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Abstract
Navigability, an ability to find a logarithmically short path between elements using only local

information, is one of the most fascinating properties of real-life networks. However, the

exact mechanism responsible for the formation of navigation properties remained unknown.

We show that navigability can be achieved by using only two ingredients present in the

majority of networks: network growth and local homophily, giving a persuasive answer how

the navigation appears in real-life networks. A very simple algorithm produces hierarchical

self-similar optimally wired navigable small world networks with exponential degree distribu-

tion by using only local information. Adding preferential attachment produces a scale-free

network which has shorter greedy paths, but worse (power law) scaling of the information

extraction locality (algorithmic complexity of a search). Introducing saturation of the prefer-

ential attachment leads to truncated scale-free degree distribution that offers a good trade-

off between these parameters and can be useful for practical applications. Several features

of the model are observed in real-life networks, in particular in the brain neural networks,

supporting the earlier suggestions that they are navigable.

Introduction
Large scale networks are ubiquitous in many domains of science and technology. They influ-
ence numerous aspects of daily human life, and their importance is rising with the advances in
the information technology. Even human’s ability to think is governed by a large-scale brain
network containing more than 100 billion neurons[1]. One of the most fascinating features
found in the real-life networks is the navigability, an ability to find a logarithmically short path
between two arbitrary nodes using only local information, without global knowledge of the
network.

In the late 1960’s Stanley Milgram and his collaborators conducted a series of experiments
in which individuals from the USA were asked to get letters delivered to an unknown recipient
in Boston[2]. Participants forwarded the letter to an acquaintance that was more likely to know
the target. As a result about 20% of the letters arrived to the target on the average in less than
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six hops. In addition to revealing the existence of short paths in real-world acquaintance net-
works, the small-world experiments showed that these networks are navigable: a short path
was discovered through using only local information. Later, the navigation feature was discov-
ered in other types of networks[3]. The first algorithmic navigation model with a local greedy
routing was proposed by J. Kleinberg[4, 5], inspiring many other studies and applications of
the effect (see the recent review in [3]). However, the exact mechanism that is responsible for
formation of navigation properties in real-life networks remained unknown. It was recently
suggested that the navigation properties can rise due to various optimization schemes, such as
optimization of network’s entropy[6], optimization of network transport[7–12], game theory
models[13, 14] or due to internal hyperbolicity of a hidden metric space[15]. In ref. [16] a real-
istic model based on random heterogeneous networks was proposed to describe navigation
processes in real scale-free networks. Later, hyperbolicity of hidden metric space was proposed
as a possible reason of forming such navigable structures in real-life networks[14, 15, 17]. How-
ever it is unclear whether hyperbolicity and other aforementioned complex schemes are related
to processes in real-life networks. In this work we show that the navigation property can be
directly achieved by using just two ingredients that are present in the majority of real-life net-
works: network growth and local homophily[18], giving a simple and persuasive answer to the
question of the nature of navigability in real-life systems.

Advances in network studies often find their use in a highly connected field of applied
graph based algorithms. And one of natural products of navigation studies is emergence of new
efficient algorithms for distributed data similarity search (namely, the K-Nearest Neighbor
Search, K-NN) which is a keen problem for many applications[19]. K-NN algorithms based on
proximity graph routing have been known for decades[20–22], they, however, suffer from the
power law scalability of the routing hops number. Several graph-only structures with polyloga-
rithmic routing complexity inspired by the Kleinberg’s idea were proposed in refs. [23–25] to
solve this problem; their realization, nonetheless, was far from practical applications. In refs.
[26–28] an efficient general metric approximate K-NN algorithm was introduced based on a
different idea. The algorithm utilized incremental insertion and connection of newcoming ele-
ments to their closest neighbors in order to construct a navigable small world graph. By simula-
tions the authors showed that the algorithm can produce networks with short greedy paths and
achieves a polylogarithmic complexity for both search and insertion, firmly outperforming
rival algorithms for a wide selection of datasets[28–30]. However, the scope of the works[26–
28] was limited to the approximate nearest neighbors problem.

