
Automated Text Document Compliance Assessment

System

Maria A. Zhigalova
Department of Information Technologies in Business

National Research University Higher School of Economics

Perm, Russia

mariezhigalova@gmail.com

Alexander O. Sukhov
Department of Information Technologies in Business

National Research University Higher School of Economics

Perm, Russia

ASuhov@hse.ru

Abstract—The study is dedicated to the problem of

automating an electronic text document compliance assessment

in accordance with the formal requirements on formatting set in

standards. The need for the software system development of such

kind appeared due to laboriousness and inefficiency of manual

text check. The system functionality is based on the application of

the Open XML SDK solution with the use of

FormattingAssembler module included in PowerTools for Open

XML. The system provides a comprehensive text document check

in accordance with the formatting parameters defined by the

user. In practice, the software product can be used to verify

compliance with the formal requirements of research papers and

dissertations, scientific publications, technical documentation,

etc.

Keywords—formatting rules, text document, compliance

assessment, DSL

I. INTRODUCTION

Text processing, which refers to automation of creation and
manipulation of electronic texts, has always been one of the
primary disciplines in computer science. It involves
determining the quality of publications, identification of
potential duplication, plagiarism, partial borrowings,
classification and clustering of documents, formation of
databases and extensive collections of texts. Despite the fact
that document checks in accordance with formatting rules does
not imply detailed text processing, it should be noted that this
procedure in one way or another is related to general text
analysis and has its specific features.

It is known that document checks in accordance with
formatting rules is primarily manual. It is considered to be
extremely laborious and time-consuming, and researchers, as
well as individuals responsible for document check in
universities or organizations, are likely to appreciate the
simplification of this process. Since the structure of research
papers, dissertations, scientific publications, technical
documents, etc. is a standard-based compulsory requirement,
there is an ongoing need in the instrument allowing users to
check the formatting of their work and automatically fix it if
necessary. Therefore, the goal is to provide users with such
functionality by creating a relevant software product
minimizing the time and effort required.

Thus, the focus of the study is on the development of the
automated text document compliance assessment system. It is
assumed that the software product functionality is extended to
the check of such formatting characteristics as page layout
settings, styles parameters, headers and footers properties etc.
In other words, the document design (not its content) is to be
checked. The application can be used by a wide range of users,
including students, teachers, technical writers, etc. It is
expected, that the automation of text document compliance
assessment will significantly increase the efficiency of business
processes connected with document check.

II. RELATED WORKS

To date, there are two basic methods of control of the text
on the absence of formatting errors and verification of a
document in accordance with certain standards including
ready-made design templates and various software solutions.

Violation of document styling often occurs when text is
copied into a document from sources with diverse formatting
patterns. Although this issue can be partially solved by
application of built-in styles, the probability of error still exists.
In this case, the use of formatting templates is a reasonable
option.

One of the means of creating such templates is a markup
language DocBook, which is an application of XML/SGML
(XML – eXtensible Markup Language, SGML – Standard
Generalized Markup Language). It provides a user with a
unified set of tags for setting formatting of a text document [1].
This approach makes it possible to isolate document content
from its style representation. The apparent advantage of
DocBook is that a predefined set of tags eliminates formatting
errors and allows a large number of users to work with the
same text simultaneously.

Formatting templates are also utilized by the LaTeX
publishing system which provides the capability for automating
a process of inputting and formatting text of a document. The
content of a LaTeX document, similarly to DocBook, is
represented by structural and semantic markup. Text document
formatting is described in a separate file with style
information [2] which defines formatting rules, specific to each
document type. Despite a vast variety of functional
characteristics, it should be mentioned that LaTeX has a

135 of 251

number of disadvantages: firstly, in order to manipulate LaTeX
documents, it is required to have a special development
environment installed on a computer, and secondly, the process
of creating a LaTeX document may be challenging for users
who are not sufficiently skilled to work with the LaTeX
system.

The automation of compliance assessment is implemented
in a number of software products, one of which is an intelligent
web-based system for spell checking "Orogrammka". The
software checks the norms of grammar, punctuation and
document formatting [3]. Compliance assessment is provided
for research papers and dissertations in accordance with
requirements that are set in a number of standards supported by
the service. The software has an intuitive and simple interface,
however, it should be noted that text check is limited to a
strictly predefined set of formatting rules (margin sizes, page
layout settings, reference list format, etc.) without the
possibility of expanding the functionality by a user.

