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We describe all local Riemannian metrics on surfaces whose geodesic flows are
superintegrable with one integral linear in momenta and one integral cubic in momenta.

We also show that some of these metrics can be extended to S2. This gives us new
examples of Hamiltonian systems on the spherewith integrals of degree three inmomenta,
and the first examples of superintegrable metrics of nonconstant curvature on a closed
surface.
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1. Introduction

1.1. Definitions and statement of the problem

Let M2 be a surface (i.e., 2-dimensional real manifold) equipped with a Riemannian metric g = (gij). The geodesic
flow of the metric g is the Hamiltonian system on the cotangent bundle T ∗M2 with the Hamiltonian H :=

1
2g

ijpipj, where
(x, y) = (x1, x2) is a local coordinate system on M2, and (px, py) = (p1, p2) are the correspondent momenta, i.e., the dual
coordinates on T ∗M2.

We say that a function F : T ∗M2
→ R is an integral of the geodesic flow of g , if {F ,H} = 0, where {, } is the canonical

Poisson bracket on T ∗M2. We say that the integral is polynomial in momenta of degree d, if in every local coordinate system
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(x, y, px, py) it has the form

F(x, y, px, py) =

d−
i=0

ai(x, y)pd−i
x piy. (1.1)

For example, the Hamiltonian H itself is an integral quadratic in momenta. Integrals polynomial in momenta of degree 1
(3, resp.) will be called linear (resp. cubic) integrals.

The first main result of the present paper is a complete solution of the following problem:

Problem A. Describe locally all two-dimensional Riemannian metrics admitting one integral L linear in momenta and one
integral F cubic in momenta such that L, F , and H are functionally independent.

Recall that functions L, F ,H are functionally independent if there exists a point on T ∗M such that at this point
the differentials dL, dF , dH are linearly independent. For integrals polynomial in momenta, linear independence of the
differentials of the integrals at one point implies linear independence of the differentials of the integrals at every point
of a certain everywhere dense open subset (assuming the manifold is connected).

Recall that two-dimensional metrics whose geodesic flows admit three functionally independent integrals of a certain
special form (in most cases the integrals are assumed to be polynomial in momenta of certain fixed degrees) are called
superintegrable. Superintegrable metrics (and Hamiltonian systems in general) are nowadays hot topics in mathematical
physics and differential geometry, due to various applications and interesting mathematical structures lying behind. We
suggest [1–4] for a discussion of superintegrable systems from the viewpoint of mathematical physics, and [5–7] from the
viewpoint of differential geometry.

If the metric is superintegrable with two linear integrals, it has constant curvature. The metrics that are superintegrable
with two quadratic integrals (in addition to the energy integral), or one linear and one quadratic, were described (locally, in
a neighborhood of almost every point) in the classical work of Koenigs [8].

The next case should be ‘‘linear integral + cubic integral’’, but the only result we found in this direction is due to
Rañada [9], Gravel [10], andMarquette andWinternitz [11] and concerns theHamiltonian systems such that theHamiltonian
H is the sum of the standard kinetic energy K =

1
2 (p

2
x + p2y) and a potential energy V (x, y) ≠ const. They assumed the

existence of (functionally independent) linear and cubic integrals and proved that for such systems the cubic integral is
actually the product of the linear integral and of an integral quadratic in momenta, i.e., such systems can be obtained via the
Maupertuis’ transformation from the superintegrable systems constructed by Koenigs [8]. In particular, all known examples
of metrics satisfying assumptions in Problem A above were in a certain sense trivial: the metric has a constant curvature, or
the metric is superintegrable with one quadratic and one linear integral, and every cubic integral is a product of the integral
linear in momenta and an integral quadratic in momenta.

1.2. Main result: local normal forms of metrics admitting one linear and one cubic integral

Theorem 1.1. Let g be a Riemannian metric on the 2-dimensional connected manifold M2.
Suppose the geodesic flow of g admits a linear integral L and a cubic integral F such that L, F and the Hamiltonian H are

functionally independent. Then, locally near every point p such that L|T∗
p M2 ≢ 0 there exist coordinates (x, y) and a real function

h(x) such that the metric g has the form g =
1
h2x
(dx2 + dy2) where hx is the x-derivative, and the function satisfies one of the

following Principal (ordinary differential) equations:

(i) hx ·

A0 · h2

x + µ2
· A0 · h(x)2 − A1 · h(x)+ A2


−


A3 ·

sin(µ · x)
µ

+ A4 · cos(µ · x)


= 0

(ii) hx ·

A0 · h2

x − µ2
· A0 · h(x)2 − A1 · h(x)+ A2


−


A3 ·

sinh(µ · x)
µ

+ A4 · cosh(µ · x)


= 0

(iii) hx ·

A0 · h2

x − A1 · h(x)+ A2

−

A3 · x + A4


= 0

(1.2)

with µ > 0 in the first two cases.

In all three cases the metric g =
1
h2x
(dx2 + dy2) is superintegrable with one linear integral L = py and one cubic integral. In

the case (i) a cubic integral F = F(x, y; px, py) can be given by

F = (C+ · eµy + C− · e−µy) ·

a0(x) · p3x + a2(x) · pxp2y


+ (C+ · eµy − C− · e−µy) ·


a1(x) · p2xpy + a3(x) · p3y
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where C+, C− are arbitrary constants and ai(x) are functions given by

a0(x) = A0 · h3
x

a1(x) =


−µ · A0 · h(x)+

A1

2µ


· h2

x

a2(x) =
1
2

· (3A0 · h2
x + µ2

· A0 · h(x)2 − A1 · h(x)+ A2) · hx

a3(x) =
1
2µ

· (3A0 · h2
x + µ2

· A0 · h(x)2 − A1 · h(x)+ A2) · hxx.

(1.3)

In the case (ii) a cubic integral can be given by

F = Ce · cos(µ · y + φ0) ·

a0(x) · p3x + a2(x) · pxp2y


+ Ce · sin(µ · y + φ0) ·


a1(x) · p2xpy + a3(x) · p3y


where Ce, φ0 are constants (‘‘amplitude and phase’’) and ai(x) are functions given by

a0(x) = A0 · h3
x

a1(x) =


µ · A0 · h(x)+

A1

2µ


· h2

x

a2(x) =
1
2

· (3A0 · h2
x − µ2

· A0 · h(x)2 − A1 · h(x)+ A2) · hx

a3(x) =
1
2µ

· (3A0 · h2
x − µ2

· A0 · h(x)2 − A1 · h(x)+ A2) · hxx.

(1.4)

In the case (iii) a cubic integral can be given by

F = C1 ·


a0(x) · p3x + a2(x) · pxp2y +

y
2

·

A1 · h2

x · p2xpy + (A1 · h2
x + A3) · p3y



+ C2 ·


y · a0(x) · p3x + a1(x) · p2xpy + y · a2(x) · pxp2y + a3(x) · p3y +

y2

4
·

A1 · h2

x · p2xpy + (A1 · h2
x + A3) · p3y


(1.5)

where C1, C2 are constants and ai(x) are functions given by

a0(x) = A0 · h3
x

a1(x) = −A0 · h2
x · h(x)

a2(x) =
1
2

· (3 · h2
x · A0 − A1 · h(x)+ A2) · hx

a3(x) = −
1
4

· (4A0 · h2
x · h(x)+ A3 · x2 + 2A4 · x).

(1.6)

Moreover, in the case when the metric g has non-constant curvature every cubic integral is a linear combination F +CL3 · L3 +

CLH · L · H where F is given by the above formula (according to the cases (i)–(iii)) and CL3, CLH are constants. In particular, in the
non-constant curvature case the space of cubic integrals of our metrics has dimension 4.

Remark 1.1 (Uniqueness of the Equation). We show in Theorem 4.1 that in the case when the curvature of our metric
g =

1
h2x
(dx2 + dy2) is non-constant the Eq. (1.2) on the function h(x) is unique up to a constant factor. On the other hand,

in Theorem 3.1 we describe possible equations of the form (1.2) for whose the metric g =
1
h2x
(dx2 + dy2) has constant

curvature.
Thus, Theorems 1.1, 3.1 and 4.1 give a complete answer to the Problem A above.

Remark 1.2 (Known Special Case: Darboux-Superintegrable Metrics). We call a metric g on M2 Darboux-superintegrable, if it
has non-constant curvature and the geodesic flow of the metric admits at least four linear independent integrals quadratic
in momenta. For example, such is the metric (x2 + y2 + 1) · (dx2 + dy2) on R2 (see for example [12, Section 4]).

Darboux-superintegrable metrics are well understood. Locally, they were described already by Koenigs [8]. In particular,
Koenigs has shown that every Darboux-superintegrable metric admits a linear integral. Then, it also admits cubic integrals,
namely the products of the linear integral and the quadratic integrals. Therefore, our Theorem 1.1 applies. In particular, in
the appropriate local coordinates (x, y) the metric has the form 1

h2x
(dx2 + dy2) such that h(x) is a solution of the Principle

equation (1.2), (i)–(iii).
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The formulas above show that if the coefficient A0 vanishes, then a generic cubic integral F + CL3 · L3 + CLH · L · H
is the product of the linear integral and a function quadratic in momenta which must automatically be an integral. Then,
the metrics corresponding to A0 = 0 are Darboux-superintegrable or are of constant curvature. The uniqueness of the
Principle equation (see the previous remark) shows that the converse assertion is also true. Thus we obtain the following
characterization: Under the hypotheses of Theorem 1.1 the metric g =

1
h2x
(dx2 + dy2) of non-constant curvature is Darboux-

superintegrable if and only if the parameter A0 vanishes.

Remark 1.3. With the help of a computer algebra software, for examplewithMaple r⃝, it is easy to check that the functions F
from Theorem 1.1 are indeed integrals: the condition {H, F} = 0 is equivalent to 5 ODEs of at most 3rd order on the function
h; these ODEs are identically fulfilled for the function h satisfying the corresponding Eq. (1.2), since they are algebraic
corollaries of the corresponding equation and its first two derivatives. We will of course explain how we constructed
the integrals (in Section 2) since we also need to show that we constructed all such metrics. Moreover, the idea of the
construction will be used in the proof of other statements of Theorem 1.1, in particular in the proof that the dimension of
the space of the integrals is 4. Moreover, we believe that the idea of our construction could also be used for constructing
higher order superintegrable cases, see Problem 1 in the Conclusion.

1.3. Second main result: examples of metrics on the 2-sphere admitting linear and cubic integrals

The problem of finding and describing global integrable Hamiltonian systems, i.e., those whose configuration space is a
compact manifold, is one of the central topics in the classical mechanics. The version of this problem in our context is as
follows:

Problem B. Understand what Riemannian metrics on the 2-sphere S2 admit one integral L linear in momenta and one
integral F cubic in momenta such that L, F , and the Hamiltonian H are functionally independent.

Note that other oriented closed surfaces cannot admit superintegrable metrics. Indeed, if the metric is superintegrable,
all geodesics are closed which is possible on the sphere and on RP2 only.

It is known that themetric of constant curvature of the sphere do admit (linearly independent) linear and cubic integrals.
So the nontrivial part of the Problem B is whether there are other metrics on the 2-sphere admitting an integral L linear in
momenta and an integral F cubic in momenta such that L, F , and H are functionally independent.

For the integrals of lower degrees, the answer in negative. Indeed, the existence of two functionally independent linear
integrals implies, even locally, that the metric has constant curvature. By Kiyohara [13], the existence of three functionally
independent quadratic integral (energy integral + two additional integrals) on the 2-sphere implies that the metric is of
constant curvature. From this result, it also follows that the existence of (functionally independent) linear and two quadratic
integrals implies that the metric of the 2-sphere has constant curvature. Because of these results (and absence of examples
of superintegrable systems with higher degree integrals), it was generally believed that no polynomially superintegrable
metric exists on a closed surface of nonconstant curvature.