Based on these ideas we propose Growing Homophilic (GH) networks as the origin of small
world navigation in real-life systems. We analyze the network properties using simulations and
theoretical consideration, confirming navigation properties and demonstrating that the scale-
free navigation models[16, 31, 32] considered earlier are not truly local in terms of information
extraction locality (algorithmic complexity of a search), while the proposed model is. We also
show that the GH network features can be found in real-life networks, with an emphasis on
functional brain networks.

Functional brain networks are studied in vivo using MRI techniques[33] and are usually
modeled by generalizations of random models[34–36] requiring global network knowledge. It
was suggested that the brain networks are navigable through utilizing the rich club (a densely
interconnected high degree subgraph[37]) and that the navigation plays a major role in brain’s
function[38]. In the recent work[14] it was demonstrated that the functional brain networks
have a navigation skeleton that allows greedy searching with low errors. Both growth and
homophily[35, 39] are usually considered to be important factors influencing the brain net-
work structure. Local connection to nearby neurons together with network growth are consid-
ered as a plausible mechanism for formation of long range connections in small nervous
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networks[40, 41], similarly to the proposed model. Our study shows that the GH networks
have high level features that are found in the functional brain networks, indicating that the GH
mechanism is not suppressed and plays a significant role in brain network formation, thus sup-
porting the earlier suggestions that the brain networks are naturally navigable.

GH networks can also be viewed as a substantial generalization of a complex growing spatial
1D OHOmodel introduced in [42], which included incremental connection of new elements
to near 1D circle interval neighbors, followed by interval normalization. The OHOmodel dem-
onstrated a way to deterministically produce networks with high clustering and short average
path. Recently, another generalization of this model for the multidimensional case was pro-
posed as a possible mechanism for formation of neural networks[43]. However, formation of
navigation properties was not a subject of the OHO model studies. GH network in the case of
1D circle data can be also considered as a degenerated version of growth models studied in [17]
with an exclusion of popularity term (which also makes it similar to the OHOmodel). It was
demonstrated that the hyperbolic model from ref. [17], which is a growing model in a hyper-
bolic space, adequately describes evolution of many scale-free real networks. However, the
properties for the case without hyperbolicity (popularity) which leads to an exponential degree
distribution were studied poorly. As follows from the navigation models in refs. [15, 16, 32], a
scale-free degree distribution with γ<2.5 is required for the such networks to be navigable in
the large network limit, thus according to [15, 16, 32] without hyperbolicity the mentioned
growing network should not to be navigable. In contrast we show that the proposed GH net-
works with exponential degree distribution are in fact navigable even when using the definition
of navigability from ref. [16].

Results

Construction and navigation properties
To construct a GH network we use a set of elements S from a metric space σ and a single con-
struction parameterM. We start building network by inserting a random element from S.
Then we iteratively insert randomly selected remaining elements e by connecting toM the pre-
viously inserted elements that have minimal distance Δ to e, until all elements from S are
inserted. Unlike the models from refs. [4, 5, 7, 8, 16, 17, 42–45] and the Watts-Strogatz model
[46] (which all require global network knowledge at construction), the GH algorithm insertions
can be done approximately using only local information by selecting the approximate nearest
neighbors through a help of network navigation feature (see Methods section for details). This
has a clear interpretation: new nodes in many real networks do not have global knowledge, so
they have to navigate the network in order to find their place and adapt. The tests showed that
under appropriate parameters there is no measurable difference in network metrics whether
the construction had exact or inexact neighbors selection, while the network assembly process
was drastically faster in the approximated neighbors case.

