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A POINTWISE SELECTION PRINCIPLE
FOR FUNCTIONS OF A SINGLE VARIABLE
WITH VALUES IN A UNIFORM SPACE

V. V. Chistyakov *

Abstract

Given a sequence of functions, from a subset of the real line into a Hausdorff
uniform space, we present a new sufficient condition for the sequence to contain
a pointwise convergent subsequence. This new condition is much more weaker
than the available conditions on the boundedness of generalized variations of
functions, and reads in terms of some growth of moduli of variation of the func-
tions of the sequence. Moreover, using the notion of the moduli of variation we
study proper functions (i.e. those having one-sided left and right limits at each
point) with respect to a dense subset and show that the Helly type selection
principles involving the boundedness of generalized variations of the functions of
the sequence, which are new in the context of functions with values in a uni-
form space, are consequences of our main result on the existence of a pointwise
convergent subsequence.

Key words and phrases: moduli of variation, selection principle, pointwise con-
vergence, proper function with respect to a dense set, uniform space, generalized
variation.

1. Introduction

The classical Bolzano—Weierstrass theorem asserts that each bounded se-
quence of points of the real line R contains a convergent subsequence. The first
generalization of this theorem to sequences of functions is also a classical the-
orem of Helly, called Helly’s selection principle, which states that each uni-
formly bounded sequence of monotone functions on a set T C R contains
a pointwise convergent subsequence on T (see [13], and also, for example, [18,
Chapter VIII, Section 4, Lemma 2] if T = [a, ] is a closed interval and [8,
Theorem 1.3, Proof, Step 1] if T is arbitrary). Since each function of bounded
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Jordan variation is the difference of two nondecreasing bounded functions on 7',
Helly’s selection principle is valid for a uniformly bounded sequence of func-
tions whose Jordan variations are uniformly bounded. Further generalizations
of Helly’s selection principle, based on the selection principle for monotone
functions, are connected with the replacement of Jordan variation by more
general (or more weak) variations [1,4,5,8,12,17,20, 23].

In [10], whose main result is also stated in [7,9], a new universal approach
is proposed for the pointwise selection principle for functions that map 7' C R
into a metric space X. Instead of boundedness of a generalized variation of
any type for functions of a given sequence, in [10] a very weak constraint
is used on the modulus of variation (in the sense of Chanturiya [2,3]; also
see Section 2) of these functions. It is worth noting that this constraint
on the modulus of variation is not only sufficient for extracting a pointwise
convergent subsequence from a given sequence of functions, but also in some
cases it is necessary (e.g., in the case of the uniform convergence; also see
Theorem 6 in Section 5). Moreover, the results of [10] include as particular
cases many available Helly type selection principles involving the boundedness
of generalized variations (see the references above).

The aim of this paper is to extend the selection principles of [7,9,10] to
the functions with values in a uniform space X and show that the selection
principles with the boundedness of generalized variations, which are new in
the context under consideration, are consequences of our selection principle.

The article is organized as follows: In Section 2 we present the main defi-
nitions and formulate the central result of the paper, Theorem 1. In Section 3
we establish some properties of the moduli of variation of functions valued in
a uniform space. In Section 4 we study proper functions (i.e. those having right
and left one-sided limits at each point) with respect to a dense subset, which
makes the idea of the moduli of variation and their role clearer. Section 5 is
devoted to the proof of the central result. Finally, in Section 6 we show that
many available Helly type selection principles involving the boundedness of
generalized variations are consequences of our selection principle.

2. The main definitions and results

Throughout the paper we assume that (X,U) is a Hausdorff uniform
space whose uniform structure (or uniformity) U is defined by a complex
of pseudometrics {dp}pep (see [15, Chapter 6]), where P is an index set.
We describe these assumptions in slightly more detail as a reminder. Firstly,
for every p € P, the function dp: X x X — Rt =0, 00) is a pseudometric on
X; ie., for all z,y,z € X this function satisfies the conditions: dy(z,z) = 0,
dp(z,y) = dp(y, x), and dy(z,2) < dp(z,y) + dp(y, 2); moreover, if z,y € X
and d,(z,y) = 0 for all p € P imply x = y then X is said to be Hausdorff.
Secondly, the term “complex of pseudometrics {dp},cp” means that {dp},ep
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is the family of all pseudometrics on X uniformly continuous on X x X with
respect to the uniformity of the product. Recall that a pseudometric d), is
uniformly continuous on X x X with respect to the uniformity of the product
(see [15, Chapter 6, Theorem 11]) if and only if U,, € U for all r > 0,
where U, , = {(x,y) € X x X ‘ dy(z,y) < 7“}. Thirdly, note that since
{dp}pep is a complex of pseudometrics defining the uniformity ¢, the family
{Upr | p € P, r>0}is a base of U; i.e., for each U € U there exist p € P and
r > 0 such that Uy, C U (also see [15, Chapter 6, Theorem 18]).

Recall that a sequence {z;}32; C X in a uniform space (X,U) converges

to an element x € X (as j — oo) if and only if lim dy(z;,2) = 0 for all p € P.
j—o0

Since X is Hausdorff, this z is unique.

A subset Y C X of the uniform space (X, U) is called sequentially compact
(relatively sequentially compact) if each sequence of points from Y contains
a subsequence converging in X to an element of Y (to an element of X,
respectively).

Let @ # T C R. We denote by X7 the set of all functions f: T — X
mapping 7" into X. Let {f;} = {f;}}2; C XT be a sequence of functions
from T into X. We say that {f;} converges pointwise on T (uniformly on T)
to a function f € X7 provided Jli)rgo dy(f;(t), f(t)) = 0 for all p € P and all

t € T (provided lim sup;ep dy(fi(t), f(t)) = 0 for all p € P, respectively).
]—)OO

A sequence { f;} is said to be pointwise relatively sequentially compact if the se-
quence {f;(t)} is relatively sequentially compact for all ¢t € T'.
Given p € P, a positive integer n € N, f € X7, and @ # E C T, we put

vp(n, f, E) = sup{z dp (f(bs), f(as)) ‘ {ai}izq, {bi}i=y C E such that
i=1

a1<b1<a2<52<"'<an—1<bn—1<an<bn}-

The sequence {vp(n, f, E)};;o:1 C [0, 00] is called the modulus of variation of
f on E with respect to d,. The notion of the modulus of variation was first
defined by Chanturiya in [2, 3] for a closed interval F =T = [a,b] and X =R
in connection with convergence problems of the theory of Fourier series and it
was applied in [10] for 7 C R and a metric space (X,d) in order to establish
a pointwise selection principle.

Note that for every p € P the definition of the quantity v,(n, f, E) im-
plies that it is finite for all n € N, so that vp(-, f, E): N — R* if and only if
Sup; se g dp (f(t), f(s)) < oo. In what follows, all functions f € X7 under con-

sideration are assumed bounded in the sense that sup; ser dp (f (1), f(s))< 00
for all p € P.
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Following E. Landau, the condition lim p(n)/n =0 for asequence p: N— R

n—00
will be written briefly as u(n) = o(n).
The main result of the paper is the following pointwise selection principle
for functions of a single variable with values in a uniform space in terms of
the moduli of variation.