In the present paper, we construct the first examples of smooth (even analytic) metrics of nonconstant curvature on the
2-sphere whose geodesic flows admit integrals L linear in momenta and integrals F cubic in momenta such that L, F , and H
are functionally independent. The construction is in Section 6. We show that for certain values of parameters the metrics
we constructed in Theorem 1.1 and the integrals of these metrics can be smoothly extended to the sphere. More precisely
(in the notation of Theorem 1.1), if the function h(x) fulfills the Eq. (1.2)(ii) and the condition h′(x0) > 0 at some point x0
whereas the real parametersµ > 0, A0, . . . , A4 satisfy inequalities A0 > 0, µ ·A4 > |A3| then the metric g =

1
h2x
(dx2 + dy2)

smoothly extends to the sphere S2 together with the linear integral L = py and the cubic integral F given by (1.4).
We conject that these are all examples of metrics on the sphere superintegrable with one linear and one cubic integral.
Our examples are also interesting from other points of view. Indeed, every metric from these examples admit an integral

cubic in momenta that is not the product of a linear and a quadratic integral. The problem of constructing such metrics is
very classical and, to a certain extent, was stated by Jacobi, Darboux, Cauchy, Whittaker, see also [14,15]. There are only
very few examples of such metrics on closed surfaces: constant curvature metrics, metrics constructed via Maupertuis’
transformation from the Goryachev-Chaplygin case of rigid body motion and their generalizations due to Goryachev [16],
by Kiyohara [17], metrics constructed by Selivanova [18] and by Dullin and Matveev [19] and their generalizations from
Valent [20] (see also [21,22]). Note that the analogous question for the quadratic integrals is completely solved, see [23,13,
24,25].

Moreover, all geodesics of the metrics we constructed are closed (since it is always the case for superintegrable metrics),
so the examples are also examples of the so-called Zoll surfaces (see [26]).

1.4. Additional result: special case of Kruglikov’s ‘‘big gap’’ conjecture

In [5, Section 12], Kruglikov has shown that the dimension of the space of cubic integrals (of the geodesic flow of a
2D-metric) is at most 10; the dimension 10 is achieved only by the metrics of constant curvature. He also has shown that
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the second largest dimension is at most 7 (see [5, Theorem 8]), and conjectured that the gap between the largest and the
second largest possibilities for the dimension of the space of cubic integrals is even bigger: he writes that it seems that the
next realized dimension after 10 is 4.

We will prove this conjecture (see Theorem 5.1) under the additional assumption that the metric admits a Killing vector
field. Note that this assumption does not look too artificial, since it is expected that metrics with many polynomial integrals
admit Killing vector fields. For example, by the classical result of Koenigs mentioned above, metrics admitting four (= the
second largest dimension) linearly independent integrals that are quadratic in momenta admit Killing vector fields.

More precisely, we will prove that, if a 2D metric is superintegrable with one linear and one cubic integral (L and F ) and
has non-constant curvature, then, locally, the space of cubic integrals is precisely 4-dimensional. In particular, in addition
to the integrals L3, F , L · H we always construct one more cubic integral F2 that is linearly independent of L3, F , and L · H .

2. Principle equation and overview of the proof of Theorem 1.1

2.1. How we found the metrics: scheme of the proof of Theorem 1.1

It is well-known (see for example [27, Section 592], or [24]) that every pair (g, L), where g is a Riemannian metric, and
L is an integral linear in momenta, is given in appropriate coordinates in a neighborhood of every point such that L ≢ 0 by
the formulas

g = λ(x)(dx2 + dy2) and L = py. (2.1)

The natural ‘‘naive’’ method to solve the Problem A would be to write the condition {H, F} = 0, where H =
p2x+p2y
2λ(x) and

F := a0(x, y)p3x + a1(x, y)p2xpy + a2(x, y)pxp2y + a3(x, y)p3y , as the systems of PDE on the unknown function λ of one variable
and unknown functions ai of two variables, and to try to solve it. Unfortunately, by this method we obtain a system of 5
nonlinear PDE on 5 unknown functions λ, a0, a1, a2, a3. The system is still overdetermined (since the function λ depends on
x only, which is equivalent to the existence of the 6th equation ∂

∂yλ = 0), but still is completely intractable.1

In order to solve the problem, we used a trick that allowed us to reduce the problem to solving systems of ODE (instead
of PDE). A similar trick was recently used in [28].

The main observation is the following: the Poisson bracket of the linear integral L and of a cubic integral F is

• an integral (because of the Jacobi identity), and
• is cubic in momenta (because each term in the sum {L, F} = ∂xF∂pxL+ ∂yF∂pyL− ∂xL∂pxF − ∂yL∂pyF is cubic in momenta).

Thus, the mapping L : F → {L, F} is a linear homomorphism. By [5], the space of cubic integrals is finite- (at most, 10-)
dimensional. Let us now consider the eigenvalues of the mapping L. Clearly, 0 is an eigenvalue of L, whose eigenvectors
are A3 · L3 + A1 · L · H , where A1, A3 ∈ R. The following two cases are possible:
Case 1: The mapping L has an eigenvalue µ ≠ 0. Then, there exists a cubic integral F such that {L, F} = µ · F . We allow µ to
be a complex number, and F to be complex valued function, i.e., F = F1 + iF2 for real-valued cubic integrals F1 and F2.

In the coordinates such that (g, L) are given by (2.1), we have

{L, F} = ∂yF = ∂ya0(x, y) · p3x + ∂ya1(x, y) · p2xpy + ∂ya2(x, y) · pxp2y + ∂ya3(x, y) · p3y,

so that the condition {L, F} = µ · F is equivalent to the system ∂yai(x, y) = µ · ai(x, y), i = 0, . . . , 3. Then, ai(x, y) =

exp(µy) ·ai(x) for certain (complex valued in the general case) functions ai(x) of one variable x. Then, all unknown functions
in the equation {H, F} = 0 are functions of the variable x only, i.e., the condition {H, F} = 0 is a system of ODE (depending
on the parameterµ). Finally, the condition {H, F} = 0 is equivalent to 5 ODE on 5 unknown functions of one variable x: four
unknown functions ai(x) and λ(x). Working with this system of ODE, we partially integrate it and reduce it to one ODE of
the first order (essentially, the first equation of (1.2) for µ ∈ R and the second equation of (1.2) for µ ∈ i · R.).

In this way, we obtain λ(x) which is a priori a complex-valued function; for our problem, only real-valued λ’s are of
interest. We shall see in Section 4.1 that λ is real if and only if µ is real or purely imaginary.
Case 2: The mapping L has only one eigenvalue, namely zero. Since in our setting the space of cubic integrals is at least three-
dimensional, there exists an integral F linear independent of L3 and L · H such that {L, F} =

A3
2 · L3 + A1 · L · H for certain

constants A1, A3. In the coordinates such that (g, L) is given by (2.1), the condition {L, F} =
A3
2 · L3 + A1 · L · H reads

{py, a0(x, y)p3x + a1(x, y)p2xpy + a2(x, y)pxp2y + a3(x, y)p3y}

= ∂ya0(x, y) · p3x + ∂ya1(x, y) · p2xpy + ∂ya2(x, y) · pxp2y + ∂ya3(x, y) · p3y

=
A3

2
· p3y +

A1

2λ(x)
· (p2x + p2y) · py,

1 This ‘‘naive’’ approach to this problem was tried without success by many experts in superintegrable systems (private communications by Marquette,
Rañada, Winternitz).
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and is equivalent to the system ∂ya0(x, y) = 0, ∂ya1(x, y) =
A1

2λ(x) , ∂ya2(x, y) = 0, ∂ya3(x, y) =
A3
2 +

A1
2λ(x) . Then,

F = a0(x) · p3x + a1(x) · p2xpy + a2(x) · pxp2y + a3(x) · p3y +
y
2

·


A3 · p3y + A1 · py ·

p2x + p2y
λ(x)


. (2.2)

We again see that all unknown functions in the equation {H, F} = 0 are functions of the variable x only, i.e., the condition
{H, F} = 0 is a system of 5 ODE (depending on the parameters A1, A3, y0) on 5 unknown functions of one variable x: ai(x)
and λ(x). Working with this system of ODE, we partially integrate it and reduce it to one ODE of the first order (Equation
(iii) of (1.2)), which is in a certain sense a degenerate case of the corresponding ODE we obtained in Case 1.

2.2. Case 1 (µ ≠ 0) in the proof of Theorem 1.1

For convenience in further computation, we write the metric g in the form

g =
dx2 + dy2

h2
x

(2.3)

for some function h = h(x), where hx =
dh(x)
dx . Then H =

h2x
2 · (p2x + p2y) and the linear integral is L := py.

We assume (see Section 2.1) that there exists a complex-valued cubic integral of the form
F = exp(µ · y) · a0(x) · p3x + exp(µ · y) · a1(x) · p2xpy + exp(µ · y) · a2(x) · pxp2y + exp(µ · y) · a3(x) · p3y,

where ai are smooth complex-valued functions of one real variable x.
Then, the condition {F ,H} = 0 reads

{F ,H} = hx · exp(µ · y) · (hx · a0(x)x − 3 · a0(x) · hxx) · p4x
+ hx · exp(µ · y) · (−2 · a1(x) · hxx + hx · µ · a0(x)+ hx · a1(x)x) · p3x · py
+ hx · exp(µ · y) · (hx · µ · a1(x)− 3 · a0(x) · hxx − a2(x) · hxx + hx · a2(x)x) · p2x · p2y
+ hx · exp(µ · y) · (hx · µ · a2(x)+ hx · a3(x)x − 2 · a1(x) · hxx) · px · p3y

+
1
2
hx · exp(µ · y) · (−a2(x) · hxx + hx · µ · a3(x)) · p4y, (2.4)

where subscripts a0(x)x, hx mean derivation in x, and hxx is the second derivative. Since the monomials p4−i
x piy form a basis

of homogeneous polynomials of degree 4, every line in (2.4) should vanish. This gives us a system of 5 ODEs on 5 functions
h(x), a0(x), . . . , a3(x): each line of (2.4) corresponds to one ODE. Subsequently solving the first three of them and resolving
a3(x) from the last one we obtain

a0(x) = A0 · h3
x

a1(x) =


−µ · A0 · h(x)+

A1

2 · µ


· h2

x

a2(x) =
1
2

· (−A1 · h(x)+ µ2
· A0 · h(x)2 + 3 · h2

x · A0 + A2) · hx

a3(x) =
1
2µ

· (3 · h2
x · A0 − A1 · h(x)+ µ2

· A0 · h(x)2 + A2) · hxx,

(2.5)

with some constants A0, A1, A2. Substituting in the remaining equation (. . .)px · p3y , we obtain the following non-linear ODE
of order 3 on h(x):

(3 · A0 · h2
x + µ2

· A0 · h(x)2 − A1 · h(x)+ A2) · hxxx + 6 · h2
xx · hx · A0 + (6 · µ2

· A0 · h(x)− 3 · A1) · hx · hxx

+ 3 · µ2
· A0 · h3

x + (µ4
· A0 · h(x)2 − µ2

· A1 · h(x)+ µ2
· A2) · hx = 0. (2.6)

By direct calculations we see that the Eq. (2.6) can be written in the form
d2

dx2
+ µ2


hx · (h2

x · A0 + µ2
· A0 · h(x)2 − A1 · h(x)+ A2)


= 0. (2.7)

Therefore this equation is equivalent to the equation

hx ·

h2
x · A0 + µ2

· A0 · h(x)2 − A1 · h(x)+ A2

−


A3 ·

sin(µx)
µ

+ A4 · cos(µx)


= 0 (2.8)

in the sense that h(x) satisfies the Eq. (2.6) if and only if it satisfies (2.8) with the same constant A0, A1, A2 ∈ C and some
constants A3, A4 ∈ C. Later, in Section 4.1 (see Theorem 4.2) we shall show that only real A0, A1, A2, A3, A4 are interesting
for our purposes.
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2.3. Case 2: µ = 0

We proceed as we explained in Section 2.1: we write the metric in the form g =
1
h2x

· (dx2 + dy2), so that now

H =
h2x
2 · (p2x + p2y), and then substitute (2.2) in the condition {F ,H} = 0. We obtain

{F ,H} = hx · (hx · a0(x)x − 3 · a0(x) · hxx) · p4x
+ hx · (hx · a1(x)x − 2 · a1(x) · hxx) · p3x · py

+ hx ·


1
2

· A1 · h3
x − 3 · a0(x) · hxx − a2(x) · hxx + hx · a2(x)x


· p2x · p2y

+ hx · (hx · a3(x)x − 2 · a1(x) · hxx) · px · p3y

+ hx · (A1 · h3
x + A3 · hx − 2 · a2(x) · hxx) · p4y, (2.9)

with the same constants A1, A3 as in (2.2). This time we can subsequently resolve all functions a0(x), . . . , a3(x) from the
equations and obtain

a0(x) = A0 · h3
x

a1(x) =
1
2

·A1 · h2
x

a2(x) =
1
2

· (3 · h2
x · A0 − A1 · h(x)+ A2) · hx

a3(x) =
1
2

· h2
x ·A1 +A3,

(2.10)

with some constants A0,A1, A2,A3. The notation in the formula above, especiallyA1,A3, is chosen for convenience in future
formulas. Then the bracket yields

{F ,H} = −h2
x · (3 · A0 · h2

x · hxx − A1 · h2
x − A1 · hxx · h(x)+ A2 · hxx − A3) · p4y .