Because the elements from S are not placed on a regular lattice, the greedy search algorithm
can be trapped in a local minimum before reaching the target. The generalization of the regular
lattice for this case is the Delaunay graph, which is dual to the Voronoi partition. If we have a
Delaunay graph subset in the network, the greedy search always ends at an element from S
which is the closest to any target element t 2 σ [47], thus exactly solving the Nearest Neighbor
problem. In a less general case when t 2 S (i.e. the target is an element from the network), it is
enough to have a Delaunay subgraph–the Relative Neighborhood Graph[20]. It is easy to con-
struct a Delaunay graph in low dimensional Euclidian spaces, especially in 1D case where
Delaunay graph is a simple liked list, however it was shown that constructing the graph using
only distances between the set elements is impossible for general metric spaces[47]. Still,
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connecting toM nearest neighbors acts as a good enough approximation of the Delaunay
graph, so that by increasingM or using a slightly modified versions of the greedy algorithm
these effects can be made negligible[27, 28]. The average greedy algorithm hop count of a GH
network for different input data is presented in Fig 1(A). The graph shows a clear logarithmic
scaling for all data used, including a non-trivial case of edit distance for English words. At the
parameters used, the probability of a successfull navigation was higher than 0.92 for all the data
and higher than 0.999 for vector data with d<5.

The definition of navigability in [16] requires also that the greedy search success probability
does not tend to zero in the limit of infinite network size. This restriction has led to a conclu-
sion that the navigability should be expected only for the power law degree distribution net-
works with γ<2.5. Networks produced by a GHmodel are also navigable by the
aforementioned definition at least at small dimensionality (d�6), as tests indicate that the
recall converges to a constant value (see Figure A in S1 File), thus demonstrating existence of a
new class of navigable models.

Degree distribution and information extraction locality
A GH network has an exponential degree distribution (see in Fig 1(B)). The scale in the expo-
nent is determined by theM parameter, similar analysis can be done as in [42, 43]. The expo-
nential degree distribution is present in the real-life networks such as power grids, air traffic
networks, and collaboration networks of company directors[48]. Studies of the functional
brain network degree distribution yielded ambiguous results: some investigations have shown
exponential degree distribution, while others exhibited scale-free or truncated scale-free distri-
bution[49].

Most of the studied real-life networks, however, have a power law degree distribution. The
GH algorithm can be slightly modified by adding a preferential attachment (PA)[50] to pro-
duce a scale-free (power law) degree distribution (which makes it somewhat similar to the
growing models in a hyperbolic plane[17]). To achieve that, the distances to the elements are
normalized by k1/d during the network construction for uniform data in Euclidean space (see

Fig 1. (a) Average hop count during a greedy search for different dimensionality Euclidian data and English words database with edit distance,
demonstrating the logarithmic scaling. (b) Degree distribution for the GH algorithm networks with PA for different degree cutoffs (kc).

doi:10.1371/journal.pone.0158162.g001
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the Methods section for the details), leading to a power law degree distribution with γ close to
3. With the addition of a cutoff kc, the degree distribution transforms into a power law with an
exponential cutoff (see Fig 1(B)). As expected for scale-free networks[16], adding the preferen-
tial attachment does not suppress the network navigability (see Fig 2(B)).

Exponential degree distribution is usually attributed to limited capacity of a node or to
absence of PA mechanisms. However, there is another critical distinction between scale-free
and exponential degree distributions in terms of locality of information extraction which arises
in virtual computer networks having practically no limit on node capacity. We define the local-
ity as the number of distance computations during a greedy search, which also corresponds to
algorithmic complexity of a search algorithm. Our simulations show that, for the scale-free net-
works (both in GH networks with PA and scale-free networks studied in [16]), the number of
distance computations has a power law scaling with the number of network elements, in con-
trast to GH networks without PA and Kleinberg’s networks which have a polylogarithmic scal-
ing[28] (see Fig 2; comparison with scale-free networks from [16] is presented in S1 File). This
happens because the greedy algorithm prefers nodes with the highest degrees (which have
monopoly on long range links)[16] while the maximum degree in scale-free network has
power law scaling N1/(γ-1) with the number of elements[51] leading to N1/(γ-1) search complex-
ity. The authors in [15] argued that the best choice for optimal navigation is when γ is close to
2; this, however, leads to almost linear scaling of greedy search distance computations number.
Such scaling makes using scale-free networks impractical for greedy routing in large-scale net-
works where high locality of information extraction matters, which is the case of K-NN algo-
rithms and is likely to be the case for the brain networks.