Theorem 1. Let @ # T C R and let (X,U) be a Hausdorff uniform
space whose uniformity U is defined by an at most countable complex of
pseudometrics {dp}p,ep. Suppose that {f;} C XT jis a pointwise relatively
sequentially compact sequence of functions such that

pp(n) = limsupvp(n, fj,T) = o(n) for all p e P. (1)
j—o0
Then there exists a subsequence of {f;} which converges pointwise on T to
a function f € X7 satisfying the condition: vp(n, f,T) < pp(n) for alln € N
and p € P.
This theorem contains as particular cases the results of [7,10] when X is
a metric space. Some examples, illustrating the “optimality” of assumptions
in Theorem 1, are given in [9, 10]. This theorem implies many available Helly
type selection principles for functions of bounded and bounded generalized
variations (see Section 6 below).

3. Properties of the moduli of variation

In order to prove Theorem 1 and the other results of the paper (see Sec-
tion 4), we need to know some properties of the moduli of variation {v,}ep.
They are gathered in the following

Lemma 2. Given f € XT, forall @ # E C T, n € N, and p € P,
we have

(a) vy, £, E) < vp(n + 1, f, E)
(b) vp(n, f, Eo) < vp(n, f, E) for all @ # Ey C E;
(¢) dp(f(1),F(5)) +vp(n, f, (=00, s]N E) < vp(n+1, f, (=00, ] N E) for
all t,s € F such that s < t;
L, E
(@) wlnt 1,5, 5) < yn, £, B) + 2 LB,
() vp(n, f, E)<liminfvy,(n, f;, E) if the sequence of functions { f;} € X7
J—0o0

converges to f pointwise on E;
(f) vp(n,g,E) < vp(n, f, E)+2nsupdy(f(t), g(t)) provided that g € XT.
teE

Proof. Properties (a), (b), and (c) are immediate from the definition of
the modulus of variation with respect to d,,.
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The proof of (d) is essentially the same as that in [3, Lemma] for £ = [a, 0]
and X = R; and here we recall this proof for convenience. By the definition
of vy(n + 1, f, E), for every ¢ > 0 there exist a;,0; € E, i = 1,...,n+1
(depending on &, p, and n, in general), such that

a1 Kby <ag <by<---<ap Kby < any1 <bpta

and
n+1 n+1

D dp(f(0i), fa)) S vpn+ 1, £, E) <e+ > dp(f(bi), flai)).
i=1 1=1

Denoting by dp the least term in the sum on the left-hand side, we find that
(n+1)dp < vp(n+1, f, E). On the other hand, the right-hand side of the in-
equalities implies v,(n+1, f, E) < e+vp(n, f, E)+0¢, which gives the inequality
in (d) due to the arbitrariness of € > 0.

(e) Let the points a1 < by < -+- < ap < by, be from E. By the definition
of the quantity v,(n, f;, E), we have

Zd fi(bi), fi(ai)) < vp(n, f5,E), jEN,
from which, for every k € N, we find
inf Zd (£3(B1): f3(ai)) < int vy(n. £, E).

Passing to the limit as £ — oo and taking into account the pointwise conver-
gence of f; to f, we obtain

> dp(f(bi), f thd fi(bi). fi(as)) < liminfry(n, ;. B),
=1

and it remains to take the supremum over all above-mentioned a; and b;,
1=1,...,n.

(f) It suffices to note only that, for all points a1 < by < -+ < ap < by
from FE, the triangle inequality for d,, gives the following inequalities:

> dyp(g(bi), glai)) < dy(g(bi), £(b:))
i=1 i=1
+ Z d a, + Z d )

<n§ggdp(9( ),f(t))+vp(n,f, )+n§ggdp(f(8),g(8))- O
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We observe that the inequality in Lemma 2 (d) is equivalent to

Vp(n+17faE) < Vp(nafaE) HGN (2)
n+1 X n 3 )

and so, the finite limit lim v,(n, f, E)/n € R always exists for a bounded

n—oo
function f € XT.

4. Proper functions with respect to a dense subset

The aim of this section (see the last remark in Section 3) is to characterize
the functions f: [a,b] — X on an interval [a, b] C R which satisfy the condition:
Vp (n, f, [a,b]) = o(n) for all p € P (and even a bit more general condition;
see Theorem 3 below).

Let S C [a,b] be a fixed dense subset. We denote by Ug([a, b); X) the set
of all functions f: [a,b] — X such that (the Cauchy conditions with respect
to S hold)

lim  dp(f(t), f(s)) =0 for all p € P at each point T € (a, b], (3)
S3t,s—17—0

li d t = 0 for all t each point b). 4
SBt,;ET—H] L (f(t), f(s)) or all p € P at each point 7 € [a, b) (4)

Functions f from Ug([a, b];X) will be called proper with respect to S (Simply
proper if S = [a, b]; see [21, Chapter III, Section 2; 22; 10, Lemma 3])

In the case when X is complete, a function f: [a,b] — X isin Ug ([a, b); X)
if and only if at each point 7 € (a, b] the left limit f|g(7—) = Sath—r)r;—o ft)e X
of the values f(t) exists with respect to S as t tends to 7 — 0 over points of S,
and at each point 7 € [a,b) the right limit fjg(7+) = Sath—rgwf(t) € X with
respect to S exists, where f g designates the restriction of f to S.

Indeed, the condition (3) means that, given a < 7 < b, the pair (f,S 3
t — 7 —0) is a Cauchy directedness (here the notation S 3¢t = 7 -0
in the above pair is understood to be a directed set (S N [a,T), ;) in which
the direction 3= is defined for ¢, s € SN[a, ) by the rule: ¢ = s if and only if t >
s, see [15, Chapter 2]); and so, by the completeness of X, this pair converges

in X to an element denoted by fg(7—), so that __lim d, (f(t), f|5(7'—)) =0
S3t—=1-0

for all p € P. Similarly, we can establish the existence of the right limit f, s(7+)
with respect to S at points 7 € [a, b) (We should only define the direction 3=
in the set SN (7,b] according to the rule: ¢ 3= s if and only if ¢ < s).

The set Ug = Ug([a, b); ]R) was first considered in [14]; and so, in the gen-
eral case, US([a, b); X) will be called a (generalized) Jeffery class as well.
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The following characterization of the Jeffery class Ug([a, b); X) in terms
of the moduli of variation {v,},ep is given by

Theorem 3. Let S be a dense set in [a, b] and let (X,U) be a Hausdorff
uniform space whose uniformity U is defined by a (not necessarily countable)
complex of pseudometrics {dp}pep. Then

Us([a,0); X) = {f: [a,b] = X | vp(n, f,S) = o(n) forall peP}.

As particular cases, this theorem contains the results of the following
papers: [2, Theorem 5|, where S = [a,b] and X = R; [9, Theorem 3], where
S C [a,b] is a dense set and X = R; and [10, Lemma 3], where S = [a, 0]
and X is a metric space.