This means that the equation on h(x) is

3 · A0 · h2
x · hxx − A1 · h2

x − A1 · hxx · h(x)+ hxx · A2 = A3. (2.11)
The left hand side of this expression is the x-derivative of the expression

hx · (A0 · h2
x − A1 · h(x)+ A2). (2.12)

Therefore the Eq. (2.11) is equivalent to

hx · (A0 · h2
x − A1 · h(x)+ A2)− (A3 · x + A4) = 0. (2.13)

Remark 2.1. Obviously, we obtain this equation from both the Eq. (1.2)(i) and (ii) taking the limit µ −→ 0. Moreover,
the solution of the Cauchy initial value problem for the Eqs. (2.8), (2.13) depends analytically on all parameters: the
variable x, parametersµ, A0, . . . , A4, the initial point x0, and the initial value h(x0). Therefore we can consider real solutions
h(x) of the Eq. (1.2) as ‘‘real forms’’ of a single holomorphic multi-valued function h(x;µ; A0, . . . , A4; x0, h0) depending
holomorphically on the involved parameters. Notice also that the Eq. (1.2)(ii) is obtained from (1.2)(i) by replacingµ by i ·µ,
and similarly for the corresponding cubic integrals.

Remark 2.2. The above argumentation shows the existence of one non-trivial cubic integral F in the case µ = 0 (i.e., for
the metric (2.3) with h satisfying (1.2)(iii)). Namely, such F can be obtained substituting the formulas (2.10) in (2.2). The
solution F obtained in this way has the form F = Ã3 · L3 + Ã1 · L · H + F1 with a fixed cubic integral F1 which is linear in
y. On the other hand, for µ ≠ 0 in the both cases (i) and (ii) we obtain two non-trivial cubic integrals linearly independent
of L3 and L · H , namely, by replacing µ by −µ in formulas (2.5). It appears that also in the case µ = 0 there exists another
cubic integral F2 that is (inhomogeneous) quadratic in y. The latter property is equivalent to the condition L3(F2) = 0. We
show the existence of such F2 in the proof of Theorem 5.1. This additional integral F2 is already included in the formulas in
Theorem 1.1.

This fact is the reason for the difference in formulas (1.6) and (2.10). Namely, the substitution of (1.6) in (1.5) yields the
linear combination C1F1 + F2C2 of two cubic integrals F1, F2 which are linear independent of L3 and L ·H . On the other hand,
the substitution of (2.10) in (2.2) yields the linear combination F = Ã3 · L3 + Ã1 · L · H + F1 with the same F1, which gives
only one cubic integral linear independent of L3 and L · H .

2.4. Remaining steps of the proof

As we have shown, if a surface metric g admits a linear and a non-trivial cubic integral F , then in appropriate coordinates
it has the form h−2

x (dx
2
+dy2) for some function h(x) satisfying one of the forms (1.2) of the Principle equation, and that the
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cubic integral F can be constructed using the formula (2.5) or resp. (2.10). The remaining steps of the proof are the following:

• We analyze in which cases the constructed metric g = h−2
x (dx

2
+ dy2) belongs to already known types: Metrics of

constant curvature and Darboux-superintegrable metrics. This is done in Section 3. We show that our metrics are indeed
new examples for most values of the parameters (the values of the parameters corresponding to previously known cases
are solutions of certain algebraic equations).

• In Section 4 we prove that in the case of non-constant curvature the function h(x) satisfies a unique up to constant factor
equation of type (1.2). This result is used to prove the fact that if the solution h(x) of the Principle equation with complex
parametersµ; A0, . . . , A4 is real-valued, then the parameterµ (which could be a priori arbitrary complex number) must
be real, purely imaginary, or zero,whereas the parametersA0, . . . , A4 become real after the application by the appropriate
constant. This explains why we have only 3 types (i)–(iii) of the Principle equation (1.2).

• In Section 5 we prove that in the case of non-constant curvature every types (i)–(iii) of Theorem 1.1 the space of
cubic integrals has dimension 4. This means that under hypotheses of the main theorem there are exactly 2 non-trivial
independent cubic integrals, in addition to L3 and LH . This fact is a special case of Kruglikov’s ‘‘big gap’’ conjecture (see [5])
about possible dimensions of the spaces of cubic integrals of surface metrics.

3. Special solutions

In this sectionwe consider two special cases of the Principle equation corresponding to Darboux-superintegrablemetrics
and constant curvature metrics.

3.1. The case A0 = 0 corresponds to Darboux-superintegrable metrics

Recall that a two-dimensional metric g is Darboux-superintegrable, if the space of its quadratic integrals is at least
4-dimensional and the curvature is non-constant. We shall use the following statement which follows from [5] (or even
from [8]): if a metric g (with the Hamiltonian H) of non-constant curvature admits a linear integral L and a quadratic integral Q
such that L,Q and H are functionally independent, then g is Darboux-superintegrable.

This statement implies that for every real solution h(x) of one of the Eq. (1.2) with A0 = 0 the metric g = h−2
x (dx

2
+dy2)

is Darboux-superintegrable.
Indeed, A0 = 0 if and only if the integral F from Theorem 1.1 has zero coefficient at p3x . Since the linear integral L in

Theorem 1.1 is py, the function Q := F/py is an integral quadratic in momenta. If L,H and F are functionally independent,
then the functions L,H,Q are also functionally independent and the metric is Darboux-superintegrable by the result of
[8,5] recalled above.

For further use let us note that every Darboux-superintegrable metric always has the form g = h−2
x (dx

2
+ dy2) for

some function h(x) satisfying one of the Principle equations (1.2) with A0 = 0. Indeed, for given metric g admitting a non-
vanishing linear integral L there exists a isothermic coordinate system (x, y), unique up to translations, in which L = py. In
these coordinates g has the form g = h−2

x (dx
2

+ dy2) with some function h(x). Further, if Q is a quadratic integral, then
F := Q · L is a cubic integral for g . In this situation we have shown that h(x) must satisfy one of the Eq. (1.2) with certain
parameters A0, . . . , A4 such that F =

∑3
i=0 ai(x, y)p

i
xp

3−i
y with a0 = A0h3

x . The condition F = Q · L means the vanishing of
a0(x, y)which is equivalent to A0 = 0.

3.2. Parameters in Theorem 1.1 corresponding to metrics of constant curvature

The goal of this subsection is to understand for what values of the parameters A0, . . . , A4 and the initial value h(x0)
the metric from Theorem 1.1 belong to the previously known classes, that is to the Darboux-integrable metrics and to the
metrics of constant curvature. In Section 3.1 we have shown that Darboux-superintegrable metrics are characterized by the
condition A0 = 0. Thus in order to understand whether the metrics we constructed are new we need to understand which
metrics with A0 ≠ 0 have constant curvature. The answer is given in Theorem 3.1. In particular, Corollary 3.1 shows that
most metrics we constructed are new.

Let g be a metric onM2 of the constant Gauss curvature R and v a Killing vector field corresponding to the linear integral
Lv . Then according to the sign of R the Lie algebra of Killing vector fields on M2 is either so(3) (case R > 0), or sl(2,R)
(case R < 0), or the affine algebra aff(R2) of isometries of R2 isomorphic to a semi-direct sum so(2) n R2 (remaining
case R = 0). The classification of elements of these three Lie algebras gives 6 types of Killing vector fields: rotations
of S2 (R > 0), rotations, hyperbolic translations, and loxodromies of the hyperbolic plane (R < 0), and rotations and
translations of R2 (R = 0). Fix a coordinate system (x, y) in which the metric has the form g = h−2

x (dx
2

+ dy2), the
curvature is R = hxxx · hx − h2

xx, and the Killing vector field has the form v =
∂
∂y . Since in each of these cases the metric has

3 Killing vector fields, there exists a cubic integral independent of L3v and Lv · H . Consequently, h(x)must satisfy one of the
Principal equations. The explicit situation is as follows:

Theorem 3.1. Assume that a metric g = h−2
x (dx

2
+ dy2) has constant Gauss curvature R. Then h(x) satisfies one of the Eq. (1.2).

Moreover, in this case under additional assumption A0 ≠ 0 one of the following possibilities holds:
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(1) h(x) = a · sinh(µ · (x − b))+ c with some constants µ > 0, a > 0, c, b satisfying R = a2µ4. In this case the Killing vector
field ∂

∂y is locally a rotation of the 2-sphere of radius r = a−1µ−2 and Gauss curvature R = a2µ4. The function h(x) satisfies
the Eq. (1.2)(ii) (elliptic type) in the form

hx · (h2
x − µ2(h(x)− c)2 + C) = aµ · (C + (aµ)2) · cosh(µ · (x − b))

hx · (h2
x − (3µ)2(h(x)− c)2 − 3 · (µa)2) = −2 · (aµ)3 · cosh(3µ · (x − b))

(3.1)

with arbitrary constant C in the first equation;
(2) h(x) = a · cosh(µ · (x − b)) + c with some constants µ > 0, a > 0, c, b satisfying R = −a2µ4. In this case the Killing

vector field ∂
∂y is locally a rotation of the hyperbolic plane of constant Gauss curvature R = −a2µ4 and h(x) satisfies the

Eq. (1.2)(ii) (elliptic type) in the form

hx · (h2
x − µ2(h(x)− c)2 + C) = aµ · (C − (aµ)2) · sinh(µ · (x − b))

hx · (h2
x − (3µ)2(h(x)− c)2 + 3 · (µa)2) = −2 · (aµ)3 · sinh(3µ · (x − b))

(3.2)

with arbitrary constant C in the first equation;
(3) h(x) = a · sin(µ · (x − b)) + c with some constants µ > 0, a > 0, c, b satisfying R = −a2µ4. In this case the Killing

vector field ∂
∂y is locally a translation on the hyperbolic plane of constant Gauss curvature R = −a2µ4 and h(x) satisfies the

Eq. (1.2)(i) (hyperbolic type) in the form

hx · (h2
x + µ2(h(x)− c)2 + C) = aµ · (C + (aµ)2) · cos(µ · (x − b))

hx · (h2
x + (3µ)2(h(x)− c)2 − 3 · (µa)2) = 2 · (aµ)3 · cos(3µ · (x − b))

(3.3)

with arbitrary constant C in the first equation;
(4) h(x) = a · (x − b)2 + c with some constants a > 0, c, b satisfying R = −4a2. In this case the Killing vector field

∂
∂y is a loxodromy on the hyperbolic plane of constant Gauss curvature R = −4a2 and h(x) satisfies the Eq. (1.2)(iii)
(parabolic/nilpotent type)

hx · (h2
x − 4 · a · h(x)+ A2) = 2a · (A2 − 4 · a · c) · (x − b) (3.4)

with arbitrary constant A2;
(5) h(x) = a · exp(µx) + c with some constants µ > 0, a > 0, c and R = 0. In this case the Killing vector field ∂

∂y is locally a
rotation of the Euclidean plane (R = 0) and h(x) satisfies the Eq. (1.2)(i) (hyperbolic type) in the form

hx · (h2
x − µ2(h(x)− c)2 + C) = −aµC · exp(µx)

hx · (h2
x − (3µ)2(h(x)− c)2) = −8 · (aµ)3 · exp(3µx)

(3.5)

with arbitrary constant C in the first equation;
(6) h(x) = a · x + c with some constants a > 0, c. In this case R = 0, the Killing vector field ∂

∂y is locally a translation of the
Euclidean plane (R = 0), and h(x) satisfies the Eq. (1.2)(iii) (parabolic/nilpotent type)

hx · (h2
x − A1 · h(x)+ A2) = −a2A1 · x + a · (a2 − c · A1 + A2) (3.6)

with arbitrary constants A1, A2.