Another tool for automated formatting rules check was
developed in Volgograd State Technical University [4]. This
software solution is a Microsoft Word 2007 add-in which
allows users to check their documents and fix detected errors.
In spite of convenience and ease of use, the service has a
significant drawback: users whose personal computers are not
running Microsoft Office Word are deprived of the opportunity
to perform the compliance assessment of text documents.

Overall, the analysis of the studies mentioned above
highlights the need for the software system that provides an
extensive functionality for formatting rules check, yet, has a
user-friendly interface appealing for a large group of users.
This work is to propose such a system.

III. TEXT DOCUMENT FORMATTING

A. Overview and Comparative Analysis of Popular Text
Document File Formats

It is known that electronic text documents represent a major
part of stored and processed data. This explains availability of a
significant number of file formats used for specification of
textual information. However, due to the fact that formatting
check of various types of text documents requires the use of
special software tools, there is a need for selecting the most
appropriate file format which is to be used as the basis for the
development of a software product.

Thus, the most common editable text file formats were
identified:

 OpenDocument Text (*.odt) – a file format for text
documents with an open specification standardised by
ISO/IEC 26300; based on XML.

 Rich Text Format (*.rtf) – a closed cross-platform file
format for storing text documents developed by
Microsoft. A document with *.rtf extension consists of
commands which can be divided into control words and
control characters.

 Microsoft Word (*.doc) – a proprietary binary text file
format used in Microsoft Word 97-2003. Document

files represent complex objects organized according to
the rules of structured storage [5]. The basic unit of data
measurement is a symbol; all information about
characters is in document stream.

 Microsoft Word (*.docx, *.docm) – an open file format
for storing electronic text documents used in Microsoft
Word since version 2007. DOCM extension indicates
support of built-in macros and scripts. Microsoft Word
with DOCX (DOCM) extension is part of the Office
Open XML format. Office Open XML was initially
standardized by Ecma-376 and then redefined in
ISO/IEC 29500 standard [6]. OpenXML is a structured
archived file that contains markup of a document in an
XML format, graphical information and other data
included in this text document.

Table I contains results of the comparison of electronic text
documents formats by a number of parameters that will
identify the option most preferred for research purposes.

TABLE I. TEXT DOCUMENTS FORMATS COMPARISON

 OpenDocument

Text

(*.odt)

Microsoft Word Rich Text

Format

(*.rtf)
*.doc *.docx

(*docm)

Date of

creation

2005 1997 2007 1982

Open or
proprietary

Open Proprietary Open Proprietary

Document

file self-
sufficiency

Partial Full Full Partial

Ability to

convert to

other

formats

Yes Partial Yes

(partial

for

*.docm)

Yes

Free

software

Yes Partial Partial Yes

File size
compactness

High Low High Low

Unlike Rich Text Format and Microsoft Word (*.doc),
OpenDocument Text and Microsoft Word (*.docx, *.docm)
file formats have open specifications which allows third-party
developers to freely create software for processing text
documents with ODT and DOCX extensions. It is also worth
mentioning that ZIP archive compression used by these formats
significantly reduces file sizes making them more compact.

Microsoft Word documents of all versions are self-
sufficient, i.e. they store all necessary data for correct content
representation, whereas OpenDocument Text documents may
not be displayed correctly in different programs or operating
systems and RTF is fully supported only in a limited number of
software products. The capability to convert from one format to
the other is represented in every case. Comprehensive free
software is only available for OpenDocument Text (some
features of Rich Text Format are not implemented in freely
distributed products). However, it is worth noting that, despite
strong connectivity of Microsoft Word to the original
Microsoft software and the absence of free alternatives, the
usage of the format prevails. Such a conclusion can be drawn

136 of 251

on the basis of statistics from Microsoft [7], according to which
about 1.2 billion people around the world use Microsoft Office
applications as their primary tool when working with
spreadsheets, texts, presentations, etc.

The advantages of a Microsoft Word file format based on
an Open XML format [8] include:

1. Interoperability. The capacity of the format to interact
and function with a large set of both custom and commercial
applications provides a high degree of compatibility of
documents for different tasks.