The importance of employing the locality of information extraction as a measure for net-
work navigation studies can be underpinned by considering a star graph (a graph where every
node is connected to a single central hub) with a modified greedy search algorithm that uses
effective distance Δ�eak (where k is degree of a candidate node, a is a parameter, Δ is initial met-
ric distance between the candidate and the target). The parameter a can be always set large
enough, so that every greedy path will go through the hub reaching the target in two steps

Fig 2. Comparison of the GHmodel to the GHmodel with PA. (a) Number of distance computations per a greedy search for GH network with PA for
different degree cutoffs (kc). (b) Average hop count during a greedy search for GH network with PA for different degree cutoffs. The inset shows the decay
of greedy hop slope with an increase of the degree cutoff. Both plots are presented for Euclid data with d = 2,M = 12.

doi:10.1371/journal.pone.0158162.g002
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regardless of the network size. This network is ideal in all navigation measures defined in [15,
16], having short path, ideal success ratio and low average degree. However, to find these paths
the greedy search algorithm has to utilize the hub’s global view of the network and to compare
distances to every network node thus having a bad linear algorithmic complexity scaling.

At the same time, the scale-free networks offer less greedy algorithm hops compared to the
base GH algorithm which is beneficial. A power law degree distribution with an exponential
cutoff seems to be a good tradeoff between low number of hops and low complexity of a search.
Slightly increasing the cutoff kc aboveM in GH algorithm with PA sharply decreases the num-
ber of greedy algorithm hops (see Fig 2(B)), while having almost no impact on the number of
distance computations (Fig 2(A)). This finding can be used for constructing artificial networks
optimized for best navigability both in terms of complexity and number of hops.

Link length distribution and optimal wiring
For uniformly distributed bounded d-dimensional Euclidian data, the average distance between
the nearest neighbors scales as r(N)* N−1/d (1) with the total number of elements N in the
network. It means that every characteristic scale of link length in a final network can be put in
correspondence to some specific time of construction. That allows deducing the link length dis-
tribution through differencing the equation (1). By doing this we get a power law link length
density dN* r−αdr with α = d + 1 exponent (confirmed by the simulations). It was recently
shown[7, 8] that α = d + 1 is the optimal value for the shortest path length and greedy naviga-
tion path in case of constraint on total length of all connections in the network. Thus, GH net-
works are naturally close to optimal in terms of the wiring cost.

Power law link length distributions with α = d + 1 are encountered in real-life networks like
airport connections networks[52] and functional brain networks[53, 54]. It was speculated in
refs. [7, 8] that such behavior arises due to global optimization schemes, while GH networks
provide a much more simple and natural explanation for the exponent value.

Self-similarity and hierarchical modular structure
Construction of a GH network is an iterative process: at each step we have as an input a naviga-
ble small world network and we insert new elements and links preserving its properties. A part
of a uniform data GH network covered by a ball is also a navigable small world with few outer
connections. Thus, the GH networks have self-similar structure. Analysis of self-similarity
identical to [31] is presented in in Figure B in S1 File, demonstrating a self-similar structure of
network’s clustering coefficient.

The hierarchical self-similarity property is found in many real-life networks[31, 55, 56].
Studies have shown that the functional brain networks form a hierarchically modular commu-
nity structure[53, 57] consisting of highly interconnected specialized modules, only loosely
connected to each other. This may seem to contradict the small world feature which is usually
modeled by random networks[53]. GH networks can easily model both small world navigation
and modular structure simultaneously by introducing clusters. In this case, coordinates of the
cluster centers may correspond to different neuron specialties in a generalized underlying met-
ric space. A 2D GH network for clustered data is presented in Fig 3 demonstrating highly mod-
ular and at the same time navigable network structure containing only 30 intermodular links
(0.03% of the total number) between the first elements in the network (which form a rich club).
By using a simple modification of the greedy algorithm with preference of high degree nodes
(see the Methods section) short paths between different module elements can be efficiently
found using only local information.
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Rich club and greedy hops upper bounds
Simulations show that probability of a connection between the GH network elements grows
exponentially with the element degree, thus demonstrating the presence of a rich club (see
Figure D in S1 File). Due to incremental construction and self-similarity of the GH networks
every preceding instance of a GH network acts as a rich club to any subsequent instance. To
achieve a well-defined rich club, the self-similarity symmetry has to be broken by introducing
non-fractality in data, such as a fixed number of clusters in Fig 3.