Proof. As we have shown above, if a metric g admits a Killing vector field v, then in appropriate coordinates g has the form
g = h−2

x (dx
2
+dy2) and theKilling vector field the form v =

∂
∂y . In this case theGauss curvatureR is given byR = hxxx·hx−h2

xx.
Thus we are interested in possible solutions of the ODE hxxx · hx − h2

xx = R with constant parameter R such that hx ≠ 0. By
direct calculationswe see that every function on the list items (1)–(6) satisfies the ODE hxxx ·hx−h2

xx = Rwith an appropriate
constant R, and the theorem claims that the list is complete. In view of the uniqueness of the solution of an ODE with the
given initial values we must show that every combination of the initial values I := (R, x0, h(x0), hx(x0), hxx(x0)) is realized
by one of the solutions on the list. Inverting the sign of h(x) and x, if needed, wemay assume that hx(x0) > 0 and hxx(x0) > 0.

Let us consider hxxx(x0) =
R+hxx(x0)2

hx(x0)
. If hxxx(x0) = 0 then the data I are realized by an appropriate polynomial of degree

2 (case hxx(x0) ≠ 0, list item (4)) or 1 (case hxx(x0) = 0, list item (6)).
In the case hxxx(x0) < 0 we setµ :=

√
−hxxx(x0)/hx(x0) and a :=


µ−2h2

x(x0)+ µ−4h2
xx(x0). It is not difficult to see that

the ODE hxxx · hx − h2
xx = R admits the solution h(x) = a · sin(µ · (x − b))+ c (list item (3)) with appropriate parameters b

and c satisfying the initial conditions I .
In the remaining case hxxx(x0) > 0we setµ :=

√
hxxx(x0)/hx(x0) and look for the solution of the equation hxxx·hx−h2

xx = R
in one of the forms (1), (2), or (5) with appropriate parameters a > 0, b, c. The form (1) is realized in the case hxx(x0) <
µ · hx(x0) in which R > 0, the form (2) in the case hxx(x0) > µ · hx(x0) in which R > 0, and form (5) in the case
hxx(x0) = µ · hx(x0) in which R = 0. The needed parameters a > 0, b, c can be found easily.
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It remains to show every function h(x) given by one of the formulas (1)–(6) satisfies one of the ODEs (1.2) with A0 ≠ 0
and determine possible values of the parameters µ and A0, . . . , A4. Due to the condition A0 ≠ 0 we may assume that
A0 = 1. The key observation is that h(x) is (up to a constant) either a trigonometric (case (3)), or trig-hyperbolic (cases
(1) and (2)), or exponential (case (5)), or a usual monomial (cases (4) and (6)) and therefore the differential expression
hx · (h2

x ± µ̃2
· h2(x) − A1 · h(x) + A2) will be a polynomial of the same type, divisible by the monomial hx, for example,∑

j Bjejµx in the exponential case.
In the cases (1) and (2) we conclude that the right hand side must be of the form B1 · cosh(kµ) + B2 · sinh(kµ) with

k = 1, 2 or 3 which gives µ̃ = kµ. The case k = 2 is excluded by the argument that for k ≠ ±1 the expression
hx · (h2

x ± µ̃2
· h2(x)) = hx · (h2

x ± k2µ2
· h2(x)) is a trig-hyperbolic polynomial of degree 3, i.e., containing a term cosh(3µ)

or a term sinh(3µ). Using the relations sinh(3x) = 4 · sinh3(x)+ 3 · sinh(x) and cosh(3x) = 4 · cosh3(x)− 3 · cosh(x) we
conclude that the only possible equations are (3.1) and (3.2).

The remaining cases (3)–(6) involving trigonometric polynomials, exponential polynomials, and usual polynomials
instead of trig-hyperbolic ones are treated in the same manner. �

Corollary 3.1. Every Eq. (1.2) with A0 ≠ 0 and (A3, A4) ≠ (0, 0) admits only finitely many (real) solutions h(x) such that the
metric g = h−2

x (dx
2
+ dy2) has constant Gauss curvature, except the case of the equation hx(A0 · h2

x + A2) = A4 which always
admits a solution of the form h(x) = a · x + c with arbitrary c and a satisfying a(A0 · a2 + A2) = A4.

Every real solution h(x) of (1.2) is completely determined by its initial values h(x0), hx(x0) at a given point x0. Thus for a
generic choice of the initial value h(x0) the solution h(x) of the Eq. (1.2) with this initial value and with any root hx(x0) of
the corresponding algebraic equation at x0 the metric g = h−2

x (dx
2
+ dy2) has non-constant Gauss curvature.

Proof. As we have seen, a metric of the form g = h−2
x (dx

2
+ dy2) has constant curvature if and only if h(x) is one of the

forms (1)–(6). Let us consider possible right hand sides.
Every expression A3 ·

sin(µ·x)
µ

+A4 · cos(µ · x) can be written in the form A · cos(µ · (x− b))with unique A and b unique up

to a multiple of the period. Similarly, every expression A3 ·
sinh(µ·x)

µ
+ A4 · cosh(µ · x) can be uniquely written in one of the

following forms: A · cosh(µ · (x− b)), A · sinh(µ · (x− b)), A · exp(µ · x), or A · exp(−µ · x). The latter case can be reduced to
the previous one by inverting the x-axis. Thus the right hand side of the Eq. (1.2)(ii), determines which type (1), (2), or (5)
of the solution h(x)we obtain, and in the case (1.2)(i), the solution must be of the type (3).

In the case when h(x) is a solution of the type (1), (2), or (3) we proceed as follows: Comparing the right hand side of
Eqs. (1.2) and (3.1)–(3.3) we determine b and possible values of µ, there are only finitely many such possibilities. Then
multiplying the equation by a constant we make A0 = 1. Next, we compare the l.h.s. and determine the parameters c
and C . After this the right hand side of (3.1)–(3.3) determines the possible values of a. Clearly, we have only finitely many
possibilities.

Notice that the type (5) is not generic itself since it occurs only if A3 = ±µ · A4. Nevertheless, in this case for a given
A0, . . . , A4 we still have only finitely many solutions h(x) giving constant curvature. Indeed, we determine possible values
of µ considering the right hand side of the equation, then from the l.h.s. we determines possible values of the parameters c
and C , and finally again from the right hand side we determine a.

In Case (4) when h(x) = a · (x − b)2 + c we must have b = −A4/A3 and a = A1/4, and finally c =
2aA2−A3

8a2
. So for given

A0, . . . , A4 we could have at most one solution of type (4).
Finally, if A1 ≠ 0 and h(x) is of type (6), i.e. h(x) = a · x + c , then a must satisfy A3 = −a2 · A1 which gives us at most

two possibilities. For every awe have the unique possibility for c. �

4. Uniqueness of the Principle equation

The uniqueness of the Principle equation is an interesting phenomenon per se and plays an important role in the proof
of the main theorem. We shall need the following two results.

Lemma 4.1. Let h(x) be a complex-valued solution of the equation

E := hx(h2
x − 9 · h(x)2 + A2)− A+e3x − A−e−3x

= 0 (4.1)

with complex coefficients A+ ≠ 0, A−, A2 defined for x ∈ [x∗,+∞). Assume that for x → +∞ the function h(x) has the
asymptotic growth h(x) = a · ex + o(ex) with a ≠ 0. Then A+ = −8a3 and there exists a complex-valued real-analytic function
f (τ ) defined for sufficiently small τ such that f (0) = a and h(x) = ex · f (e−2x).

Proof. Write hx(x) = ψ(x) · ex, substitute this expression in (4.1), and consider the obtained relation as a cubic algebraic
equation on a variable ψ depending on the parameter x. Then for x → +∞ (the coefficients of) the obtained equation
converges to ψ(ψ2

− 9a2) = A+. This implies the asymptotic growth hx(x) = a′
· ex + o(ex) with some a′ satisfying the
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equation a′(a′2
− 9a2) = A+. Integrating it we obtain the asymptotic h(x) = a′

· ex + o(ex). Consequently, a′
= a and hence

a satisfies A+ = −8a3.
Nowmake the substitution x = −

1
2 log(τ ) and h(x) = ex · (a + a0e−2x

+ e−4xf (e−2x)) = τ−1/2(a + a0τ + τ 2f (τ )). Then
the Eq. (4.1) transforms into

8f 3τ τ
8
+ 36ff 2τ τ

7
+ 12fτ (3f 2 + fτa0)τ 6 − 12af 2τ τ

5
− 12(3a0f 2 + 6ffτa + a20fτ )τ

4
+ (2A2fτ − 48aa0fτ

− 72af 2 − 36a20f )τ
3
+ (3A2f + A− − 72aa0f − 8a30 − 12a2fτ )τ 2 + (A2 − 12aa0)(a0τ − a) = 0. (4.2)

This means that we are now looking for solutions f (τ ) of (4.2) defined for small τ > 0. The condition on the growth of h(x)
and hx means that f (τ ) = o(τ−3/2) and fτ (τ ) = o(τ−2). Therefore we must have a0 =

A2
12a and the substitution A2 = 12aa0

transforms the Eq. (4.2) into

8f 3τ τ
6
+ 36ff 2τ τ

5
+ 12fτ (3f 2 + fτa0)τ 4 − 12af 2τ τ

3
− 12(3a0f 2 + 6ffτa + a20fτ )τ

2

− 12(2aa0fτ + 6af 2 + 3a20f )τ + (A− − 12a2fτ − 36aa0f − 8a30) = 0. (4.3)

For any given A−, a, a0, f and sufficiently small τ the latter relation can be resolved in fτ as a real-analytic function

fτ = F(τ , f , a, a0, A−)with F(τ , f , a, a0, A−) =
A−−36aa0f (τ )−8a30

12a2
+ O(τ ).

Consequently,we can conclude the followingproperties: Any solution h(x)of (4.1) satisfying thehypotheses of the lemma
is given by the series h(x) = aex +

∑
∞

k=0 ake
−(2k+1)x which converges for x ∈ [x0,+∞). Moreover, the coefficients a, a0

satisfy the relations 8a3 = −A+ and 12aa0 = A2.
Furthermore, we can also conclude the following two existence results for solutions of (4.1):

• First, for a, a0 satisfying the conditions above, for any given sufficiently large x0 ≫ 0 and any sufficiently small b ∈ C
there exists a unique solution of (4.1) with the initial value h(x0) = ax0 + a0e−x0 + be−3x0 .

• Second, for a, a0 satisfying the conditions above and any given a1 there exists a unique solution of (4.1) which is defined
for x ≫ 0 and whose initial terms in the series above have coefficients a, a0, a1. �

Lemma 4.2. Assume that a complex-valued function h(x) satisfies the equation

hx(A0(h2
x − µ2h(x)2)− A1h(x)+ A2) = 0

with complex parameters µ, A0, A1, A2. Then R := hxxxhx − h2
xx is constant.