2. Backward compatibility. The ability of transformation
of MS-DOC files into Open XML format with high accuracy
allows end users to convert these documents to the Open XML
format, and then programmatically access the converted
documents.

3. Programmability. Minimum requirements for working
with Open XML include a tool that can open and save ZIP files
and an XML parser/processor. ZIP and XML libraries allow
creating documents in Open XML format on a software level.

4. Integration of business data. Office applications support
custom XML schemas that can extend the capabilities of the
existing Office document types. Thus, users can export data
from existing systems to the documents in the Office file
formats.

5. Compact file format. Open XML format uses the
technology of ZIP compression for storing documents which
provide the possibility of reducing storage space. Opening the
file causes the automatic unpacking of the archive, and saving
the file results in its compressing.

Thus, a comparative analysis of the formats of text
documents showed that Microsoft Word (since 2007 version)
seems to be the most appropriate option in terms of the use of
open standards based on ZIP and XML, the capability of
processing in third-party applications, the ability to convert to
other formats and popularity among users

B. WordprocessingML Description
An ISO/IEC 29500 standard specifies a markup language

for text document description which is called
WordprocessingML. In a WordprocessingML file elements are
grouped in accordance with functionality and stored in separate
parts of a ZIP archive. For example, information about all
footnotes in a document is gathered in one element, however,
in case of footers, the situation is slightly different: each
section of the document can store up to three different
configurations of headers and footers with different numbering
options, special first page settings, etc. Thus, the structure of
WordprocessingML includes a set of the following elements: a
main document, comments, document settings, footnotes,
header/footer, styles, fonts table, document glossary, etc. Fig. 1
illustrates parts of a document TestFile.docx opened with a tool
Open XML Package Editor PowerTool for Visual Studio that
allows to view the file hierarchy of the document archive and
the relationships between them and also to modify their
markup.

Fig. 1. Microsoft Word document file structure

In the main document part paragraphs (w:p) and tables
(w:tbl) can be child elements for document body (w:body),
table cell (w:tc) or text box (w:txbxContent). Paragraphs, in
their turn, are a run-level content container for text runs (w:r),
or images – a VML document (w:pict) or a DrawingML object
(w:drawing). Finally, sub-run-level content incorporates
multiple text elements (w:t).

Formatting of a text document with the use of Microsoft
Word refers to implementation of various styles with
parameters included in styles.xml file of a document
archive [9]. This file contains data on styles of paragraphs,
characters and tables, latent styles and standard settings of
styles for an entire document (document defaults). Styles of
paragraphs, characters and tables comprise information about
current formatting of a document, whereas hidden styles are
not used directly and serve primarily as a cache repository for
style settings, for example, the ones copied from a template.
Standard styles store default values for the entire document
formatting. However, it should be noted that styles.xml file
does not involve data on formatting of numbered and bulleted
lists that is included in a special numbering.xml file.

The fact that content of a document can be formatted on
multiple levels leads to a problem of determining a
comprehensive set of formatting parameters used for a
particular paragraph or a run of the text. These levels of
formatting are schematically represented in Fig.2.

Fig. 2. Levels of Microsoft Word text document formatting

137 of 251

Thus, if it is needed to retrieve information about a
paragraph (e.g. line spacing or indentation), the first aspect that
has to be checked is direct formatting which is specified in a
file called document.xml. Yet, paragraph parameters might not
be indicated in this file, and, in this case, it is necessary to
inspect the style which is referred to in paragraph properties. If
this style does not contain data on the paragraph formatting,
then the styles from which it inherits are to be checked. If this
action did not bring any results, then the only option left is to
process the contents of the node Global default, i.e. default
settings of all styles in a document.

Similar approach is credible for checking text runs
formatting (defining such font settings as size, name, etc.); the
only difference is that character styles are put into
consideration and they can also form an inheritance hierarchy.

Data on tables formatting are defined in styles with
conditional formatting that specify the properties of rows and
columns. Table styles are also inheritable. Text inside table
cells is checked according to algorithms of determining
formatting of paragraphs and runs. In case of numbering, each
list item may include formatting from a paragraph, a
numbering format in numbering.xml or a style that is indicated
by this format.