Universally, the rich club is composed of the first elements inserted by the GH algorithm,
which is also the case for the brain networks. Studies have shown that the rich club in human
brain is formed before the 30th week of gestation with almost no changes of its inner connec-
tions until birth[58]. Moreover, the investigations of C. elegans worms neural network have
shown that the rich club neurons are among the first neurons to be born[59, 60]. Thus,
together with [40], the GH model offers a plausible explanation of how the rich clubs are
formed in brain networks.

Due to presence of rich clubs in GH networks a general navigation analysis similar to the
scale-free networks from [16] can be done. At the beginning of a greedy search the algorithm
“zooms-out” preferring high degree nodes with a higher characteristic link radius until it
reaches a node for which the characteristic radius of the connections is comparable with the
distance to the target node. Next, a reverse “zoom-in” procedure takes place until the target
node is reached, see [16] for details.

Fig 3. 2D network constructed by the GH algorithm withM = 5 for clustered d = 2 Euclidian data. The
inset shows scaling of the modified greedy algorithm average hop count.

doi:10.1371/journal.pone.0158162.g003
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We offer a slightly different perspective. It can be shown that in GH networks the rich club
is also navigable, meaning that a greedy search between two rich hub nodes is very likely to
select only the rich club nodes at each step. This is illustrated by the simulations results in Fig 4
(A) showing that the average hop count for the first 104 elements selected as start and targets
nodes does not depend on the dataset size, i.e. the greedy search algorithm ignores newly
added links. Fig 4(B) shows a schematic Voronoi partition of rich club element connections for
a greedy algorithm step with another rich club element as a target. In the case of a good Delau-
nay graph approximation (high enoughM) addition of new elements alters the Voronoi parti-
tioning only locally as is shown in Fig 4(B), thus having no impact on the greedy search
between the rich club elements. The latter can be proved for 1D vector spaces, since in 1D the
Voronoi partitions of the new elements are completely bounded by a single rich club element
further from the base element in the same direction. It is not, however, straightforward how to
make a rigid proof for higher dimensionality/more general spaces.

Self-similarity and navigability of the rich club in GH networks play a crucial role in the
navigation process. Suppose we have a GH network which has a perfect Delaunay graph as sub-
set at every step, rich club navigation feature and has an average greedy algorithm hop count
H. We can show that by doubling the number of the elements the average greedy path increases
no more than by adding a constant, thus having a 2log2(N) upper bound of the greedy hop
number.

If the start and target nodes are from the rich club (first half of the network), the average
hop count does not increase as it has been shown previously. If the greedy algorithm starts a
search for a distant target from a newly added element it has at least 1/2 probability that the
next selected element is from the rich club (since a half of the elements is from the rich club,
assuming no correlation with the connection distances), thus reaching the rich club on average

Fig 4. (a) Average number of greedy algorithm hops scaling for the first 104 elements given as start and target nodes (red) and all elements used for search
(black). The first 104 elements form a rich club that ignores more newly added elements. The results are presented for Euclidian data with d = 2,M = 20. (b)
Cartoon of Voronoi partition for connections of a single greedy search step. Newly added elements (green) cause only local changes in Voronoi partitioning,
so if the target element lies outside the current element connections, it falls into Voronoi partition of rich club’s elements (blue), thus ignoring local
connections at greedy search.

doi:10.1371/journal.pone.0158162.g004
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in two steps. Next, the greedy algorithm needs on average no more than H steps to get to a rich
club element for which the Voronoi region has the query. For a case when the destination node
is from the rich club the average number of hops is thusH+2. In the opposite case the search
ends on average in two additional steps, because the probability that next node is from the rich
club is at least 1/2 and since we have already visited the rich club node that is closest to the
query, this cannot happen. Thus the average number of hops in this case isH+4. By concerning
the last case (the target–newly added element and start element is from the rich club) we get an
average H+2 hops. Thus the upper hop bound scales as 2log2(N) proving GH networks have a
logarithmic scaling of the greedy search hops. This consideration also predicts the scaling
log2(N) of the shortest path length, and thus the stretch (the ratio between the greedy path
length and the short path length) should be equal to 2.