Proof. We have obviously two possibilities: Either hx vanishes identically, hx ≡ 0, or

A0(h2
x − µ2h(x)2)− A1h(x)+ A2 ≡ 0. (4.4)

The first case hx ≡ 0 is trivial since then R = hxxxhx − h2
xx ≡ 0. So we may assume that hx is not vanishing identically.

Assume additionally that µ ≠ 0. In the case A0 = 0 the solution of (4.4) is a constant function, and R vanishes also. In
the case A1 = A2 = 0 the solution of (4.4) is h(x) = C · exp(±µx), and again R vanishes. In the remaining case A0 ≠ 0 ≠ A1
every solution of (4.4) has the form h(x) = c0 + c1sinh(±µx+ c2)with arbitrary c2 and appropriate c0, c1. This time Rmust
be constant too.

In the case µ = 0 the argumentation is changed as follows. If A0 = 0, then h(x) must be constant, and then R ≡ 0. If
A1 = 0, then h(x)must be linear, which is also a contradiction. Finally, in the case A0 ≠ 0 ≠ A1 every solution h(x) of (4.4)
with µ = 0 is quadratic in x, and then R := hxxx · hx − h2

xx is constant again. �

Theorem 4.1. Let h(x) be a complex function defined in a some open set, U ⊂ C satisfies two equations each of the form (1.2)with
some complex parameters A0, . . . , A4, µ and respectively B0, . . . , B4, λ. Assume that R := hxxx · hx − h2

xx is not constant. Then
µ = ±λ and the equations are proportional.

Remark 4.1. For convenience in the calculation belowwe consider only equations of the form (1.2)(ii) or (iii), but not (1.2)(i).
This is an equivalent problem, since the substitution µ → iµ switches between forms (1.2)(i) and (ii).

Proof. One of the techniques to prove the theorem is to write a Taylor series h(x) =
∑

j aj(x − x0)j, substitute it in
both equations, write the expansions, and then compare term by term the coefficients. In some places we use another
approach, namely, we study geometric properties of the solution h(x) using methods of geometric function theory and
algebraic geometry. It should be noticed however that every relation which will be obtained by geometric methods can be
also received purely algebraically from the equations obtained from Taylor series.

Denote by Eλ and Eµ the equations from the hypotheses of the theorem, andΛµ(x),Λλ(x) the r.h.s.-s of these equations.
In the case µ ≠ 0 and resp. λ ≠ 0 we rewrite them asΛµ = A+eµx + A−e−µx and resp.Λλ = B+eλx + B−e−λx. Notice that
by Lemma 4.2Λλ(x) andΛµ are non-zero.

We claim that the function h(x) extends to an analytic multi-sheeted (⇔ multi-valued) function of x ∈ C \ S for some
discrete set S ⊂ C. Let us consider several cases. The first is when A0 ≠ 0. In this case the equation Eµ is a polynomial of
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degree 3 in hx. Let Dµ(x) be its discriminant with respect to hx. Then Dµ(x) = −27Λ2
µ − 4(A0µ

2h(x)2 − A1h(x) + A2)
3,

this is an analytic function in x defined in the domain of definition U of h(x). In the case when Dµ(x) is not identically zero
we can resolve the equation Eµ as an analytic multi-sheeted (⇔ multi-valued) function of x ∈ U \ S where S is the set of
zeroes of Dµ(x). This transforms the equation in the explicit form hx = F(x, h(x)) where F is multi-sheeted function with
ramifications exactly at zero points of the discriminant Dµ. This gives us the claim.

In the casewhen the discriminantDµ vanishes identically, hx also satisfies the equation 3h2
x+A0µ

2h(x)2−A1h(x)+A2 = 0
which is the derivative of Eµ with respect to hx. Again we obtain an explicit equation hx = F(x, h(x)) with analytic multi-
sheeted right hand side F(x, h(x)) with singularities in some discrete subset S. Hence this time also h(x) extends to an
analytic multi-sheeted function of x ∈ C \ S for some discrete set S ⊂ C. Finally, in the case A0 = 0 the equation Eµ can be
resolved as hx =

Λµ(x)
A2−A1h(x)

, and we can conclude the claim.
Assume that A0 ≠ 0 ≠ B0. Then dividing equations by A0 or resp. B0 we reduce the general situation to the case

A0 = B0 = 1.
First, we prove that under the hypotheses of the theoremwemust have the relation λ = ±µ. Let us assume the contrary,

i.e., λ ≠ ±µ. We shall consider numerous special cases and subcases.
Without loss of generality we may suppose that |λ| ≥ |µ|. In particular, λ ≠ 0. Observe that under complex affine

transformation x → ax+b the equations Eλ, Eµ retain their structure only changing the parametersµ, λ, Ai, Bi, in particular,
λ transforms in λ

a . Consequently, we may assume that λ is real positive, λ > 0. Then by assumption on µ we conclude
|ℜ(µ)| < λ. Further, recall thatΛλ(x) = B+ · exp(λx)+ B− · exp(−λx) such that at least one constant B+, B− is non-zero.
Inverting the coordinate x, if needed, we can suppose that B+ ≠ 0.

Assume additionally that µ ≠ 0. ThenΛµ(x) = A+ · exp(µx) + A− · exp(−µx). Consider the difference Eλ − Eµ. It has
the form

hx · (C0h(x)2 + C1h(x)+ C2) = Λδ(x) (4.5)

where C0 = λ2 −µ2 andΛδ(x) = Λλ(x)−Λµ(x). Denote this equation by Eδ . Integrating it, we obtain an algebraic equation

1
3
C0h(x)3 +

1
2
C1h(x)2 + C2h(x) = Λδ(x)+ C3 (4.6)

which we denote byEδ and in which C3 is some constant and Λδ(x) =

Λδ(x)dx equals

Λδ(x) =
B+

λ
· exp(λx)−

B−

λ
· exp(−λx)+

A+

µ
· exp(µx)−

A−

µ
· exp(−µx). (4.7)

Making a translation in x, we can suppose that the real axis x ∈ R does not contain singular points of h(x), and that our
open set U ⊂ C hits the real axis x ∈ R. Then there exists a unique extension of the function h(x) over the axis x ∈ R which
satisfies the Eq. (4.6).

Since C0 = λ2 − µ2
≠ 0, the function h(x) has asymptotic expansion h(x) ∼


3B+

C0λ

1/3

exp(λx/3) for x −→ +∞. From

(4.5) we conclude that the derivative hx has asymptotic expansion h(x) ∼


3B+

C0λ

1/3

·
λ
3 · exp(λx/3) for x −→ +∞.

Further, assume that λ ≠ ±3µ. Then h2
x − µ2h(x)2 has asymptotic expansion ∼ C · exp(2λx/3) for x −→ +∞, which

gives the asymptotic expansion∼ C ·exp(λx) for the r.h.s. of Eµ. But by our condition |ℜ(µ)| < λ the l.h.s.Λµ(x) has slower
growth. The obtained contradiction gives the proof in the case λ ≠ ±3µ.

It remains to consider the case λ = ±3µ. However, before this case we notice that the consideration above are valid also

in the case µ = 0 ≠ λ. Indeed, we obtain the same growth asymptotic h(x) ∼


3B+

C0λ

1/3

·
λ
3 · exp(λx/3) for x −→ +∞,

and the same contradiction in the growth of the right and left hand sides of Eµ.
Now we consider the case λ = ±3µ. Recall that we assume that A0 ≠ 0 ≠ B0. Changing the sign of µ, if needed,

we obtain λ = +3µ. Rescaling x, we can make λ = 3 and µ = 1. Adding to h(x) a constant we may assume that
B1 = 0. At this point we apply Lemma 4.1 to h(x) and the equation Eλ. It gives us the presentation of h(x) as a series
h(x) = aex + a0e−x

+ a1e−3x
+ · · · which converges for x ≫ 0 such that B+ = −8a3 and 12aa0 = B2. Differentiating the

serieswe obtain hx = aex−a0e−x
−3a1e−3x

+· · ·. This gives us h2
x−h(x)2 = (hx−h(x))·(hx+h(x)) = −4aa0−8aa1e−2x

+· · ·.
In the case A1 ≠ 0 the growth of the l.h.s. of Eµ is ∼ e2x, which is faster than in the r.h.s.Λµ ∼ ex. Consequently, A1 = 0.

Consider the case B− ≠ 0. Then repeating the argumentation above, we obtain the asymptotic behavior h(x) ∼ a−e−x

for x → −∞. After this we can apply Lemma 4.1 to h(x) and the equation Eλ in the negative range x ∈ (−∞, x0], yielding a
similar expansion h(x) = a−e−x

+a0,−ex+a1,−e3x+· · ·, inwhich B− = 8a3
−
and 12a−a0,− = B2. Under translation x → x+ξ

with ξ ∈ C the coefficients a, a− transform as a → ae−ξ , a− → a−e+ξ . Consequently after an appropriate translation we
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achieve the equality a = −a−, and hence the equality B+ = −8a3 = 8a3
−

= B−. The relations B2 = 12aa0 = 12a−a0,− give
also the equality a0,− = −a0.

The substitution of the series in Eµ yields (aA2−A+ −4a2a0)ex+O(e−x) for x → +∞ and (−a−A2−A− +4a2
−
a0,−)e−x

+

O(ex) for x → −∞. Since Eµ vanishes identically, we obtain A+ = aA2 − 4a2a0 = −a−A2 − 4a2
−
a0,− = A−. The next term

in the expansion of Eµ for x → +∞ is

(−8a2a1 + 4a20a − a0A2 + 4a2a0 − aA2)e−x.

Since it must vanish, we obtain a1 = −(aA2 − 4a20a+ a0A2 − 4a2a0)/(8a2). Making the same computation for x → −∞ we
obtain a1,− = −a1.

We conclude that the solution h(x) has sheets which satisfy the relation h(−x) = −h(x). Further, recall that h(x) satisfies
the algebraic equation Ẽδ , see (4.6). Since A+ = A− and B+ = B−, Λ̃δ (given by (4.7) with λ = 3 and µ = 1) is an odd
function, Λ̃δ(−x) = −Λ̃δ(x). Consequently, C3 vanishes.

Let w(z) be the 3-sheeted function of the argument z ∈ C given by the algebraic equation 8
3w

3
+ C2w = z with

C2 ≠ 0. Then h(z) = w(Λ̃δ(x)). Let us observe the following facts about the function w(z): The first is that for z small
enough three branches of w(z) are given by the approximate formulas w0(z) = z/C2 + O(z2), w+(z) = +

√
−3C2/8, and

w−(z) = −
√

−3C2/8. The second is that the monodromy group of w(z) is the symmetric group permuting the sheets of
w(z). In particular going along an appropriate path in the z-plane we can interchange two given sheets ofw(z).

In turn, the function z = Λδ(x) is the composition of the polynomial Q (u) :=
8
3B+u3

+ 2(B+ − A+)u with the functions
u = sinh(x). The polynomial Q (u) has the same structure c0z3 + c2z as the polynomial 8

3w
3
+ C2w. Consequently, there are

two possibilities: Either the critical values of the polynomials Q (u) and 8
3w

3
+ C2w are different, and then monodromy of

the compositionw(Q (u)) in the full symmetric group as in the case of the functionw(z), or the difference 8
3w

3
+C2w−Q (u)

splits in the product 8
3

∏3
j=1(w − bju) with appropriate bj ∈ C. In the latter case three possible branches of h(x) are

w(u(sinh(x))) = bjsinh(x), and in this case R = hxxxhx−h2
xx is constant in contradictionwith the assumption of the theorem.