Overall, the major difficulty of text document formatting
check lies in determining precise formatting parameters for
paragraphs, tables, numbering and runs of text for the purpose
of conducting as extensive an analysis of conformity of a
document to specified rules as possible.

IV. SYSTEM DEVELOPMENT

The compliance assessment procedure can be described as
follows: the system sequentially retrieves formatting data from
document markup and compares it to formatting parameters
specified by the user. In order to work with
WordprocessingML markup, it was decided to use Open XML
SDK 2.5 for Microsoft Office. Retrieval of information on
document formatting was performed by using the
FormattingAssembler module which is a part of PowerTools
for OpenXML. This module accesses style information on
every level of formatting and assembles it, so that the markup
of an original document is modified in a way that there is only
direct formatting left. However, this direct formatting contains
all formatting parameters (even from hidden styles) that were
applied to a document.

OpenXML SDK built on the System.IO.Packaging API
allows users to manipulate documents that adhere to the Office
Open XML File Formats Specification, e.g. documents created
with Microsoft Office applications. This package provides a set
of strongly-typed classes to obtain data about the formatting of
a document and makes it possible to modify an original
document (for example, to add comments).

Despite the fact that .NET offers standard assemblies for
working with Microsoft Office, the preference was given to
OpenXML SDK. COM Interop (Component Object Model)
provides access to Word objects (sections, paragraphs, tables,
etc.) and has functionality for creating and editing documents,

however, it does not support server-side automation and
processes documents markedly slower than SDK.

The analysis of documents demanding certain formatting
resulted in identification of a number of essential parameters
for assessing the accuracy of text document formatting. Thus,
the system is to perform compliance assessment according to
these parameters:

1) page layout (page margins, paper format, orientation,
columns, page numbers, header/footer settings);

2) paragraph (spacing, indentation, alignment);
3) font (size, name, color, toggle properties – bold, italics,

underlined);
4) numbering and lists (level, numbering format, start

value);
5) tables (vertical and horizontal text alignment, borders,

cell margins, width, table header);
6) images (placement – anchor or inline, size).

The process of text documents check can be divided into
several stages. Firstly, it is needed to define a set of rules
according to which compliance assessment will be performed.
The system provides a user with a possibility to specify design
requirements for various documents by loading a formatting
template or entering parameters manually, modify these
requirements, or delete them if necessary; all information is
stored in a formatting rules repository.

The second step is to upload the document into the system
and select appropriate formatting rules. After that check of a
document can be performed. The system reloads the document
and adds comments with identified inconsistencies between the
formatting used in a checked document and specified
formatting requirements (see Fig. 3). So, in this case the system
has detected that sizes of a header and a footer, page margin
sizes, and some settings of a style "Heading 1" were selected
incorrectly, and all this information was reported to the user. It
should be noted that if there are no formatting mistakes in the
original document, the system will not create any annotations.
Comments on inaccurate paragraphs styling are added
accordingly to each paragraph with incorrect formatting; notes
on violation of formatting requirements for page layout
settings, header/footer, etc. are added to the first paragraph of
text. If there are formatting errors inside paragraphs or runs of
text (for instance, some word has odd font settings), the system
makes comments on each word in particular.

Fig. 3. Compliance assessment system interface

138 of 251

Thus, the user-system interaction complies with a number
of different scenarios. The first scenario (see Fig. 4) implies
that a user enters formatting rules manually, and then loads an
original document for the check. In this case, the system (FRC
System – Formatting Rules Check System) provides a user
with either the resulting document containing the notes or the
one with formatting corrected in accordance with rules
specified by a user.

Fig. 4. Correct document generation

According to the second scenario (see Fig. 5) a user
uploads a properly formatted template document, the system
performs its analysis and downloads its formatting rules into
the rules repository. This procedure significantly simplifies the
entry of formatting rules of a document.

Fig. 5. Creation of rules based on document template

The third scenario of the interaction (see Fig. 6) suggests
that a user manually enters formatting rules of a document, the
system saves them in the repository, and then generates a
document template with an automatically created styles which
a user can use for further work with a document.

Fig. 6. Creation of document template based on rules

V. TEXT DOCUMENT STRUCTURE CHECK

As noted earlier, the task of a text document analysis is not
reduced to formatting rules check. In the more general case, it
is necessary to analyze document structure, i.e. verify that all
required sections are included. This problem often arises in
preparation of design documentation, for example, in the
process of developing information systems. Design
documentation has a normative function, i.e. it contains mutual
obligations of participants of a project that helps to avoid
misunderstandings and abuses at the stage of handover-
acceptance [10; 11].