Greedy paths inferred from the simulations (Fig 1(A)) are significantly shorter than the pre-
sented theoretical upper bound (predicted upper bound is about 40 for one million elements).
The predicted stretch, however, is in agreement with the evaluated one for the case of large net-
works (see Figure E(a) in S1 File). The discrepancy in the number of greedy hops can be
explained in this setting by significantly less shortest path length due to exclusion from the con-
sideration of the links between non-consecutive generations of elements. The case when the
link overlap between the non-consecutive generations is small can be modelled in 1D by con-
necting to the exact Delaunay neighbors, this leads to producing the shortest paths very close
to the predicted upper bound (see Figure E(b) in S1 File). However, even in this case the num-
ber of greedy algorithm hops is still significantly smaller than the upper bound. The latter can
be explained due to the fact that in this setting the probability of selecting a correct link on
each step of the greedy search is significantly higher than 1/2 due to the strong correlation
between the length of the links and the element generation (i.e. the most distant link is very
likely to get you straight to the rich club, this is violated for large M values). A more detailed
consideration has to be made to get the exact bound of the greedy algorithm paths which takes
into account the number of neighbors M as well as higher dimensionality and preferential
attachment effects.

Discussion
Using simulations and theoretical studies we have demonstrated that two ingredients that are
present in the majority of networks, namely network growth and local homophily, are suffi-
cient to produce a navigable small world network, giving a simple and persuasive answer how
the navigation feature appears in real-life networks. In contrast to the generally used models, a
simple local GH model without central regulation by using only local information produces
hierarchical self-similar optimally wired navigable networks, which offers a simple explanation
why these features are found in real-life networks, without a need of employing hyperbolicity
or other complex schemes. Self-similarity and rich clubs navigation of the GH networks lead to
emergence of logarithmic scaling of the greedy algorithm hops in GH networks.

By adding PA with saturation the degree distribution can be tuned from exponential to
scale-free with or without exponential cutoff. We have shown that in case of pure scale-free
degree distribution (as well as for the scale-free networks studied in [16] and hyperbolic net-
works), the true logarithmic local routing cannot be achieved due to a power law scaling of
information extraction locality (algorithmic complexity of a search). Truncated scale-free
degree distribution offers a reasonable tradeoff between the path length and the algorithmic
complexity and can be used for practical applications.

Thus, every network that has both growth and homophily is a potential navigable small-
world network. This is an important finding for real-life networks, as real life is full of examples
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of growth and homophily shaping the network. Scientific papers form a growing navigable cita-
tion network (navigability of which is actively utilized by researchers) just by citing existing
related works. Big city passenger airports were among the first to open and later became big
network hubs which play an important role in spatial navigation in airport networks[16]. Neu-
ral brain networks are formed utilizing both growth and homophily, producing hierarchical
structures with rich clubs consisting of early born neurons. The proposed GHmodel offers a
conclusive explanation of navigability in these networks. Still, the evolution of some networks
including social structures incorporate other factors, such as node moving and departure. For
these networks, a sudden departure of a major node (say, a key manager in a company or rich
club neurons[61]) can seriously hurt the performance. However, some of these networks can
be resilient to the above-mentioned processes, thus preserving navigation. For example, there
are quite a few top-level deputies in big companies, and when a manager quits, he/she has to
pass his/her contacts to a newcomer.

There is evidence that in real-life networks such as an airport and brain networks, the GH
model is not suppressed by other mechanisms. In addition to the aforementioned growth and
homophily, several other high level features of the GH model are observed in brain networks,
such as low diameter, high clustering, presence of navigation skeleton, hierarchical self-similar
modular structure, power law link length distribution with exact d+1 exponent, and emergence
of a rich club from the first elements in the network. This indicates that the model plays a sig-
nificant role in the formation of brain networks and that they are likely to be navigable, sup-
porting the earlier suggestions[14, 38].