Consequently, the latter case is impossible, and the monodromy of the compositionw(Q (u)) is the full symmetric group.
Finally, the critical points of the function u = sinh(x) are given by the condition sinh′(x) = cosh(x) = 0, and hence

the critical values of u = sinh(x) are ±i. The corresponding values of z = Q (u(x)) are z± := ±i
 2
3B+ + 2A+


. Here we

notice that for each value z± has at least two pre-images Q−1(z±) such that at most one of them is ±i, and neither of these
pre-images is 0. Further, we notice that the function u = sinh(x) is surjective. Indeed, it is the composition of the rational
function u(t) =

1
2 (t − t−1) and the exponent t = exp(x), the map u(t) =

1
2 (t − t−1) acts surjectively from C \ {0}

onto C, the map t = exp(x) surjectively from C onto C \ {0}. Summing up we conclude that for any of two critical values
z∗ of the polynomial 8

3w
3

+ C2w there exists an x∗
∈ C which is not a critical point of the function z = Q (sinh(x)) but

z∗
= Q (sinh(x∗)). This shows that the monodromy of the function h(x) is the full symmetric group permuting its 3 sheets

(⇔ branches).
In particular, each of the 3 sheets of h(x) satisfy both equationsEµ andEλ. Notice that since the l.h.s. Λ̃δ(x) of (4.6) vanishes

at x = 0, there exists a branch h(x)which vanishes at x = 0. Moreover, its behavior is h(x) = Λ̃δ(x)/C2 +O(Λ̃2
δ(x)). Further,

Λ̃δ(x) = 2(B+ − A+)x + O(x3) in the case B+ ≠ A+, and Λ̃δ(x) =
8
3B+x3 + O(x5) otherwise. In any case, this branch h(x) is

regular at x = 0.
Now consider the equations Eµ. By the consideration above, it has the form hx(h2

x − h(x)2 + A2) = 2A+cosh(x). This
equation has (at most) three local branches of solutions satisfying the initial value problem h|x=0 = 0 each corresponding
to a root of the equation Eµ|x=0 considered as a cubic polynomial on hx|x=0. However, we can immediately see that these
solutions are 2a(i)sinh(x) where a(i) are three roots of the polynomial equation a · (4a2 + A2) = A+.2 The uniqueness of
solutions of the initial value problem for ODEs implies the equality h(x) = 2a(i)sinh(x). However, this contradicts to the
non-constancy of R = hxxxhx − h2

xx. So finally we have excluded the possibility λ = ±3µwith B+ ≠ 0 ≠ B−.
Let us notice that transforming the above solution h(x) = 2asinh(x) by means of affine change of the coordinate

x (x → b(x + x0) with b ≠ 0, x0 ∈ C) and the function itself (h → a′h + c with a′
≠ 0, c ∈ C) we can obtain all

solutions given in items (1–3) of Theorem 3.1.
The next case we consider is when B− = 0. Recall that we also have µ = 1 and λ = 3. We shall consider the asymptotic

behavior of various expressions for x varying some on a real line in C given by ℑ(x) = c and tending to i · c − ∞. To
simplify notation, we write this as x → −∞. Assume that A− ≠ 0. Then from (4.6) we obtain the asymptotic growth

h(x) ∼ −


3A−

C0

1/3

e−x/3 for x → −∞ and from (4.5) a similar growth of the derivative hx. The substitution of this

asymptotic in the l.h.s. of the equation Eµ would give the growth ∼ C · e−x for x → −∞, whereas the l.h.s. Eµ decreases.

2 The case when this polynomial has a multiple root is degenerate: In this case the discriminant of Eµ with respect to hx vanishes identically along the
corresponding solution h(x). Moreover, solving the corresponding initial value problem in the form of series h(x) =

∑
j cjx

j with c0 = 0 we obtain the
cubic equation on c1 · (4c21 +A2) = A+ which has one double and one simple root. Substituting this double root in c1 , all successive equations on c2, c3, . . .
can be solved uniquely. This gives us the uniqueness of the problem also for this degenerate case.
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The contradiction shows that we must have A− = 0. Now from (4.6) we conclude that for x → −∞ the function h(x) is
given by the converging series h(x) =

∑
∞

j=0 aje
jx with some complex coefficients aj. The substitution of this series in the

equations gives a1(B2 − 9a20)e
x
+ O(e2x) = 0 for Eλ, and (A2a1 − a20a1 − A+)ex + O(e2x) = 0 for Eµ. In the case a1 = 0 we

would have A+ = 0 and henceΛλ ≡ 0, which was excluded above. Consequently, B2 = 9a20. Substituting this relation in Eλ,
we consider the further expansion of Eλ. This gives us a1a20e

2x
+ O(e3x) = 0, and hence a0 = 0 since by the above argument

a1 ≠ 0. Repeating the substitution we obtain −(B+ + 8a31)e
3x

+ O(e4x) = 0 from Eλ, and (A2a1 − A+)ex + O(e2x) = 0 for
Eµ. This gives us B+ = −8a31 and A+ = a1A2. Now we see that for each of three roots a1 of the equation 8a31 + B+ = the
function a1ex satisfies the ODE Eµ and has the correct asymptotic behavior for x → −∞. Consequently, h(x) is one of these
three solutions, and hence R = hxxxhx − h2

xx must be constant. The obtained contradiction excludes the possibility B− = 0.
Above we have proven the equality λ = µ under hypotheses of the theorem and additional assumption A0 ≠ 0 ≠ B0.

Now we consider the case when one of these coefficients vanishes, say B0 = 0. Then B1 ≠ 0 since otherwise we obtain the
equation B0hx = Λλ whose solutions are h(x) = c+eµx + c−e−µx

+ c0 (or h(x) = c2x2 + c1x + c0 in the case µ = 0) for
which R = hxxxhx − h2

xx would be constant. Making transformations h → ah + c and x → x/λ in the case λ ≠ 0 we change
the equation Eλ into h(x)hx = B+e2x + B−e−2x (which means that we make λ = 2) or respectively h(x)hx = B3x + B4. The
integration gives h(x)2 = B+e2x − B−e−2x

+ B5 or resp. h(x)2 = B3x2 + 2B4x + B5 with some B5 ∈ C. As shown above
without loss of generality we can suppose that B+ ≠ 0. Hence we conclude that in the case λ = 2 the function h(x) is given
by a series h(x) = aex +

∑
∞

j=0 aje
−(2j+1)x which converges for ℜ(x) ≥ x0 ≫ 0 and such that a2 = B+. In the case λ = 0

we obtain respectively h(x) = ±


B3x2 + 2B4x + B5 ∼ ±

√
B3 x in the case λ = 0. In particular, the asymptotic for the

derivative is hx ∼ B1/2
+ ex or respectively hx ∼ ±

√
B3. The substitution in Eµ and comparing of the growth of the left and

right hand sides exclude the case λ = 0 and shows that we could haveµ = ±1, µ = ±2, orµ = ±3 in the case λ = 2. The
case µ = ±2 = ±λ is our claim, so we must exclude two other possibilities.

First, we consider the case λ = 2 and µ = ±1. As above we distinguish the subcases B− ≠ 0 and B− = 0 and start
with the first one B− ≠ 0. Shifting the coordinate x appropriately we make B− = −B+. Then the coefficients B+, B5 and
a, a0, a1, . . . are related as

B+ = a2 B5 = −2aa0 a1 =
a2 − a20

2a
a2 = −

a0(a2 − a20)
2a2

a3 = −
(a2 − a20)(a

2
− 5a20)

8a3
, (4.8)

and so on. Substitute the series h(x) = aex +
∑

∞

j=0 aje
−(2j+1)x and the above relation in Eµ and write the condition of

the vanishing of the resulting expansion. We obtain subsequently A+ = aA2 − 4a2a0, A− = 4aa20 − 8a2a1 − A2a0 =

8aa20 − A2a0 − 4a3, and then the condition 3(a2−a20)(A2−12aa0)
2a = 0. So here we have two possibilities: either A2 = 12aa0

or a0 = ±a (or both). However, after substitution of the first relation A2 = 12aa0 in Eµ the first non-trivial term will be
10(a2−a20)

2

a e−5x which leads to the relation a0 = ±a dropped above. But then all higher coefficients a1, a2, . . . must vanish
and the solution h(x) of the equation h(x)2 = B+e2x − B−e−2x

+ B5 will be 2acosh(2x) in the case a0 = +a or respectively
2asinh(2x) in the case a0 = −a. In any case R = hxxxhx − h2

xx will be constant. The obtained contradiction excludes the
possibility λ = ±2µ, B0 = 0, and B− ≠ 0.

Our next subcase is λ = 2, µ = 1, and B0 = B− = 0. The procedure here is essentially the same as in the previous
subcase: Substituting the series h(x) = aex +

∑
∞

j=0 aje
−(2j+1)x in h(x)2 = B+e2x + B5 we obtain the relations

B+ = a2 B5 = −2aa0 a1 = −
a20
2a

a2 =
a30
2a2

a3 = −
5a40
8a3

, (4.9)

and so on. Next we substitute the series h(x) = aex +
∑

∞

j=0 aje
−(2j+1)x and the obtained relations in Eµ and get A+ =

aA2 − 4a2a0, A− = 8aa20 − A2a0, and then the condition 3a20(A2−12aa0)
2a = 0. As before, setting A2 = 12aa0 in Eµ we then

obtain 10a40
a = 0 which gives us the condition a0 = 0 dropped before. So we must have a0 = 0 and h(x) = aex, and hence

R = hxxxhx − h2
xx will vanish identically. The contradiction excludes also this subcase.

Next we consider the case case λ = 2 and µ = ±3 and start with the subcase one B− ≠ 0. As in the case µ = ±1
above we can additionally assume B− = −B+. Then we obtain the same expansion h(x) = aex +

∑
∞

j=0 aje
−(2j+1)x with the

same relations (4.8). Substituting them in Eµ we obtain subsequently the relations A+ = −8a3, A1 = 0, A2 = 12aa0, A− =

12a2a0 − 4a30 and then the condition 15(a2−a20)
2

a = 0. As above, in both cases a0 = ±a all higher coefficients a1, a2, a3, . . .
vanish, the solution h(x)must be either 2acosh(x) or 2asinh(x), and the function R = hxxxhx − h2

xx will be constant.
In the subcase λ = 2 and µ = ±3 and B− = 0 we obtain respectively first the relations (4.9), then subsequently the

relations A+ = −8a3, A1 = 0, A2 = 12aa0, A− = −4a30, and then the condition 15a40
a = 0. The rest follows as in the case

λ = 2, µ = 1, and B0 = B− = 0 considered above.
This finishes the proof of the fact that under the hypotheses of the theorem one has the relation µ = ±λ. Now we

show the complete assertion, namely, the uniqueness of the equation up to constant factor. As before, we suppose that h(x)
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satisfies two equations, for which wemaintain the above notation Eµ, Eλ,Λµ,Λλ, A0, . . . , B0, . . . , A±, B±. Besides, wemay
assume the equality µ = λ.

Since µ = λ, a linear combination of Eµ and Eλ is again an equation of the same form with the same µ. In particular, we
can replace Eµ or Eλ by such a linear combination. Consequently, we can assume that B0 = 0, and in the case A0 = B0 = 0
wemay also suppose that B1 = 0. However, in the latter case wewould have B2hx = B+eµx +B−e−µx (resp. B2hx = B3x+B4
in the caseµ = 0) and hence R = hxxxhx − h2

xx would be constant. The contradiction shows that we must have A0 ≠ 0 ≠ B1.
Normalizing, we can make A0 = 1 = B1.

First, let us consider the case µ = λ ≠ 0. Here we apply essentially the same arguments as in the above cases
λ = 2, µ = 1 and λ = 2, µ = 3. As we have shown above, making appropriate transformations the equation Eλ can
be brought to the form h(x)hx = B+e2x + B−e−2x with B+ ≠ 0, in particular, we makeµ = λ = 2. In this way we obtain the
algebraic equation h(x)2 = B+e2x − B−e−2x

+ B5 and the asymptotic growth h(x) = aex + O(e−x) and hx = aex + O(e−x)
for x → +∞ with a2 = B+ ≠ 0. The substitution gives the growth −3a3e3x +O(e2x) of the l.h.s. of Eµ, which contradicts to
Λµ = A+e2x + A−e−2x.