The types and completeness of project documents are
standardized. However, due to the fact that all technical
documents are structurally very similar (they all consist of
sections and subsections, may include additional documents,
diagrams, tables, etc.), a special language for defining
document structure and links between different documents can
be developed. It will allow automating the process of analysis
of an original set of project documents and generation of the
new ones [12]. In the same way, it is reasonable to develop
tools for extracting system requirements from the project
documentation, and then control their compliance in the
process of implementing the system. However, the process of
creating design documents is quite a laborious task that
requires precise knowledge of a document structure. This
process can also be automated. Means of automating the
generation of project documentation will allow generating a
document template on the basis of descriptions of different
sections of a document specified in a convenient visual user
interface. This template can later be modified manually.

In order to describe documentation used in the process of
information systems design, visual domain-specific language
can be developed. Domain-Specific Language (DSL) is a
modeling language designed for solving problems of a certain
class in a particular domain. Unlike general-purpose modeling
languages, DSL is more expressive, easy to use and intelligible
to various categories of professionals, since it operates with the
familiar terminology of the domain. Therefore, a large number
of DSLs is designed nowadays in order to describe systems in
different subject areas: artificial intelligence systems,
distributed systems, mobile applications, real-time and
embedded systems, simulation systems, etc.

Since description of project documents implies not only
determining their structure, but also specifying the relations
between them, the developed domain-specific language
describing project documentation has two levels [13].

The first level of the language makes it possible to describe
a set of documents and relations between them, the second
level – the structure of a particular document. Due to a simple
graphical notation of the language, the system can be used by
IT‑specialists, as well as clients who are not professional
programmers.

VI. CONCLUSION

The main result of the work done is the developed system
that automates the check of a text document in accordance with
formatting rules specified by a user. As it was tested, the

Rules

Repository

User

FRC System StylesRules

Rules

Document

Template

Rules

Repository

Document

Template

FRC SystemStyles

Rules

Rules

Repository

User

Source

Document

FRC System

Document

with

commentsText

Rules

Comments

Correct

Document

Text +

StylesRules

139 of 251

system substantially reduces the complexity of operations
performed and makes the process less time-consuming.

Moreover, the visual DSL for describing the structure of a
document was created. This language can be integrated into the
support system of work of an analyst when information
systems are designed. On the one hand, this provides means to
perform analysis and parsing of a set of design documents
loaded into system, presenting the sections of a document as
individual elements of a model. On the other hand, with the use
of the developed language an analyst can describe each section
of a design document separately, and then generate a single text
description on their basis.

Despite the fact that the system performs all the main
functions, there is still space for improvement. The system can
be upgraded by developing web-interface for more convenient
use and expanding the set of criteria for document check in
order to perform more comprehensive compliance assessment.

REFERENCES

[1] S. Berdachuk, Use the DocBook for Documentation Writing.
[http://www.berdaflex.com/ru/eclipse/books/
rcp_filemanager/ch01s04.html] (Checked: 10.04.2016).

[2] S.M. Lvovsky, Typing and formatting in LaTeX System. Moscow:
MTSNMO, 2006.

[3] Orfogrammka. Spelling Checking Web Service. [http://orfogrammka.ru]
(Checked: 10.04.2016).

[4] A.A. Sokolov, A.M. Dvoryankin, A.Yu. Uzhva, “Development of the
Method of Process of Technical Documentation Normative Control
Automation,” in Izvestia VSTU, 2013, no. 22 (125), pp. 116-117.

[5] K.E. Klementyev, Internal MS WORD document format
[http://uinc.ru/articles/39/] (Checked: 10.04.2016).

[6] ISO/IEC 29500. Information technology – Document description and
processing languages – Office Open XML File Formats. International
Organization for Standardization, Geneva, Switzerland, 2012.

[7] Microsoft. Microsoft by the Numbers [http://news.microsoft.com/
bythenumbers/planet-office] (Checked: 10.04.2016).