In order to prove Theorem 3, we need Lemma 4 (see below) of interest
in its own right. Recall that a function g¢: [a,b] — X is said to be a step

function if there exist a partition a = ¢g < ¢ < -+ < ¢p—1 < ¢ = b of
the interval [a,b] and elements x1,...,2, € X (depending on g) such that
g(t) =z for all t € (cj—1,¢i), i =1,...,m. For the moduli of variation of such

a function g we have the following estimate:

l/p(n,g, a, b]) < Z(dp(g(ci_ﬂ,xi) + dp(xi,g(ci))), neN, peP. (5
i=1

Lemma 4. Given a function f € Ug([a,b]; X) and an arbitrary p € P,
there exists a sequence of step functions { f;} C X1ab such that

lim supdp(fj(t),f(t)) = 0.
J7X te S

For S = [a,b] and a Banach space X, Lemma 4 is well known [11, Chap-
ter 7, Section 6] (where the proof is also valid for a complete metric space X).
Some particular cases of Lemma 4 are also contained in [22, Theorem 1.1]

(S = [a,b] and X is a complete Hausdorff uniform space) and [9, Theorem 3]
(S C [a,b] is dense and X = R).

Proof of Lemma 4 is adapted to the case under consideration from that
of [11, Theorem (7.6.1)]. Fix an arbitrary p € P. Let j € N. The condi-
tions (3) and (4) imply that for each 7 € [a, b] there exists an open interval
(a(7), B(7)) with the endpoints a(7) and () (depending on p and j), con-
taining the point 7, such that

ift,s € (a(T),T) NSort,se (T,ﬁ(T)) NS then dp(f(t),f(s)) <1/j. (6)

The family of intervals {(Oz(T),ﬁ(T)) | 7 € [a, b]} forms an open cover of

the interval [a, b]; and so, there exists a finite number of points 71,...,7x €
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[a, b] such that [a,b] C Uévzl (a(Tk),ﬁ(Tk)). Among the points a, b, 7%, a(7%),
and B(1), k =1,..., N, we choose only those that lie on [a, b] and order them
in strictly ascending order. The resultant points are denoted by cg, c1,...,cm €
[a,b] so that a = ¢y < ¢1 < -+ < =1 < ¢y = b. By the density of S in [a, b],
on each interval (¢;_1, ¢;) we arbitrarily choose and fix a point s; € (¢;—1,¢)NS,
i=1,...,m, and define the desired function f;: [a,b] — X as follows:

Fit) = fla) if t=¢, i€{0,1,...,m},

! B f(S,) if 1€ (Ci—laci)7 (&S {L:m}
Clearly, f; is a step function. We show that sup;cgd, (fj (1), f(t)) does not
exceed 1/j. If t € S and t = ¢; for some ¢ € {0,1,...,m} then f;(t) =

f(t). So, our assertion will follow from the following observation: For each
i€{1,...,m} there exists k € {1,..., N} such that

(Ci_l,Ci) C (Oz(Tk),Tk) or (Ci—laci) C (Tk,ﬁ(’fk))- (7)

Indeed, if t € S\ {c;i}i%, then t € (¢i—1,¢;) NS for some i € {1,...,m}; and so,
by (7), both points ¢ and s; are in the same (a( &)y T ) NS or (Tk, B(Tk)) NS
for some k € {1,..., N}. Applying the definition of f; and (6), we find

dp(fi (1), F(8)) = dp(f(s0), F()) <1/
It remains to prove (7). Let ¢ € {1,...,m} and t € (¢j_1,¢;). The def-

inition of ¢g, c1,. .., ¢y yields t ¢ Uszl{a(Tk), Ths B(Tk)} while, according to
the above-chosen finite subcover, we have

te U[ o(Tk), Tk U{Tk}U(Tk,ﬁ(Tk))];

and so, t € (Oz(Tk) ) ort € (Tk,ﬁ(Tk)) for some k € {1,...,N}. If t €
(a(7x), 7% ) then the definition of {¢;}" and the inequalities ¢;—1 < ¢ < ¢; and
a(ty) < t < 1, yield a(rg) < ¢i—1 and ¢; < 7, ie., (¢i—1,¢) C (Oz(Tk),Tk).
Similarly, t € (74, 8(73)) implies (¢i—1,¢;) C (73, B(7%)). proving (7) and our
Lemma, as well. [J

Proof of Theorem 3.
1. Inclusion “C Let f € Ug([a, b];X). Given an arbitrary p € P,

we denote by {f;} C X[*" the sequence of step functions (depending on p)
of Lemma 4. By (5), we have Vp(n, fj:la b]) = o(n) for all j € N; and so,
according to Lemma 2 (b), vp(n, fj,S) = o(n). Lemma 2 (f) implies

Vp(na /s S) < l/p(n, fj’S)
n

n

+ 2sup dp(fi(1), f(t)), n.j €N 8)
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Given € > 0, choose j = j(e,p) € Nsuch that sup;cg dp(fj(t), f(t)) < /3, and
then pick ng = ng(e, j,p) € N such that v,(no, fj,.5)/no < /3. In view of (8)
and (2), we have vy(n, f,S)/n < ¢ for all n > ng. Thus, vy(n, f,S) = o(n) for
all p e P.

2. Inclusion “DF Let f: [a,b] — X be such that v,(n, f,S) = o(n) for
all p € P. Given p € P and n € N, we put vp,(s) = Vp(n, fila,s]N S) for
all s € S. By Lemma 2 (b), the function vp,: S — R is nondecreasing; v},
is bounded as well because there exists a number ng = ng(p) € N such that
vp(n, f,S)/n < 1 for all n > ng. Hence, by Lemma 2 (b), (a), we conclude
that v, (s) < vp(n, f,S) < max{ng,n} for all s € S. It follows that at each

point 7 € (a, b] the left limit vp ,(7—) = lim  vp,»(¢) € RT along the points
’ Sot—r—0

of S exists. Show that at such 7 the function f satisfies (3) (the conditions (4)
can be verified in a similar manner). Fix an arbitrary p € P. If t,s € S,
s <t <7, by Lemma 2 (c), (d), (b), we have

dp(F(1), f(3)) Svp(n+1, f la,t]NS) —vp(n, f,[a,s]NS)
vp(n+1, f,[a, t] N.S) —uy(n, f,[a,s] N S)

< vp(n, f,[a, 1] N S)+

n—+1
vp(n+1, f,9)
< vp(t) + = ] — Upn(s)
vp(n+1,f8
< ) = vpntr )] + LD o) (o).

Given ¢ > 0, choose a positive integer n = n(e,p) € N such that

vp(n+1,f,5) <€
n+1 =3

and pick § = d(e,p,n) € (0,7 — a) such that

forall te[r—4d,7)NS.

L M

‘Vp,n(t) - Vp,n(T_)‘ <

By the above calculations, for all ¢, s € [r — d,7) we have d,(f(t), f(s)) < & so

that _ lim  dy(f(¢), f(s)) = 0; and it suffices to take into account the arbi-
Sot,s—1—0

trariness of p € P. 0O

In view of Theorem 3, it is interesting to mention one more property of
the proper functions with respect to S.