The argumentation in the case µ = λ = 0 is as follows. The equation h(x)hx = B3x + B4 integrates to h(x)2 =

B3x2 + 2B4x+ B5. An appropriate affine transformation of x and a rescaling of h bring this equation into one of the following
forms: h(x)2 = x2 + 1, h(x)2 = x2, h(x)2 = x, or h(x)2 = 1. In the cases h(x)2 = x2 and h(x)2 = 1 the expression
R = hxxxhx − h2

xx vanishes in contradiction to the hypothesis of the theorem. In the remaining cases the function h(x) cannot
satisfy the equation hx(h2

x − A1h(x)+ A2) = A3x + A4.
It remains to consider the case A0 = 0 = B0 (‘‘Darboux-superintegrable case’’). Then both A1 and B1 must be non-zero

since otherwise R = hxxxhx − h2
xx would be constant as we have shown above. Normalization of the equations transforms

them into hx(h(x)+A2) = A+eµx+A−e−µx (or= A3x+A4 in the caseµ = 0) and respectively hx(h(x)+B2) = B+eλx+A−eλx.
The subsequent integration gives

h(x)2

2
+ A2h(x) =

A+

µ
eµx −

A−

µ
e−µx

+ A5,

h(x)2

2
+ A2h(x) =

A3

2
x2 + A4x + A5 in the case µ = 0,

h(x)2

2
+ B2h(x) =

B+

λ
eλx −

B−

λ
e−λx

+ B5.

(4.10)

In the case A+ = A− = 0 the function h(x) must be constant which contradicts the hypotheses of the theorem. So one
of these coefficients must be non-zero, and changing the sign of µ if needed we can suppose that A+ ≠ 0. By the same
argument B+ is non-zero. Observe that the Eq. (4.10) establishes an algebraic dependence between the functions eµx and
eλx in the case µ ≠ 0 ≠ λ, and between the functions x and eλx in the case µ = 0 ≠ λ. This can be possible only if µ = ±λ.
In this situation the difference of the integrated Eqs. (4.10) is

(A2 − B2)h(x) =
A+ − B+

µ
eµx −

A− − B−

µ
e−µx

+ (A5 − B5)

or respectively

(A2 − B2)h(x) =
A3 − B3

2
x2 + (A4 − B4)x + (A5 − B5)

in the case λ = µ = 0. Now it is obvious that the triviality of these relations is the only possibility to avoid the contradiction
with the condition R = hxxxhx − h2

xx ≠ const. This means the desired proportionality of the equations.
The theorem is proved. �

4.1. Real solutions

Recall that the Principal equations (2.8), (2.13) have the following meaning: If a surface metric g admits a linear and a
non-trivial cubic integral then it has the form h−2

x (dx
2

+ dy2) with a function h(x) satisfying one of these two equations
with some complex parameters µ, A0, . . . , A4. Of course, we are interested only in solutions for which hx is real. In this case
h(x) = h1(x) + i · c with some real function h1(x) and a real constant c . Substituting we see that h1(x) satisfies the same
equation with new parameters A0, . . . , A4. Thus we can consider only real solutions h(x).

Theorem 4.2. Assume that the Eq. (1.2)with some complex parameter µ and complex coefficients admits a real-valued solution
h(x) such that R = hxxx · hx − h2

xx is non-constant. Then µ is real or purely imaginary (or zero) and the equation is complex
proportional to another Eq. (1.2) with the same parameter µ and with real coefficients A0, . . . , A4.

Proof. The result follows immediately from Theorem 4.1 applied to the Eq. (1.2) and its complex conjugate. �
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5. Number of independent cubic integrals. Proof of Kruglikov’s ‘‘big gap’’ conjecture. Summary of the proof of the
main theorem

5.1. Number of cubic integrals and Kruglikov’s ‘‘big gap’’ conjecture

In [5] Kruglikov conjectured that the dimension of the space of cubic integrals of a surface metric g of non-constant
curvature is at most 4. In this section we prove this result for metrics satisfying the hypotheses of the main theorem. Our
proof applies also for Darboux-superintegrable metrics, however, the result in the case is not new.

Theorem 5.1. Let a function h(x) satisfy one of the Eqs. (1.2) with complex parameters µ, A0, . . . , A4. Assume that R :=

hxxxhx − h2
xx is non-constant. Set H :=

1
2h

2
x(p

2
x + p2y). Then the space of complex-valued functions F(x, y; px, py) that are cubic in

momenta (px, py) and satisfy the equation {H, F} = 0 is 4-dimensional (as vector space over C).

Proof. We distinguish two main cases: µ ≠ 0 and µ = 0 and start with the first one. Set L := py. Then {H, L} = 0. This
gives us the following 4 linearly independent solutions of the equation {H, F} = 0: L3,H · L, and 2-dimensional space of
solutions F given by the formulas (1.3).3 So the theorem claims that there are no more linearly independent solutions.

We call functions F(x, y; px, py) satisfying the hypotheses of the theorem (complex) cubic integrals (of the HamiltonianH
given by the function h). Denote by Fh the space of complex cubic integrals. It was shown by Kruglikov [5] that the space Fh
is finite-dimensional.4 The Jacobi identity implies that the formula L : F → {L, F} induces a well defined homomorphism
L : Fh → Fh, see Section 2.1. Consider the decomposition of Fh into generalized eigenspaces of L and the corresponding
Jordan blocks. Then L3 and H · L are eigenvectors with eigenvalue 0. Further, the functions F+ and respectively F− given by
formula (1.3) with C− = 0 and respectively C+ = 0 are eigenvectors of L with eigenvalues ±µ.

It follows immediately from Theorem 4.1 that the space Fh contains no eigenvectors of L with eigenvalue λ ≠ ±µ. Thus
in the case µ ≠ 0 the assertion of the theorem is equivalent to the non-existence of a generalized eigenvector of L with
eigenvalue ±µ and the Jordan block


±µ 1
0 ±µ


.

Assume the contrary. Then there would exist cubic integrals F0, F1 ∈ Fh satisfying {L, F1} = ±µF1 + F0 and {L, F0} =

±µF0. Inverting the y-axis we can change the sign. So we assume that we have +µ in the formulas. Recall that L = py
corresponds to the vector field ∂

∂y . Integrating the equations above we obtain F0 = eµyG0 and F1 = yeµyG0 + eµyG1 where
G0,G1 are some complex functions of (x, px, py) cubic in momenta (px, py) and independent of y. Since F0 is a cubic integral
and an eigenvector of L with eigenvalue µ, it has the form (1.3). Since {F0,H} = {H, eµyG0} = 0, the equation {F1,H} = 0
now reads {eµyG1,H} + {y,H}eµyG0 = 0. Write G1 =

∑3
j=0 bj(x)p

3−j
x pjy. Since {y,H} = −pyh2

x , we obtain the equation

{eµyG1,H} − pyh2
xe
µyG0 = 0. (5.1)

Solving this equation we apply the same procedure as in Section 2.2. The bracket {eµyG1,H} is given by (2.4) in which we
need to replace aj(x) by bj(x). Thus the Eq. (5.1) is equivalent to 5 equationswhich are inhomogeneous versions of 5 equations
in (2.4) with the r.h.s.-s given by pyh2

xe
µyG0. As in Section 2.2 we solve successively the first 3 of them and resolve b3(x) from

the last one. This gives the following formulas (compare with (2.5)):

b0(x) = B0h3
x

b1(x) =


−(µB0 + A0) · h(x)+

B1

2µ


· h2

x

b2(x) =
1
2

·


−


B1 +

A1

µ


· h(x)+ (µ2B0 + 2µA0) · h(x)2 + 3B0h2

x + B2


· hx

b3(x) =
1

2µ2
· (3 · h2

x · (µB0 − A0)− B1 · h(x)+ µ2
· (µB0 + A0) · h(x)2 + (µB2 − A2)) · hxx.

(5.2)

Substituting them in the remaining term of (5.1) we obtain the equation

(3 · (µB0 − A0) · h2
x + µ2

· (µB0 + A0) · h(x)2 − µ · B1 · h(x)+ µ · B2 − A2) · hxxx

+ 6 · (µB0 − A0) · hx · h2
xx + (6 · µ2

· (A0 + µ · B0) · h(x)− 3 · µ · B1) · hx · hxx + 63 · µ2
· (A0 + µ · B0) · h3

x

+ (µ4
· (µ · B0 + 3 · A0) · h(x)2 − µ2

· (µ · B1 + 2 · A1) · h(x)+ µ2
· (µ · B2 + A2)) · hx = 0 (5.3)

3 The fact that the parameters µ, A0, . . . , A4 in Theorem 1.1 are real plays no role here.
4 The proof in [5] is given for the case H(x, y; px, py) = (dx2 + dy2)/λ(x, y)with realλ(x, y). It works in our situation without changes.
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which is the counterpart of (2.6). As the Eq. (2.6), the above equation can be partially integrated in the sense that it can be
written in the form (compare with (2.7))

µ ·


d2

dx2
+ µ2


hx ·


h2
x · B0 + (µ2

· B0 + 2µ · A0) · h(x)2 −


B1 +

A1

µ


· h(x)+ B2



+


d2

dx2
− µ2


hx · (h2

x · A0 + µ2
· A0 · h(x)2 − A1 · h(x)+ A2)


= 0. (5.4)

Let us now observe that the other equation {F0,H} = {H, eµyG0} = 0 is equivalent to the equation

hx · (h2

x · A0 + µ2
· A0 ·

h(x)2 − A1 · h(x)+ A2)


= A3
sin(µx)
µ

+ A4cos(µx)with some constants A3, A4, and that the l.h.s. of this equation appears in
(5.4). Then

d2

dx2
− µ2


A′

3sin(µx)+ A4cos(µx)


= −2µ2A′

3sin(µx)+ A4cos(µx)


(here we set A′

3 =
A3
µ
) and so (5.4) is equivalent to

hx ·


h2
x · B0 + (µ2

· B0 + 2µ · A0) · h(x)2 −


B1 +

A1

µ


· h(x)+ B2


= (B3 + A4 · x) · sin(µx)− (A′

3 · x + B4) · cos(µx). (5.5)

For convenience in future let us make the substitution µ → iµ, Bi → iBi in the Eqs. (5.5) and (2.8), and rearrange their
r.h.s.-s. Then the equations transform into

hx ·

h2
x · A0 − µ2

· A0 · h(x)2 − A1 · h(x)+ A2


= A+ · eµx + A− · e−µx (5.6)

hx ·


h2
x · B0 − (µ2

· B0 − 2µ · A0) · h(x)2 −


B1 −

A1

µ


· h(x)+ B2


= (B+ + A+ · x) · eµx + (B− − A−x) · e−µx. (5.7)

Notice that the condition of non-triviality of F0 is equivalent to the non-vanishing of at least one parameter A0, A1, A2.
Further, by Lemma 4.2 both A+ and A− cannot vanish together. Replacing µ by −µ, if needed, we can suppose that A+ ≠ 0.

We consider several subcases. The first one is A0 = 0. Then the Eq. (5.6) can be integrated as

−
A1

2
h(x)2 + A2h(x) =

A+

µ
· eµx −

A−

µ
· e−µx

+ A5. (5.8)

If, moreover, A1 = 0, then h(x) =
A+

µA2
· eµx −

A−

µA2
· e−µx

+
A5
A2
, and then R = const in this case in contradiction with

the hypotheses of the theorem. Otherwise we make the substitution x → 2x/µ. After the substitution µ transforms into
2 and the r.h.s. of (5.8) into A+

2 · e2x −
A−

2 · e−2x
+ A5. So we can conclude that for x → +∞ the function h(x) is given by

the converging series aex +
∑

∞

j=0 aje
−jx. But then the substitution of this series in (5.7) gives the following leading terms

for x → +∞: −3a3e3x for the l.h.s., and 2A+

µ
xe2µ for the r.h.s. The obtained contradiction shows that the case A0 = 0 is

impossible.
In the caseA0 ≠ 0wemake the substitution x → 3x/µwhichmakesµ = 3, and subtract (5.6) from (5.7)with coefficients

B0/A0. This gives us the equation

hx(3C0h(x)2 + 2C1h(x)+ C2) = A+xe3x + C4e3x + (C5x + C6)e−3x (5.9)

with some constants C0, C1, . . . such that C0 ≠ 0. Integrating it, we obtain

C0h(x)3 + C1h(x)2 + C2h(x)+ C3 =
A+

3
xe3x +C4e3x + (C5x +C6)e−3x (5.10)

with some new constants C3,C5,C6. From this equation we conclude that h(x) is a 3-sheeted function on C with a
ramification on some discrete subset S ⊂ C and that for x → +∞ every branch of h(x) has a behavior h(x) = ax1/3ex(1 +

Λ(x)) for some function Λ(x) admitting a converging series
∑

∞

ij=0 aije
−ixx−j/3 with a00 = 0. Moreover, the derivative hx is

given by the derivative of the expansion above and is a similar series hx = ax1/3ex(1+Λ(x))withΛ(x) =
∑

∞

ij=0 ãije
−ixx−j/3
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such that ã00 = 0. Substituting these expansions in (5.6) we obtain the term −8a3xe3x for the l.h.s., which contradicts the
growth A+e3x of the r.h.s.