[8] OpenXMLDeveloper.org. Benefits of Open XML.
[http://openxmldeveloper.org/wiki/w/wiki/benefits-of-open-xml.aspx]
(Checked: 21.10.2015).

[9] W. Vugt, Open XML Explained. [http://openxmldeveloper.org/cfs-
file.ashx/__key/communityserver-components-postattachments/00-00-
00-19-70/Open-XML-Explained.pdf] (Checked: 21.10.2015).

[10] A.V. Zaboleeva-Zotova, Yu.A. Orlova, “Automation of Procedures of
the Product Requirements Document Text Semantic Analysis,” in
Izvestia VSTU, 2007, no 3, vol. 9, pp. 52-55.

[11] Yu.A. Orlova, “Product Requirements Document Text Analysis
Methods,” in Izvestiya TSU. Engineering Sciences, 2011, no 3, pp. 213-
220.

[12] M.A. Zhigalova, A.O. Sukhov, “Validation of the Design
Documentation Based on Domain-specific Language,” in Vestnik
molodykh uchenykh PSNRU. Vol. 4. P. 224-228.

[13] M.A. Zhigalova, A.O. Sukhov, “Domain-specific Language for
Describing Documents Used in Information Systems Design,” in
Izvestiya SFedU. Engineering Sciences, 2015, no. 2, pp. 126-134.

140 of 251

	01_title.pdf
	02_annotation.pdf
	03_content.pdf
	04_foreword.pdf
	05_committee.pdf
	06_submissions.pdf
	01_SYRCoSE_2016_paper_53.pdf
	Introduction
	Main ideas
	Two approaches to constraining type parameters
	Languages with ``Constraints-are-Types'' Philosophy
	Interfaces in Ceylon and Kotlin
	Scala Traits
	Rust Traits
	Swift Protocols

	Languages with ``Constraints-are-Not-Types'' Philosophy
	JavaGI Generalized Interfaces
	Language G and C++ concepts
	C# with concepts
	Constraints in Genus

	Which Philosophy Is Better If Any?

	Single Model versus Multiple Models
	Concept Pattern
	Instance Uniqueness in Haskell
	Parameters versus Predicates
	Modular Implicits in OCaml
	Concept Parameters for C#

	Conclusion and Future Work

	02_SYRCoSE_2016_paper_16.pdf
	03_SYRCoSE_2016_paper_54.pdf
	04_SYRCoSE_2016_paper_14_short.pdf
	05_SYRCoSE_2016_paper_34.pdf
	06_SYRCoSE_2016_paper_51.pdf
	07_SYRCoSE_2016_paper_43.pdf
	Introduction
	Domain analysis approaches
	Proposed approach
	Evaluation
	Conclusion
	References

	08_SYRCoSE_2016_paper_5.pdf
	09_SYRCoSE_2016_paper_52.pdf
	10_SYRCoSE_2016_paper_48.pdf
	I. Introduction
	II. common view on stand-alone verification of microprocessor caches
	III. Test stimuli generation
	A. The general approach
	B. Generation of primary requests for caches with out-of-order execution

	IV. Correctness checking
	A. Checking of indeterministic caches
	1) “Gray box” method: one of the ways to solve aforementioned problem is to replace usual “black box” method of device verification. That is, we should not consider only external interfaces of the device while analysing its behaviour. To determine which variant of behaviour has happened in the cache one could use “hints” from the implementation. To use this approach, a set of internal interfaces and signals is defined and its behaviour is specified. This interfaces must be chosen in a way that information on their state could be used to eliminate indeterminism. In general, in caches such signals are results of primary request arbitration and interfaces of finite automata of cache eviction mechanism. Additionally, that information can be used in request generator and for the estimation of verification quality. This method is usually easy to implement. Drawbacks of this methods are additional requirements for specification and reliance on interfaces that could also exhibit erroneous behaviour.
	2) Dynamic refinement of behavioural model: Another approach is to create additional instances of model for each variant of behaviour in case of nondeterministic choice in the device[4]. Each reaction is checked against every spawned device model. If reaction is impossible for one variation of behaviour, then it is removed from set. If set of possible states after some reaction becomes empty, the system must return error. In general, this approach may cause exponential growth of number of states with each consecutive choice. But for caches this approach could be implemented efficiently, because of several properties of caches: serialization of requests and cache line independence. Information on which indeterministic choice was made in the device (for use in request generator or for verification quality estimation) could also be extracted from reactions. Strong points of that approach compared to “gray box” method is elimination of reliance on implementation details of the device. Drawback is additional complexity of implementation.
	3) Assertions: Test stimulus generators simulate the behaviour of the device under test. It also should be noted that interaction between the device and its environment must adhere to some protocol. Based on that protocol, one can include functional requirements of protocols as an assertions in the generator. Then, violation of an assertion represents signals an error. Usage of assertions is an effective method of detection of a broad class of errors. In addition to assertions that are common for all memory subsystem devices, several cache-specific assertions could be included. They represent invariants of cache coherence protocol. To check this invariants, coherence of states of a single cache line is analyzed in all parts of test system after each change.