Theorem 5. Under the conditions of Theorem 3, if f € Ug([a, b]; X)
then the image f(S) of S is a totally bounded subset of X. If, moreover, X is
complete then f(S) is relatively compact.
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Proof. We have to show that, for every p € P and every € > 0, the image
f(S) can be covered by finitely many balls B,(z,e) = {y € X | dp(y,z) < ¢}
of d,-radius ¢ centered at x € f(S). On the contrary, suppose that there
are p € P and € > 0 such that f(S) cannot be covered by finitely many
above-mentioned balls. Fix tg € S arbitrarily and put zg = f(¢p9). Choose
z1 € f(S)\ Bp(xo, ). Then z1 = f(t1) for some t; € S, t1 # to. By induction,
if n € N, n > 2, and elements xg, z1,...,2,—1 € f(S) are already chosen then,
by the assumption, pick z,, € f(95) \U?:_O1 By (i, €) so that z,, = f(ty) for some
th €S, t, #t; foralli=0,1,...,n — 1. In this way we obtain two sequences
of pairwise distinct elements {t; } ©0 C S and {z;}3°, C X, and d(z, z5) > ¢
for all 7 # j. Without loss of generality, we may suppose that ¢;_; < ¢; for all
t € N. Then for arbitrary n € N and a; = t,_1 and b; = t;, 1 = 1,...,n, we

find
(n, f,S) Zd flag)) =Y dp(wi wio1) >
=1

Consequently, lim w,(n, f,S)/n > ¢ > 0, which contradicts the inclusion
n—oo

f e US([a, b];X) by Theorem 3.
The last assertion of the theorem follows from a well-known result (see [15,
Chapter 6, Theorem 32]). O

Theorem 5 contains, as particular cases, the results of [11, Chapter 7,
Section 6], where S = [a,b] and X is a Banach or complete metric space; and
of [22, Lemma 1.1], where S = [a,b] and X is a complete Hausdorff uniform
space. Theorem 5 can be extended to multifunctions with compact values
along the same lines as it was done in [6, Lemma 11] for a metric space X.

5. Proof of the main result

Proof of Theorem 1. To start with, we observe that the quantity p,(n)
in Theorem 1 is finite for all n € N and p € P. Indeed, the condition (1)
implies the existence of ng = ng(p) € N such that limsupv,(n, fj,T) < n for
Jj—o0
all n > ng; and so, it follows from Theorem 2 (a) that

lim sup vp(n, f;,T) < limsupv,(ng, f;,T) < no
Jj—00 Jj—00

if 1 < n < ng. We split the proof of Theorem 1 into five steps. Throughout
the proof we assume with no loss of generality that P = N.

1. The first series of diagonal processes. Applying the diagonal process,
we show that there exists a subsequence of { f;}, for which we keep the notation
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of the original sequence {f;}, and for each p € P there exists a nondecreasing
sequence 7,: N — Rt such that

lim vy(n, fj,T) = yp(n) < pp(n) for alln € N and p € P. 9)
j—o0

Let p = 1. Since limsupvi(1, fj,T) = pi1(1), there exists a subsequence
j—oo

{f } of {f;} such that hm n (1, f ,T) = pa(1). We put (1) = pa(1).

Inductively, if n € N, n > 2, and a subsequence {f;"_l)};il of the original

sequence { fj} with the property lim 1 (n—l, f;n_l), T) = v1(n—1) is already
chosen, we put 7y1(n) = limsupw; (n f ,T) and note that v;(n) < pi(n)
j—oo

(and also, v1(n — 1) < 71(n)); and so, there exists a subsequence {f;n)};‘;l
of {f;"_l)};i such that lim v (n, f ,T) = ~y1(n). Then, for the diagonal

J—)OO
sequence {f;J }jzl, which we denote by {1f]} = {113};";1 and say that it is of
the first stage, we obtain

lim 1 (n, 1fj,T) =v1(n) < p1(n) forall ne N (10)

J]—o0

Now (for p = 2), we put 1(1) = limsupyg(l,ljg-,T) and note that
J—o0
v2(1) < limsupwy(1, f;,T) = pa(1). Then there is a subsequence {1f1)}7

=1
Jj—00 J

of {1]»]} such that lim v (1, 1fj(1) ,T) = y2(1). We apply the induction step:

if n > 2 and a subsequence {113 n—1) }J , of {1];} is already constructed, we

put y2(n) = limsup vz (n ,1fj(" 1) ,T) and, noting that y2(n) < pa(n), choose

]—)OO

a subsequence {lfj } _, of {1fj n—1) }j:1 such that Jli)rrolo ) (n, 1fj(”) ,T) =

v2(n). Then the diagonal sequence {1f } 1» Which we denote by {2fj} =

{ij }jzl and attach to the second stage, satisfies the relations
lim v (n, 2]‘}- ,T) =2(n) < pz(n) forall neN (11)
J—00

Considering (10) and (11), induct once again: if p € P, p > 3, and
a subsequence {P~ 1f }={¥ 1fj} of the initial sequence { f;} of the (p—1)th
stage, with the property

lim vy (n,” lfjvT) = Yp-1(n) < pp-1(n)

_]—)
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for all n € N and some nondecreasing sequence v,—1 : N — R, is already
chosen, then we put 7,(1) = lim sup l/p(l,p_lfj, T) and note that

J—00
(1) < lim sup vp(1, f5,T) = pp(1).
j—o0

oo

It follows that there exists a subsequence {p_lfj(l)}j:l of {p_ljg-} such that

lim l/p(l,p_ljg-(l) ,T) = 7p(1). Inductively, if n > 2 and a subsequence
J—)OO

{p_lfj(”_l)};il of {p_lfj} is already constructed, we put

Yp(n) = limsupy, (n,p_ljg-("_l) ,T),

j—o00
employ the inequality v,(n) < pp(n), and choose a subsequence {p_ljg-(")};il
— — oo . — .
of {¥ 1fj(" 1)}3‘:1 such that Jlggo vp(n,? 1fj(") ,T) = 7p(n). As above, the di-

oo

0.¢)
j J=1

agonal sequence of the pth stage {p_lfj(j)} 1> which we designate by {pfj}
satisfies the conditions
lim v (n,2f;, T) = yp(n) < pp(n) forall neN. (12)
]-)OO

We claim that the diagonal sequence {J]g };‘;1, which from now on will be
denoted by {f;} = {f; };";1, possesses the desired properties (9). Indeed, since
{7f;}32, is a subsequence of {Pf;}22,, it satisfies (12), which is what we need
for (9).