The proposed GHmodel can be used as a guide for building artificial optimally wired navi-
gable structures using only local information.

Methods

Construction
The GH networks were constructed through iteratively inserting the elements into the network
in random order by adding bidirectional links to theM closest elements. To find the connec-
tions we applied approximate K-NN graph algorithms[28] (C++ implementations of the
K-NN algorithms are available in the Non-Metric Space Library[62], https://github.com/
searchivarius/nmslib/) which utilized the navigation in the constructed graph. To obtain
approximateM nearest neighbors, a dynamic list ofM closest of the found elements (initially
filled with a random enter point node) was kept during the search. The list was updated at each
step by evaluating the neighborhood of the closest previously non-evaluated element in the list
until the neighborhood of every element from the list was evaluated. ForM = 1, this method is
equivalent to a basic greedy search. The bestM results from several trials were used as the
approximate closest elements. The number of trials was adjusted so that the recall (the ratio
between the found and the trueM nearest neighbors) was higher than 0.95, producing results
almost indistinguishable from what one get from the exact search. Pseudocode of the insertion
procedure is presented in the Supporting Information. Changing the seed of the algorithm ran-
dom data generators, connecting to theM exact neighbors and/or construction in many paral-
lel threads had a very slight effect on the evaluated network metrics.

The degree normalized distance is computed by dividing the standard L2 distance by a
power function of a network element degree, thus making high degree nodes effectively
“closer” to the target than they are in the plain Euclid space. The power in the degree function
is set to 1/d, where d is the dimensionality of the vector space. The preference to high degrees is
saturated by a constant kc: if the element degree is higher than kc, than the L2 distance is just
divided by the power function of the constant kc. Note that setting kc less than M leads to
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complete absence of the preference. Pseudocode of the degree normalized distance function is
presented in the Supporting Information.

The mentioned degree normalized distance was used to find the approximate connections
for the case of GH with PA. Instead of just connecting a new element to approximate L2 dis-
tance closest elements in GH networks, in case of GH with PA a new element is rather con-
nected to the elements which minimize the degree normalized distance function.

Datasets
Random Euclidian data with coordinates distributed uniformly in [0,1] range with L2 distance
was used to model the vectors. For testing the Damerau–Levenshtein distance, about 700k
English words from the Scowl Debain database were used as the dataset. In order to unambigu-
ously select the next node during a greedy search, a small random value was added to the
Damerau–Levenshtein distance. For Fig 1(A) parameterM was set to be 9, 12, 20, 25, 150 and
40 for Euclidian vectors with d = 1, 2, 3, 5, 50 and English word dataset, respectively. The suc-
cess ratio for the vectors was higher than 0.999 for d�5, higher than 0.92 for d = 50 and English
words data. On the average, only 760 distance computations were needed to find the path
between two arbitrary words in 700k database and only about 1280 distance computations
were required to find the path for 20 million d = 5 Euclidian vectors.

Network metrics
To evaluate the average number of hops, we used up to 104 randomly selected nodes as start
and target elements. The greedy algorithm selects at each step a neighbor that is closest to the
target as an input for the next step, until it reaches the element which is closer to the target
than its neighbors. The success ratio is the ratio of the number of successful searches to the
total number of searches. The search is considered failed if the result is not the target element.

The information extraction locality metric was evaluated by counting the average number
of distance calculations during a single greedy search.

To get a high recall (>0.95) for the tests with clustered 2D data (Fig 3) we used a modifica-
tion of the greedy search algorithm[44] that minimized the degree normalized distance, which
was also used for construction of GH networks with PA.

Supporting Information
S1 File. Supporting information. Supplementary part of the paper that includes: comparison
of the basic GH model to the scale-free networks from [16] (Figure A); plots of self-similarity
in clustering coefficient distribution (Figure B); plots of average nearest neighbor degree
(Figure C); plots of rich club coefficient (Figure D); pseudocode of the construction algorithm;
pseudocode of the degree normalized distance algorithm; plots of stretch and upper limits of
the greedy path in 1D (Figure E).
(PDF)
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