let us demonstrate that the tails (37) appear in asymptotic analysis related to the Dedekind
η-function. Recall the definition of the Dedekind η-function [46]:

z e 1 e . 38z

n

nzi 12

0

2 i( )( ) ( )h = -p p

=

¥

The argument z x yi= + is called modular parameter and z( )h is defined for
zIm 0> only.
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It is convenient to introduce the following ‘normalized’ function

f z C z y C;
1
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The structure of f(z) in the context of ultrametric landscape construction has been dis-
cussed in the paper [47]. At the same time, it is well known that Dedekind η-function shares
properties related to hyperbolic geometry. To make the content of this paper selfconsistent,
we summarize in Appendix facts, which demonstrate the connection between the hyperbolic
and ultrametric structures of Dedekind η-function.

The function f(z) satisfies the following duality relation
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where ,m

k

s

k{ } { } denote fractional parts of corresponding quotients. Two particular duality
identities follow from (40):
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Using (41) we can obtain the asymptotics of z( )h at y 0 +. Take into account the
relation of Dedekind η with Jacobi elliptic functions:
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Rewrite (41) in terms of η-functions:
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(Since the computations are identical for both equations in (41), we do not reproduce the
derivation for the second one, and will write for it the final answer only). Applying (42) and
(43) to (44), we get:
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Equation (45) enables us to extract the leading asymptotics of yik

k 1( )h +
+

in the

y 0 + limit. Noting that every term of the series in (45) for any n 1 and for small y (i.e.
for y k 1 2( )+ - ) converges exponentially fast, we have
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In (47) we have dropped out the subleading terms at y 0 +, which are of order
of O yln( ).

Substitute now for k and k¢ in (47) the asymptotic expansions k
2

( )l » p
l-

and

k ( )l¢ ¢ » p
l
(see (34)). Since near the spectrum edges, k 1 and k 1¢ , we get
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The tails in (48) exactly match the tails of the spectral density A ( )r l and B ( )r l¢ in (37) if
we make an identification q y1 12p- = .

Repeating the same asymptotic analysis for any other monotonic sequence of peaks,
corresponding to particular sequences of coprime fractions, we arrive at the singularity
behavior (47). This is consistent with the conclusion that any monotonic sequence of peaks in
a spectral density ( )r l has the singular behavior as in equation (36).

Now we are led to the central conjecture of this work, which uncovers the number
theoretic nature of the spectral density of exponential ensemble of large random bi-diagonal
symmetric matrices.

Conjecture. Let q,lin ( )r l be the spectral density of ensemble of N×N bi-diagonal
symmetric random matrices with the Bernoulli distribution of nonzero matrix elements
defined in equations (22) and (23). For N  ¥ we have the relation:
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where η is the Dedekind η-function defined in (38). One can say, that equation (49)
establishes the link between spectral density of random one-dimensional Schrödinger-type
operators with the limiting values of modular function at rational points on the real axis.

Empirical evidence in favor of the above conjecture is presented in figure 7 where we
plot three functions:

Figure 7(a): Numerically generated spectral density of ensemble of N×N (N=3000) bi-
diagonal Bernoulli random matrices B (see (22)) with the Poissonian distribution of ‘1’
at q 0.98;=
Figure 7(b): Numerically computed eigenvalue density q,( )r l given by equation (27) for
matrices of size N=3000 and q 0.98;=
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Figure 7(c): Analytic expression given by the right-hand side of (49) at y 10q1

12
5

2( )= »
p

- - .

6. Discussion

6.1. Ultrametricity and rare-event statistics

We investigated the spectral density of a sub-ensemble of sparse symmetric Bernoulli
matrices near the percolation point. We showed that in the vicinity of the percolation point
linear chains constitute the overwhelming majority of clusters—about 95%. This led us to
study the spectral density of ensemble of linear chains only. The advantage of this con-
sideration is the possibility of exact treatment which allowed us to uncover the number-
theoretic structure of the corresponding density of states.

In a more practical setting, our analysis is applicable to investigation of polydisperse
solutions of linear polymers at any concentrations with Poissonian distribution in chain
lengths, where the ultrametricity could be directly seen in experiments. Namely, we have
checked that ultrametric structure of spectral density survives if one replaces the ensemble of
Bernoullian two-diagonal adjacency matrices B defined by (22) and (23) by the ensemble of
random Laplacian matrices [48]. Recall that the Laplacian matrix, L aij{ }= , can be con-
structed from adjacency matrix, B bij{ }= , as follows: a bij ij= - for i j¹ , and
a bii j

N
ij1= å = . Finding eigenvalues for Laplacian matrix L for linear chain, is equivalent to

determining its vibration spectrum. Thus, having diluted solution of linear chains with
exponential distribution in their lengths, and measuring the response on excitation of the
system at various frequencies, we expect to see the signature of ultrametricity in adsorption
spectra.