	B. Checking caches with out-of-order execution

	V. Case study
	VI. Conclusion

	11_SYRCoSE_2016_paper_12.pdf
	12_SYRCoSE_2016_paper_4.pdf
	13_SYRCoSE_2016_paper_41.pdf
	14_SYRCoSE_2016_paper_55.pdf
	15_SYRCoSE_2016_paper_7.pdf
	I. Introduction
	II. GOST 27.310-95 summary
	III. Tools overview
	A. OSATE
	B. RAM Commander

	IV. Comparison
	V. Conclusion

	16_SYRCoSE_2016_paper_31.pdf
	17_SYRCoSE_2016_paper_24.pdf
	18_SYRCoSE_2016_paper_15.pdf
	19_SYRCoSE_2016_paper_2_short.pdf
	20_SYRCoSE_2016_paper_37_short.pdf
	21_SYRCoSE_2016_paper_27_short.pdf
	Introduction
	Motivating Example
	Axioms as Specification Drivers
	Specification Drivers in Practice
	ADT axioms
	Equivalence
	Well-definedness
	Complete contracts

	Related Work
	Proving contracts completeness
	Conclusions and further work
	References

	22_SYRCoSE_2016_paper_13.pdf
	23_SYRCoSE_2016_paper_21.pdf
	24_SYRCoSE_2016_paper_33_short.pdf
	25_SYRCoSE_2016_paper_35.pdf
	Introduction
	Preliminaries
	P/T-nets
	Classical Petri nets unfoldings
	Nested Petri nets
	Conservative NP-nets

	Translation of Safe Conservative NP-Nets into P/T-Nets
	Unfoldings
	Branching Processes of a Conservative NP-net
	Comparing two ways of nested Petri net unfolding

	Conclusion
	References

	26_SYRCoSE_2016_paper_49.pdf
	27_SYRCoSE_2016_paper_23.pdf
	Introduction
	Motivating example
	Related work

	Preliminaries
	Approache to balance between abstraction and detalisation
	Mapping log attributes onto UML sequence diagram components
	Merge of diagram components
	Mining a hierarchical UML sequence diagram using nested fragments

	Evaluation
	VTM4Visio Framework
	Log pre-processing
	Log library
	Prototype implementation

	Conclusion

	28_SYRCoSE_2016_paper_20.pdf
	29_SYRCoSE_2016_paper_3.pdf
	30_SYRCoSE_2016_paper_25.pdf
	31_SYRCoSE_2016_paper_36.pdf
	32_SYRCoSE_2016_paper_17.pdf
	Dynamic Key and Signature Generation According to the Starting Time
	REFERENCES

	33_SYRCoSE_2016_paper_1.pdf
	34_SYRCoSE_2016_paper_6.pdf
	35_SYRCoSE_2016_paper_29.pdf
	36_SYRCoSE_2016_paper_10.pdf
	37_SYRCoSE_2016_paper_8.pdf
	I. Introduction
	II. Main Targets for Debugger
	III. Related Works
	A. Fiasco OS
	B. VxWorks
	C. L4Ka::Pistachio:

	IV. Technical Description:
	V. Debugger's Capabilities
	1. Setting Breakpoints on Kernel and Partitions.
	2. Single Step.
	3. Showing Information about Processes and Threads, Inspecting Memory, Instructions and Registers. Memory Reading and Writing.
	4. Setting Watchpoints.
	5. Stack Inspection.

	VI. Future Work
	VII. Conclusion
	References

	38_SYRCoSE_2016_paper_9.pdf