2. Application of Helly’s theorem and the second series of the diagonal
processes. Prove that there exists a subsequence of the sequence {f;} from (9),
again denoted by { f;}, and for all n € N and p € P there exists a nondecreasing
bounded function v, ,: T — R* such that

lim vp(n, fj, (—o0, ] NT) = vpyp(t) forallneN, pe PandteT. (13)
J—0o0

By Lemma 2 (b), the function

np(n: f]:t) = I/p(na f]: (—OO,t] n T)

is nondecreasing in t € T for all n € N and p € P = N, and the equality in (9)
implies that there exists a constant C'(n,p) € Rt such that vp(n, f;,T) <
C(n,p) for all j € N; and so, by Lemma 2 (b), the sequence of functions
{np(n, fj, )};‘;1 is uniformly bounded by C(n,p) on the set T

Apply the diagonal processes once again.
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We start with the case p = 1. The sequence {771(1, fis )};)11 of nonde-
creasing functions is uniformly bounded on 7" by the constant C'(1,1); so, by
the classical Helly theorem, there exists a subsequence {f;l)};‘;l of {f;} and

a nondecreasing bounded function vy 1: T — R* such that
: 1) 4y _
Jlggo n, (1, f; 1) = 1/171(15) forall teT.

oo

By induction, if n > 2 and a subsequence {f;n_l)} of the original se-

j=1
quence {f;} is already chosen then, by Helly’s theorem, applied to the se-

(0.)
quence of nondecreasing functions {771 (n, f;"_l), )} E which is uniformly
J:

bounded by C(n,1) on T, we find a subsequence {f;")};‘;l of {f;n_l)};‘;l

and a nondecreasing bounded function v, 1: T" — R* such that

lim 7, (n, f;"), t) =vpa(t) forall teT.

j—o0

Then the diagonal sequence {f;j) }j‘;l (of the first stage), which we denote by
{1fj} = {lfj};ip satisfies the condition

lim 1 (n, 1]3-, (—00,t]NT) =vp(t) foralln € Nand ¢t € T. (14)

j—o0
Starting from (14), we induct once again: if p € P, p > 2, and a sub-
sequence of the (p — 1)th stage {p_lfj};‘;l of the original sequence {f;}
is already defined, then note that the sequence of nondecreasing functions
{np(l,p_lfj, )}Joi1 is uniformly bounded on T by C(1,p); and so, by Helly’s
theorem, there exists a subsequence {p_lfj(l)};‘;l of {p_lj‘}};il and a nonde-

creasing bounded function 14 ,: T — R* such that

- p=1p() 4) —
jll)rgonp(l, S 1) = vip(t) forall teT.

Inductively, if n > 2 and a subsequence {p_lfj("_l)};il of the sequence
{p_lfj};‘;l is already constructed then we apply Helly’s theorem to the se-

quence of nondecreasing functions {np (n, p_lfj("_l), ) }OO

=1 uniformly bounded

of

{p_lfj(”_l)};il and a nondecreasing bounded function vy, ,: T — R such
that

o0

on T by the constant C(n,p): there exists a subsequence {p_lfj(")}jzl

: -1
Jlgl;o mp(n,? fj(") 1) = np(t) forall teT.
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Then the diagonal sequence of the pth stage {p_lfj(j)};il, for which we use

the notation {pfj };‘;1, possesses the property

lim Vp(n,pf- (—o0,t] N T) =pp(t) foralln e Nand t € T.

J—o0 J

o0

It follows that the diagonal sequence {j fj}

satisfies (13) (as well as (9)).

3. Eztraction of a subsequence convergent on a countable dense subset.
Denote by () an at most countable dense subset of T' so that Q C T C Q,
where () means the closure of the set Q in R (the existence of () is established
as follows: if k € Z is an integer and the set Ty = T N [k, k + 1] is nonempty
then T}, is totally bounded and, thus, separable; and so, there exists an at most
countable subset S C T} such that T C Sg. It remains to put Q = Ux Sk
and note that 7' = |J;, T}, where the union |, is taken over all £ € Z such that
Ty # @). We mention that each point ¢ € T other than a limit point for 7’
belongs to Q. Indeed, for such a point ¢ and some open interval («, ), we have
TN (e, B) = {t}; hence, Q@ N (a, f) C T N (e, 5) = {t}; so if we suppose that
t¢ Q then QN (a,f) =@ or Q CR\ (a,B) implyingt € T C Q C R\ (e, ),
ie, t ¢ (o, ), which contradicts the choice of (a, 3).

Since, for all n € N and p € P, the function v,, is monotone on T,
the set Qnp C T of its discontinuity points (each of the first kind) is at most
countable. Put S = QU U,enUpep @np- Then S is an at most countable
dense subset of T'; and if T'\ S # @ then the function

=1 again denoted by {f;},

Vnp is continuous at points t € T\ S foralln € Nandpe P.  (15)

Since, for every t € T, the set {fj(t)};il
and S C T is at most countable, we may assume without loss of generality
(applying the diagonal process one more time and passing to a subsequence of
{f;} if necessary) that, for each s € S, the sequence {f;j(s)} converges in X
to an element denoted by f(s) € X, so that lim dy,(f;(s), f(s)) = 0 for all
pEP. Jmee

If S =T then the proof is complete.

4. Using the properties of the moduli of variation, and convergence every-
where on T. Now, let S # T and t € T\ S. Show that {f;(¢)} is a Cauchy
sequence in X, i.e.,

is relatively sequentially compact

lim dy(f(1). fx(t)) =0

1, k—o0

for all p € P. Fix p € P arbitrarily. Let ¢ > 0. By the assumption (1),
pp(n)/n — 0 as n — oo, and so we find and fix a positive integer n =
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n(e,p) € N such that

ppin+1) _ €
- —. 1
n—+1 15 (16)
In view of the equality in (9), there exists J; = Ji(¢,n,p) € N such that
vp(n+1, 5, T) < ypln+1) + % for all j > Jj. (17)

The definition of S and the property (15) imply that ¢ is a limit point for T
and a point of continuity of v, p; so that, by the density of S in T', there exists
s = s(e,t,n,p) € S such that

9

() = vnpls)] < =

The property (13) implies the existence of Jo = Jy(e,t, s,n,p) € N such that
the following inequalities hold for all j > Js:

(18)

vy (1, £, (=00, 1] N T) = vap(8)| < . (19)
13
-

—_

(20)

Vp(n, fj: (=00, s]N T) - Vw,(s)‘ <

Supposing (with no loss of generality) that s < ¢ and successively applying
Lemma 2 (c), (d), (19), (18), (20), Lemma 2 (b), (17), the inequality in (9),
and (16), for all j > max{Ji, Jo} we obtain

dp(f](t)a f](s)) Vp(n + 1a f]a (—OO,t] N T) - Vp(na f]a (_007 S] N T)

<
< Vp(”“’ ij: (—OO,t] ﬂT) - Vp(n: f]: (—OO,t] ﬂT)

+ |1 (. £ (=00, 610 T) = v (8)] + ¥ () = ¥ (5)

+

Unp(s) — 1p (n, fj, (—o0,s] N T)‘

l/p(n—l—l,fj,(—oo,t]ﬂT) € i_f_i
n+1 15 15 15
Vp(n+1:fJ:T)+3_8
n+1 15
+1 3
(1 )+ € 4 €
n+1 15(n +
<Mp(”+1)+4_5<§
n+1 15 ° 3

N

N

N

Since the sequence {fj(s)} converges in the uniform space X, it follows that
{fj(s)} is a Cauchy sequence (see [15, Chapter 6, Theorem 21]); and so there
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exists a positive integer J3 = J3(¢, s, p) € N such that

dp(fi(s), fr(s)) < = forall j, k> Js.

W ™

The number J = max{.Jj, Jo, J3} depends only on ¢ and p, and for all j, k > .J
we have

dp(f](t)afk(t)) < dp(f](t)afj(s)) + dp(f](s)afk(s)) + dp(fk(s)afk(t)) <e.