One tacit message coming from our work is that experimenting with biological activity of
highly diluted solutions of biologically active substances, one should pay attention to a very
peculiar structure of background noise originated from the rare-event statistics of dissolved
clusters. In order to make conclusion about any biological activity of regarded chemical
substance, the signal from background noise should be clearly identified. From this point of
view, the work [49] seems very interesting, since it represents a rare example of careful
attention to ultrametric-like distributions in biological and clinical data.

Figure 7. Spectral density lin ( )r l of ensemble of bi-diagonal Poissonian random
matrices (shown only for 0l ): (a) direct numeric simulation; (b) numeric
visualization of equation (27); (c) analytic construction provided by equation (49).
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As concerns exact results, we showed that the spectral density, lin ( )r l , in the ensemble of
bi-diagonal random symmetric matrices with the Bernoulli distribution of matrix elements
demonstrates a very peculiar ultrametric structure. Adding any constant value b bii ¯= to the
diagonal of the matrix B (see (22) and (23)) leads to the shift of the spectrum by the value b̄- .

The derivation of the shape of the enveloping curve for the spectral density, lin ( )r l , of
random Shrödinger-type operators presented by random symmetric bi-diagonal matrices, is
based on simultaneous localization of eigenvalues, 2 cosk k

l = p (k 1, 2,= ¼), constituting

the principal sequence, and of their multiplicaticity (degeneracy), k
q

q1

k

k( )r l =
-

( q0 1< < ). Eliminating k from the parametric dependence ,k k( ( ))l r l , one gets the sig-
nature of a Lifshitz tail for Anderson localization at the edge of the spectrum,

q2 2( )r l  ~ p l- - , typical for the one-dimensional Schrödinger random operators. We
emphasize that in our case the derivation is purely geometric.

Analyzing the limit q 1 , we have demonstrated that the function lin ( )r l shares
number-theoretic properties connected with the structure of the Dedekind h- function near
the real axis at rational points. Intriguingly, the limiting behavior of the Dedekind function
near real axis at rational points has tantalizing connections with Vassiliev knot invariants [50]
and with quantum invariants of 3-manifolds [51]; a new concept of quantum modular forms
was recently suggested [52] as a potential explanation.

6.2. Manifestation of the Dedekind η-function in natural science

Finally, we mention two other physical systems exhibiting a connection with the η function.
In [53] it has been argued that buckling of a leaf of some plants (like lettuce or spinach) is
related with isometric embedding of hyperbolic graphs (Cayley trees) into the 3D Euclidean
space. The buckling is described by a function, g(z), (Jacobian of transformation), which
defines the deformation of the hyperbolic graph in its projection from the 3D Euclidean space
into the complex plane (see also the section 5.1 of [54]).

For a regular 3-branching Cayley tree, the function g(z) can be expressed via the
Dedekind η-function [47, 53]. It has been noted in [47] that properly normalized function g(z),
namely, f z C z zIm1 1 4( ) ( ) ( )h= - , defined in equation (39), can be regarded as a con-
tinuous tree isometrically embedded into the half-plane zIm 0> —see the appendix for
details. The cut of the function f z 0.985, 1.0( ) [ ]Î is shown in figure 8(a), while in
figure 8(b) the same function is replotted in polar coordinates, obtained via the conformal
mapping of the upper half-plane zIm 0> to the unit disc. Note the striking similarity of
figure 8(a) with the set of touching Ford circles (figure 4). In fact, the x-coordinates of centers
of all lacunas in figure 8(a) obey the Farey construction.

Another well-known manifestation of number theory in natural science arises in the
context of phyllotaxis [55]. The connection of the cell packing with the Farey sequences has
been observed long time ago. It was not clear, however, why nature selects the Fibonacci
sequence among other possible Farey sequences. A tantalizing answer to this question has
been given by Levitov, see [56]. He proposed an ‘energetic’ approach to the phyllotaxis,
suggesting that the development of a plant is connected with an effective motion along the
geodesics on the surface associated with the energetic relief of growing plant.

Intriguingly, the energetic relief considered in [56] coincides with the relief of the
function f(z) depicted in figure 8 (to the best of our knowledge, the Dedekind η function has
newer been discussed in this context). The black arcs drawn in figures 8(a) and (b) are parts of
semicircles orthogonal to the boundaries and represent the geodesics of the surface f(z), which
are open level lines (by the symmetry, there are only two such level lines in figure 8(a) and
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three in figure 8(b)). The relief of the function f(z) shown in the figure 8(a) emerged pre-
viously in course of investigation of metric properties of ultrametric spaces [47]. The best
rational approximation of the boundary point, 5 1

2

- , at which the solid geodesics in
figure 8(a) terminates, is given by the continued fraction expansion

5 1

2

1

1
1

1
1

1 ...

, 50( )-
=

+
+

+

cut at some level k. Cutting (50) at sequential k, we get the set of fractions constituting the
interlacing Fibonacci sequences, Fk{ }, in nominators and denominators:

F

F

F

F

1

1
,

1

2
,

2

3
,

3

5
,

5

8
, , , .k

k

k

k

1

1
¼ -

+

Thus, the normalized η-function, f(z), plays a role of the energy relief of a growing plant.
The Fibonacci numbers are the benchmarks, which fix the connection between ultra-

metric and hyperbolic geometry, since, on one hand they appear as discrete symmetries of the
hyperbolic space, and on the other hand, being a subset of p-adic numbers, they uniquely
parameterize the distances in the ultrametric space [57]. In the appendix we summarize some
facts which elucidate the relation between ultrametricity and hyperbolic geometry.
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Figure 8. Cut ( f z 0.985, 1.0( ) [ ]Î ) of the contour plot of the function f(z) (see (39)):
(a) the representation in the upper half-plane, z x yi ;= + (b) the representation in the
unit disc obtained by the conformal mapping of the upper half-plant to the unit disc.
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Appendix. On ultrametricity and hyperbolic geometry. Modular Parisi matrix

The embedding of a Cayley tree  into the metric space is called ‘isometric’ if  covers that
space, preserving all angles and distances. The Cayley tree  isometrically covers the surface
of constant negative curvature (the Lobachevsky plane). One of possible representations of
, known as a Poincaré model, is the upper half-plane zIm 0> of the complex plane
z x yi= + endowed with the hyperbolic metric sd x y

y
2 d d2 2

2= + .
In [47] we have constructed the ‘continuous’ analog of the standard 3-branching Cayley

tree by means of modular functions and have analyzed the structure of the barriers separating
the neighboring valleys. In particular, we have shown that these barriers are ultrametrically
organized. The main ingredient of our construction is the function f(z) defined in (39). The
normalization constant C is chosen to fix the maximal value of f(z) equal to 1: f z0 1( ) <
for any z in the upper half-plane zIm 0> . The function f(z) has the following property: all
the solutions of the equation f z 1 0( ) - = define all the coordinates of the 3-branching
Cayley tree isometrically embedded into the upper half-plane z zIm 0( ) > with hyperbolic
metric. The density plot of the function f(z) in the region z z0 Re 1, 0.04 Im 1{ }   
and its 3D relief are shown in the figures A1 (a) and (b). The figure A1(b) clearly displays the
‘continuous’ tree-like structure of hills separated by the valleys. Consider now the function

v x f x y zln i ; Im 0. 51y ( ) ( ) ( )= - + >

The typical shape of v xy const ( )= is shown in the figure A1(c) for y=0.001. The function vy(x)
at any fixed y obeys the strong triangle inequality condition and hence possesses the
ultrametric organization of barriers separating the valleys. At y 0 + the function v(x)
exhibits the ‘linearity’ in sequentially increasing and decreasing barriers similar to the well-
known Thomae (‘popcorn’) function [58].

The function vy(x), defined on the interval x0 1< < , has the properties borrowed from
the structure of the underlying modular group PSL 2,( ) acting in the half-plane z y 0( ) >
[59, 60]. In particular: (i) the local maxima of vy(x) are located at the rational points; (ii) the
highest barrier on a given interval x x x,1 2[ ]D = is located at a rational point p

q
with the lowest

denominator q. On a given interval x x x,1 2[ ]D = there is only one such point. Locations of
barriers with consecutive heights on the interval xD are organized according to the group
operation

p

q

p

q

p p

q q
1

1

2

2

1 2

1 2
Å = +

+
, constituting the Farey sequence discussed in the main text of the

paper.

Figure A1. (a) Density plot of the function f(z) in the rectangle
z z0 Re 1, 0.01 Im 1 ;{ }    (b) 3D relief of the function f(z) in the rectangle
z z0 Re 1, 0.04 Im 0.5 ;{ }    (c) plot of the function vy(x) at y=0.001.
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Let us mention finally that using the function vy(x) we can construct the ‘modular Parisi
matrix’, Vy, which for first 3 hierarchical levels is shown below:
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The matrix (52) can be considered as a ‘continous’ analog of the Parisi matrix and could play
a role in problems where the ultrametricity should be consistent with metric structure of the
target space.
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