Since p € P is arbitrary, we conclude that {fj (t)} is a Cauchy sequence in X.
Since this sequence is relatively sequentially compact, it admits a limit point,
which we denote by f(t) € X, but (see [15, Chapter 6, Theorem 21]) each
Cauchy sequence in a uniform space converges to its limit point; hence we
have lim d,(f;(t), f(t)) =0 for all p € P.

]—)OO

5. Completion of the proof. Since X is Hausdorff, the single-valued func-
tion f: T — X, defined at the end of steps 3 and 4 on S and T\ S respec-
tively, is well defined on T" and is the pointwise limit on T" of the sequence { f;}
which, by construction, is a subsequence of the original sequence. Applying
Lemma 2 (e), we obtain

vp(n, f,T) <liminfuy(n, f;,T) < limsupvy(n, f;,T) < pp(n)
J—0 j—oo

for all n € N and p € P. The proof of Theorem 1 is complete. [

Remark 1. A local version of Theorem 1 holds as well. We should
replace the condition (1) in this theorem by the following;:

lim supl/p(n, fi.TN|a, b]) =o(n) forall a,b€ T, a<b, and p € P.
j—00

Then a subsequence of {f;} converges on 7T to a function f € XT such that
Vp (n, f,TnNla, b]) =o(n) for all a,b € T, a < b, and p € P. This assertion is
immediate if we apply Theorem 1 and the diagonal process over the expanding
intervals.

Note that the condition (1) in Theorem 1 is necessary if the sequence
{f;} converges uniformly to its limit f (for another necessary condition see [10,
Lemma 4 (b)]), and so, the next assertion is, in a sense, converse to Theorem 1.

Theorem 6. If a sequence {f;} C XT converges uniformly on T to
f € XT such that vy(n, f,T) = o(n) for allp € P then Jli)rrolo vp(n, f;,T) = o(n)

for all p € P.
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Proof. Let p € P. By Lemma 2 (f), for all n,j € N we have

vp(n, f3,T) < vp(n, f,T) +2n sup dy (f(1), f3(1))

from which and the uniform convergence of f; to f we infer

limsup vp(n, f;,T) < vp(n, f,T) forall neN.

j—00
From Lemma 2 (e) it follows that vy(n, f,T) < liminfyy(n, f;,T); and so,
j—o0
the limit lim vy(n, f;,T) exists and equals v,(n, f,T) = o(n), and it remains
J—o0

to take into account the arbitrariness of p € P. [

However, the condition (1) is not necessary for the pointwise convergence
of {f;} to f (the corresponding examples are constructed in [10, Section 3; 9,
Section 5| for X = R).

Theorem 1 implies immediately that if for the sequence {f;} ¢ X7 in
Theorem 1 the condition (1) is satisfied with 7" replaced by T\ E, where E C T
is a set of (Lebesgue) measure zero, then a subsequence of {f;} converges
almost everywhere (a.e.) on T to f € XT such that v,(n, f,T\ E) = o(n) for
all p e P.

The next more subtle result is a selection principle for a. e. convergence
in terms of the moduli of variation for functions of a single variable with values
in a uniform space.

Theorem 7. Let T and (X,U) satisfy the conditions of Theorem 1.
Suppose that a sequence of functions {f;} C X7 is such that for almost all
t € T the set {fj(t)} is relatively sequentially compact and for each ¢ > 0
there exists a measurable set . C 1" of measure at most ¢ such that

limsup vp(n, f;,T\ E:) = o(n) for all peP.

Jj—00

Then a subsequence of { f;} converges a.e. on T to f € XT with the property:
For each € > 0 there exists a measurable set EL C T of measure at most € such
that vp(n, f,T\ EL) = o(n) for all p € P.

In this theorem the a.e. convergence of a subsequence of {f;} to f is

understood in the sense that there exists a set £ C 1" of measure zero such that
lim d,(f;(t), f(t)) =0for allp € P and t € T\ E. By applying Theorem 1
]—)OO

and the diagonal process over the sets Ei, Ey9,..., Eyp,... the proof of

Theorem 7 follows the same lines as the proof of Theorem 6 of [10] and is
therefore omitted.
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6. Selection principles in some classes of
functions of bounded generalized variation

Throughout this section, unless otherwise stated, we assume that @ #
T C R, (X,U) is a Hausdorff uniform space whose uniformity U is defined
by an at most countable complex of pseudometrics {d,},cp, and the sequence

of functions {f;} C X7 is such that for each ¢ € T the sequence {f;(t)} is
relatively sequentially compact in X.

6.1. Functions of bounded variation. Given f € XT and p € P, we put
m
Vo(f. T) =sup » _ dp(f(ti), f(tio1)),
1=1

where the supremum is taken over all partitions {#;}/", of T, i.e., m € N,
{to,tl,...,tm} CcT,and tj1 < tj, i =1,...,m. If V})(f,T) < oo for all
p € P, we write f € BV(T;X) and call f a function of bounded (or finite)
variation on T (for T = [a, b], see [22]).
As a corollary to Theorem 1 we obtain a selection principle in BV (T; X).
Theorem 8. If, under the above conditions, sup ey Vp(f;,T) = Cp is

finite for all p € P then {f;} contains a subsequence pointwise convergent
on T whose limit f lies in BV(T; X).
Proof. We show first that if f € BV(T; X) then

vp(n, [, T) < Vp(f,T) = li_r)n vp(m, f,T) forallne Nandpe P. (21)
m (0.)
Indeed, for any points a1 < by < as < by < -+ < ap < by, from T we have
n
> dy(£(bi), flai)) < Vp(f, T);
i=1

and so, vp(n, f,T) < Vp(f,T) for all n € N and p € P. Now, if m € N and
points tg < 1 < -+ <ty lie in T then, by Lemma 2 (a), we find

> dp(f(t), f(tim1)) < vp(m, £,T) < _lim wy(m, f.T)
1=1

from which we infer that Vj,(f,T) < li_r)n vp(m, f,T) < Vp(f,T), and (21)
m—0o0
follows.

By (21), for the sequence {f;} from Theorem 8 we conclude that

sup Vp(na f,]a T) < Cp
JEN
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for all n € N and p € P; and hence, {f;} satisfies (1). By Theorem 1, some
subsequence of {f;}, which we again denote by {f;}, converges pointwise on T’
to f € XT. Since

Vp(f.T) < liminf V,,(f;,T) < Cp for all p e P,
j—00

we have f € BV(T; X). Here the first inequality, expressing the sequential
lower semicontinuity, can be established by analogy with Lemma 2 (e). O

Theorem 8 contains, as particular cases, the results of [4, Theorem 7.1; 5,
Theorem 5.1; 1, Theorem 1] when X is a metric space.

Remark 2. From the estimate (21) and Theorem 3 we find, in particular,
that if S C [a, b] is a dense set then
{f:la,b] = X | fis € BV(S; X)} C Us([a, b]; X).

This strengthens the corresponding result of [22, Theorem 1.1] established by
a different method for S = [a, b].

6.2. Lipschitz continuous functions. A function f € X7 is said to be
Lipschitz continuous on T if

Ly,(f,T) = sup{dp(f(t),f(s))/|t— sl:t,seT, t# 5} < oo forall pe P,

where L,(f,T) are the least Lipschitz constants; in this case we write f €
Lip(T; X). If T is bounded then Lip(7’; X) is embedded into BV(T; X'); more-
over, Vp(f,T) < Lp(f,T)(supT —infT) for all p € P, f € Lip(T; X).
Noting that the pointwise convergence on T of a sequence {f;} C X7T to
f e XT implies
Ly(f,T) <liminf L,(f;,T) forall pe P,
]—)OO

we arrive to an analog of Theorem 8 for the space Lip(T’; X), where the con-
dition sup,ey Ly(f;,T) = Cp < oo for all p € P implies that the pointwise
limit f of an extracted subsequence belongs to Lip(7; X).

6.3. Functions of bounded (generalized) p-variation. Assume that the
function p: T x Rt — R* satisfies the following conditions:

(i) for each t € T the function ¢(,+) = [u — ¢(t,u)] is nondecreasing

and continuous on R and lim ¢(¢,u) = oc;
U—00
(ii) ©(t,0) =0 for all t € T and inf;er ¢(t,u) > 0 for all u > 0.

We say that f € X7 is a function of bounded p-variation on T (for T =
[a,b] and X = R see [12; 16, Section 10.4]) and write f € BV (T; X) if for
each p € P the following value is finite:

Vol £, T) =sup Y (00 dy (f (1), f(ti-1)) ).
=1
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where the supremum is taken over all m € N and all collections {t;}!",,
{si}i"y C T such that tg <t1 <---<tpand s; € [, 4] NT,i=1,...,m
The definition of Section 6.1 is recovered from here if ¢(t, u) = .
The following theorem is a selection principle in the class BV, (T; X):

Theorem 9. Let the conditions at the beginnings of Section 6 and
Section 6.3 be satisfied. If sup,en Vi p(f,T) = Cpp < oo for allp € P
then there exists a subsequence of {f;} which converges pointwise on 1" to
feBV,(T; X).

The proof splits into three steps: At the first two steps we justify the ap-
plicability of Theorem 1 (i.e. the condition (1)); at these steps we assume that
p € P is arbitrary and fixed.

1. By the definition of V,,(f;,T), for fixed ty € T and every j € N, we
have

o (to,do(£5(1), £i(10)) ) < Vip(£is T) < i, tE T

and so, by condition (i),

dp(f5(t), fi(t0)) < Myp = sup{u € R | ¢(to,u) < Cyp},

It follows that, for all £,s € T and 7 € N,

dp(1§(1): fi(5)) < dp(£5(0) fi(t0)) + dp(fi(t0), f(5)) < 2Mep. (22)

In particular, (22) implies that the sequence {f;} is uniformly bounded, i.e.,

SUD jeN SUDy s dp(fj(t), fj(s)) < 2Myy, < oo for all p € P.

2. Now, given n, j € N, we estimate the modulus of variation v, (n, f;,T).
Let {ai}?zl, {bi}?zl CT,ag <bg <apa<by<--<ay, <by, and s; €
lai, b)) NT, i =1,...,n. The definition of Vi, ,(f;,T) implies the inequalities

n

S (st dy (00 £5(0)) < Vil f5.T) < Cpp. G €N

=1

Taking into account (22), we obtain

> dy(fi(bi), filai)
1=1
< sup{ S

=1

{u;}y C R" such that u; < 2M,,,

foralli=1,...,n and Z(p(sz-,ui) < C%p}
i=1
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for all s; € [a;, 0] N T, i =1,...,n. Consequently, by the arbitrariness of
{ai}_ and {b;}}_;, such as above, we conclude that

n
i, £3,7) < _sup sup{zui

EARTIrS-17) i=1

{uitizy C [0,2M, ]

and Z(p(si,ui) < C%p}, (23)
i=1

where the outer supremum supy, s taken over all collections {s;}i_y C T
such that s1 <s9 <+ < spy.
Denoting the right-hand side of (23) by &, ,(n), we obtain the inequality

sup vp(n, fj,T) < &y p(n) forall neN. (24)
JEN

Show that &, ,(n) = o(n).
Fix an arbitrary ¢ > 0. Let ng = ng(s, p,p) € N be the least positive
integer such that (see condition (ii))

inf o(t.e) > Cy,.
nggrw(,e) op

Let n € N, n > ng, {si}l.y C T, s1 < 53 < -+ < sy, and {y;}7; C RT be
such that u; < 2My, foralli=1,...,n and S o(siyug) < Cyp. Put

Ii(n) ={

<i<nlu<el,
IQ(n) = <

i<nlu;>e}

and denote by |I1(n)| and |I5(n)| the number of elements in I;(n) and I(n),
respectively. By the monotonicity of the function u +— ¢(s,u) (see condi-
tion (i)), we have

n
> e(siu) = > (s u) > z:¢®md>LhMMg§Mt@
=1

iGIQ(n) iGIQ(n)
which implies
Ccp,p

SR

7.

Thus,

n
Zul < Z u; + Z ui < [Ii(n)|e + |L(n)| - 2Myp < ne + 2ng My, .
) 1€y (n) 1€12(n)
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Taking the supremum over all collections {u;}/"; with the above propertles
and then the supremum over all {s;}7 ; C T such that s < 53 < -+ < 5y, We
obtain

Eop(n) < ne+2ngMyy, < 2ne for all n > max{ng, 2noM,p/c};

and so, li_)m &op(n)/n =0, as required.
n—oo
3. The estimate (24) and the result just proven yield the condition (1);
and so, by Theorem 1, there exists a subsequence of {f;} (again denoted by
{f;}) which converges pointwise on T to f € XT. Show that f € BV,(T; X).

Given p € P, by the definition of V,,(f;,T), for all m € N and {t;}I",,
{si}i"y C T such that t;_1 < t; and s; € [t;—1,4;] N T, i =1,...,m, we have

m

D¢ (su p (15(ti), fi(ti- 1))) < Vip(fi, T), jEN

=1
Passing to the limit inferior as j — oo and taking into account the point-

wise convergence of f; to f and the continuity of functions u — ¢ (s, u) (see
condition (i)), we obtain

m

Do (sindp(f (). £(1i-1)) ) < liming Vi (. 7).

=1

Taking the supremum over all above collections {¢;}i", and {s;};~;, we con-
clude that

V%p(faT) hmlnfvsop(fja T) < Cyp forall peP,

which means that f € BV, (7:X). O

The selection principle of Theorem 9 contains, as particular cases, the re-
sults of [17, Theorem 1.3], where ¢(t,u) = ¢(u), T = [a,b], and X = R;
of [8, Theorem 1.3; 10, Section 3, Example 7], where ¢(t,u) = ¢(u), T C R,
and X is a metric space; and of [12] (also see [16, Theorem 10.7 (e)]), where
¢: [a,b] x R — R", T =[a,b], and X = R.

Remark 3. We note that the estimates (23) and (24) (if f; = f for all
j € N) and Theorem 3 imply that if S C T = [a, b] is a dense set then

{f:]a,b] = X | fis € BV,(S; X)} € Ug([a, b]; X).

This refines an assertion of [16, Theorem 10.9] for S = [a, b] and X = R, which
was established by a different method.
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Remark 4. Theorem 9 can be somewhat extended. We say that f € X7
is a function of bounded generalized @p-variation on T if there exists a number
A > 0 (depending on f) such that V¢A7p(f, T) < oo for all p € P, where
o, (t,u) = p(t,u/N), t € T, u € Rt. Under the conditions of Theorem 9,
suppose that there exists a number A > 0 such that supjen V¢A7p(fj,T) =

Cyp < oo for all p € P. Then the pointwise limit f € X T of an extracted
subsequence of {f;} on T'is such that Vi, ,(f,T) < Cyp for all p € P.

6.4. Functions of (generalized) ®-bounded variation. Let ® = {¢p}72,
be a sequence of (p-functions, i.e., each function ¢;: Rt — RT is contin-
uous, nondecreasing, unbounded, and such that ¢g(u) = 0 only at u = 0.
The sequence P is said to be a ®-sequence [20] if ® satisfies the following two
conditions:

pa1(u) < pp(u) forall k€N and u € R, (25)
oo
Z or(u) = oo forall u>0. (26)
k=1

These two conditions on ® are assumed throughout Section 6.4.
We say that f € X7 is a function of ®-bounded variation on T (see [20, 19]
if T = [a, b] and X = R) if for each p € P the following quantity is finite:

m
Vap(f,T)=sup > ¢ <dp (f (b)), f(%(k)))) :
k=1
where the supremum is taken over all m € N, all {az}ir,, {bx}j, C T
such that a1 < by < as < bp < -+ < a4, < by, and all permutations
o:{1,...,m} — {1,...,m} (the notation Vg ,(f, T') looks like the correspond-
ing notation in Section 6.3, but this will not lead to ambiguities in the sequel).
The definition in Section 6.1 is recovered from here if ¢y (u) = u for
all k e N.
The next result is a selection principle in the class of functions of &-
bounded variation which map 7" into a uniform space X.
Theorem 10. Suppose that the conditions at the beginnings of Sections 6
and 6.4 are satisfied. If sup;en Ve p(fj,T) = Cp < oo for all p € P then {f;}

contains a subsequence which converges pointwise on T to a function f € XT
such that Vg ,(f,T) < Cp for all p € P.
Proof. 1. At the first step we show that the sequence {f;} of Theorem 10
satisfies the condition (1) of Theorem 1. To this end, we fix p € P arbitrarily.
Given j € N, by the definition of Vg ,(f;,T), we find that for all t,s € T
the following inequality holds:

o1(dp(£(0), £5(5)) ) < Vaulf. T) < G
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from which we obtain

tsueppo(fj(t),fj(s)) <M, = sup{u e R" ‘ 1(u) < Cp}, jeN. (27)

Let n € Nand let {a;}!¢, {bi}/_; C T be arbitrary collections of numbers
such that a1 < b1 < a2 < by <-- < ap <by,. Given 5 € N, by the definition
of Vg ,(fj, T), for every permutation o: {1,...,n} = {1,...,n} we have

> o (dp(fj(ba(k)),fj(%(k)))) <Vap(f5, T) < Cp;
k=1

and so, the definition of the modulus of variation v,(n, f;,T) implies

n
sup vp(n, f;,T) < supZui, (28)
JeN i=1

where the supremum on the right-hand side of this inequality is taken over all
collections of n numbers {u;}?_; C RT such that (see (27)) maxiic<p i < M)
and

n
Z‘Pk(“a(k)) < O, for all permutations o: {1,...,n} — {1,....,n}. (29)
k=1

Denote by &,(n) the right-hand side of (28) and show that &,(n) =o(n).
By (26), the following positive integer is well defined for every £ > 0:

> enle) >cp}.

k=1

no = no(e,p) = min{n €N

Now, let n € N, n > ng, and {u;}]"; C [0, M,] be an arbitrary collection of n
numbers satisfying (29). We put

and denote by |I1(n)| and |Iz(n)| the number of elements in I1(n) and Iz(n).
We show that |Io(n)| < ng. Indeed, if [I3(n)| > ng then Ia(n) = {ki1,..., ki }
for some ig € {ng,...,n}and k; € {1,...,n},i=1,... 4. Define the permu-
tation o: {1,...,n} — {1,...,n} by the rule:

U(i):{ki ifiE{l,...,i()};

arbitrary ifi e {iop+1,...,n}.
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Then, since each function ¢j is nondecreasing, by the definition of the num-
ber ny and the permutation o, we obtain

n no no
> enltomw) = D wiluew) =D eilur,) = ¢ile) > Cp.
h=1 i=1 i=1

’iGIQ(n)

which contradicts (29). Therefore, the sum under the supremum sign on
the right-hand side of (28) can be estimated as follows:

n

Zui = Z ug + Z ug < ‘Il(n)‘6+ ‘Ig(n)‘Mp < ne +noM, < 2ne
1=1 kel (n) kelz(n)

for all n > Ny = max{ng, ngMp/c}. By the arbitrariness of collection {u;}? ;

satisfying (29), we infer from here that &,(n)/n < 2¢ for all n > Np; hence

Tim &(m)/n = 0.

2. The just-proven result and (28) imply that the sequence {f;} sat-
isfies (1); and so, by Theorem 1, {f;} contains a pointwise convergent sub-
sequence on T, which we again denote by {f;} and its limit, by f € XT.
Establish that Vg ,(f,7) < oo for all p € P. Let p € P, m € N, {a;}]";,
{bi}2, CT,a1 <by << ap < by, and o: {1,...,m} = {1,...,m} be
a permutation. Then

Z@k (dp(f](ba(k))a f](aa(k)))) < V@,p(fj,T), ] €N
k=1

Passing to the limit inferior as j — oo and considering the pointwise conver-
gence of f; to f and the continuity of ¢, we find

Z Pk (dp(f(ba(k))a f(aa(k)))) < h}BéEf Va ,(fj, T).
k=1

Therefore,
V@,p(fa T) < hm inf V‘P,p(fj: T) < Cp 3
Jj—o0

and it remains to take into account the arbitrariness of p € P. [

Theorem 10 contains, as particular cases, the results of [23, Theorem 5],
when T = [a,b], X = R, and ¢y (u) = u/\, where 0 < A\ < \gyq for k € N
and Y 721 1/ = oo; and of [20, Theorem 2.8; 19, Theorem 2.6; 9, Section 6.1],
where T' = [a,b], X = R, and ® is an arbitrary ®-sequence.

Remark 5. If S C [a,b] =T is a dense set then, by the estimates (28)
and (29) and Theorem 3, we have the inclusion

{f:]a,b] = X | Va,(f.S) < oo forall pe P} C Us([ab];X).
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Remark 6. Theorem 10 can be somewhat strengthened. We say that
f € XT is a function of generalized ®-bounded variation on T if there exists
a number A > 0 (depending on f) such that Vs, ,(f,T) < oo for all p € P,
where @y = {pr}72, and g a(u) = ¢(u/A), k € N, u € RT. In the frame-
work of Theorem 10, suppose that there exists a number A > 0 such that

sug Vo, p(fj,T) = Cp < oo forallpeP.
VIS

Then a subsequence of {f;} converges pointwise on T to f € X7 such that
Vo, p(f,T) < oo forallpeP.
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