This prohibits the possibility A0 ≠ 0 for a solution h(x) of the pair of Eqs. (5.6)–(5.7), and thus excludes cubic integrals
F1, F0 such that {L, F1} = F0 and {L, F0} = 0.

Now we consider the case µ = 0. As above, denote L = px, set L(F) := {L, F} for any function F(x, y; px, py) and
let Fh be the space of complex cubic integrals oh H . Then as above Fh is finite dimensional and L : Fh → Fh is a well-
defined homomorphism. It follows from Theorem 4.1 that in the case µ = 0 the homomorphism L : Fh → Fh has unique
eigenvalue µ = 0 and Fh is a sum of Jordan blocks with eigenvalue µ = 0.

Notice that L3 and L · H are eigenvectors of L with eigenvalue µ = 0. We are going to prove that Fh contains only two
linearly independent eigenvectors, a unique Jordan block of size 3 × 3, and no other Jordan blocks.

Let F0 = F0(x, y; px, py) be given by (2.2) with coefficients a0(x), . . . , a3(x) given by (2.10) withA1 =A3 = 0. Then F0 is a
cubic integral, L(F0) = A1 · L3 + A3 · L ·H ≠ 0, and L2(F0) = 0. Assume that we have some other non-zero cubic integral F ′

such that L2(F ′) = 0. Then the calculation made in Sections 2.1 and 2.3 shows that F0 must be given by the same (2.2) with
new coefficients a′

0(x), . . . , a
′

3(x) given by (2.10) with parameters A′

0, . . . , A
′

3 instead of A0, . . . , A3, such that h(x) satisfies
the Principle equation (1.2)(iii) with Ai replaced by A′

i .
At this point we obtain two subcases. The first is when both A′

1, A
′

3 vanish, which means that L(F ′) = 0, i.e., F ′ is an
eigenvector of L with eigenvalue µ = 0. In this situation from the Eq. (1.2)(iii) we see that either hx is constant or all
parameters A′

0, . . . , A
′

4 must vanish. The first possibility would yield R = hxxxhx −h2
xx ≡ 0, which contradicts the hypotheses

of the theorem. Thus all parameters A′

0, . . . , A
′

4 must vanish, and then F ′
=A′

1 · L3 +A′

3 · L ·H , a linear combination of L3 and
L · H .

Let us underline that the latter argument demonstrates that the space of eigenvectors of L in Fh is 2-dimensional with
a basis L3, L · H .

The remaining subcase is when not all parameters A′

0, . . . , A
′

4 vanish and we obtain a new equation of the form (1.2)(iii).
In this situation the uniqueness from Theorem 4.1 ensures that A′

i = c · Ai with some coefficient c . But in this case
F ′

= c · F0 +A′

1 · L3 +A′

3 · L · H with the same coefficient c and some parametersA′

1,
A′

3. This demonstrates that the
space of cubic integrals F ′ satisfying L2(F ′) = 0 is 3-dimensional with a basis F0, L3, L ·H . In particular, we cannot have two
distinct Jordan blocks.

Finally, let us show that there does exist a Jordan block of size 3×3, and no Jordan block of size 4×4. For this purpose we
try to find a cubic integral F satisfying L4(F) = 0. Since the operator L acts as the derivation in y, the condition L4(F) = 0
means that F is a polynomial in y of degree ≤3. This means that we can write F in the form

F =

2−
i=0

3−
j=0

aij(x)yip3−j
x pjy (5.11)

with some coefficients aij(x). Writing down the equation {F ,H} = 0 and considering its coefficients at monomials yip4−j
x pjy

we obtain 15 ODEs on functions aij(x) and h(x). We solve them subsequently using the conditions hx ≠ 0, hxx ≠ 0 and
substituting the results in successive equations. Doing so we obtain,5 the following formulas, in which ai,j;x denote the
derivatives of ai,j(x) and Aij are integration constants:

(1) a0,0(x) = A00 · h3
x from 2 · hx · (−hx · a0,0;x + 3 · a0,0(x) · hxx) = 0;

(2) a1,0(x) = A10 · h3
x from 2 · hx · (−hx · a1,0;x + 3 · hxx · a1,0(x)) = 0;

(3) a2,0(x) = A20 · h3
x from 2 · hx · (−hx · a2,0;x + 3 · hxx · a2,0(x)) = 0;

(4) a3,0(x) = A30 · h3
x from 2 · hx · (−hx · a3,0;x + 3 · hxx · a3,0(x)) = 0;

(5) a3,1(x) = A31 · h2
x from 2 · hx · (−hx · a3,1;x + 2 · a3,1(x) · hxx) = 0;

(6) a1,3(x) =
hxx
hx

· a0,2(x) from 2 · hx · (−hx · a1,3(x)+ hxx · a0,2(x)) = 0;

(7) a2,3(x) =
hxx
2hx

· a1,2(x) from 2 · hx · (−2 · hx · a2,3(x)+ hxx · a1,2(x)) = 0;

(8) a3,3(x) =
hxx
3hx

· a2,2(x) from 2 · hx · (−3 · hx · a3,3(x)+ hxx · a2,2(x)) = 0;
(9) a3,2(x) = 0 from 2 · hx · hxx · a3,2(x) = 0;

(10) a0,1(x) = (−A10 · h(x)+ A01) · h2
x from 2 · hx · (−h4

x · A10 − hx · a0,1;x + 2 · a0,1(x) · hxx) = 0;
(11) a1,1(x) = (−2 · A20 · h(x)+ A11) · h2

x from 2 · hx · (−2 · h4
x · A20 − hx · a1,1;x + 2 · a1,1(x) · hxx) = 0;

(12) a2,1(x) = (−3 · A30 · h(x)+ A21) · h2
x from 2 · hx · (−3 · h4

x · A30 − hx · a2,1;x + 2 · a2,1(x) · hxx) = 0;
(13) a2,2(x) =


−3A31 · h(x)+

3
2A20 · h2

x + A22

·hx from 2 ·hx · (−3 ·h3

x ·A31 +3 ·h3
x ·hxx ·A20 −hx ·a2,2;x +hxx ·a2,2(x)) = 0;

(*) A30 = 0 from 6 · h4
x · hxx · A30 = 0 at y3p2xp

2
y;

5 In calculation the authors used Maple r⃝ software.
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(14) a0,2(x) =

A20 · h(x)2 − A11 · h(x)+

3
2A00 · h2

x + A02

· hx from 2 · hx · (2 · h3

x · A20 · h(x)− h3
x · A11 + 3 · h3

x · hxx · A00 −

hx · a0,2;x + hxx · a0,2(x)) = 0;
(15) a1,2(x) =

 3
2A10 · h2

x − 2A21 · h(x)+ A12

· hx from 2 · hx · (2 · h3

x · A21 − 3 · h3
x · hxx · A10 + hx · a1,2;x − hxx · a1,2(x)) = 0.

The latter 4 relations yield certain correction in some formulas above:

(12′) a2,1(x) = A21 · h2
x ;

(4′) a3,0(x) = 0;
(6′) a1,3(x) = (A20 · h(x)2 − A11 · h(x)+

3
2A00 · h2

x + A02) · hxx;
(7′) a2,3(x) =

 3
4A10 · h2

x − A21 · h(x)+
1
2A12


· hxx;

(8′) a3,3(x) =
 1
2A20 · h2

x − A31 · h(x)+
1
3A22


· hxx.

Finally, the following formula will be obtained later, we write it here simply for completeness:

(16) a0,3(x) = (−A10 · h(x)+ A01) · h2
x −

1
4A23 · x2 −

1
2A24 · x + A03.

After calculation of (1)–(15) and (*) it remains 4 equations. One of them – the coefficient at y0pxp3y – can be written as

a0,3;x = 2 · (A01 − A10 · h(x)) · hx · hxx −
3
2

· A10 · h3
x + (2A21 · h(x)− A12) · hx (5.12)

and will be treated later. Three other are the coefficients at y1pxp3y, y
2pxp3y and y3pxp3y . After normalization we obtain

3A00 · h2
x + 2A20 · h(x)2 − 2A11 · h(x)+ 2A02


· hxxx + 6A00 · h2

xx · hx

+ 6 ·

2A20 · h(x)− A11


· hx · hxx + 6A20 · h3

x + 4 ·

A22 − 3A31 · h(x)


· hx = 0 (5.13)

3A10 · h2
x − 4A21 · h(x)+ 2A12


· hxxx + 6A10 · h2

xx · hx − 12A21 · hx · hxx = 0 (5.14)
3A20 · h2

x − 6A31 · h(x)+ 2A22

· hxxx + 6A20 · h2

xx · hx − 18A31 · hx · hxx = 0. (5.15)

Double integration of the latter two gives

hx · (A10 · h2
x − 4A21 · h(x)+ 2A12) = A23x + A24, (5.16)

hx · (A20 · h2
x − 6A31 · h(x)+ 2A22) = A33x + A34, (5.17)

where A23, A24, A33, A34 are new integration constants. Substituting the latter relation in the Eq. (5.12) we can integrate it
obtaining formula (16) for a0,3(x) promised above. The Eq. (5.13) cannot be integrated. However, we can do this even twice
with the linear combination ‘‘ (5.13)’’ − 2 · ‘‘ (5.17)’’, and the result is the equation

hx · (A00 · h2
x + 2A20 · h(x)2 − 2A11 · h(x)+ 2A02) = −

1
3
A33 · x3 − A34 · x2 + A13 · x + A14 (5.18)

with new integration constants A13, A14.
From the above calculation we conclude the following: The metric g = h−2

x (dx
2

+ dy2) admits a cubic integral of the
form (5.11) if and only if the h(x) satisfies the Eqs. (5.18), (5.16) and (5.17), and then the integral can be constructed using
the formulas (1)–(16) for the coefficients ai,j(x).

Observe that the non-zero coefficients a3,j(x) are a3,1(x) = A31h2
x and a3,3(x) =

 1
2A20 · h2

x − A31 · h(x)+
1
3A22


· hxx. This

means that the non-existence of a Jordan block of size 4×4 is equivalent to the vanishing of all three coefficientsA20, A22, A31.
Suppose for a moment that this is not the case. Then the Eq. (5.17) is non-trivial. Since we are looking for functions h(x) for
which R = hxxxhx − h2

xx is non-constant, Lemma 4.2 says that either A13 or A14 (or both) is non-zero. Consequently, the
Eq. (5.18) is also non-trivial.

We distinguish several possibilities. The first is when A20 = 0. Then integrating (5.17), we obtain

− 3A31 · h(x)2 + 2A22 · h(x) =
1
2
A33x2 + A34x + A35 (5.19)

with an integration constant A35. We cannot have A31 = 0 since in this case R = hxxxhx − h2
xx would be constant. Also

we cannot have A33 = A34 = 0 for the same reason. In the remaining cases we study the behavior of (branches of) the
function h(x) considered as a solution of an algebraic equation (5.19). It follows that for x → ∞ the solution h(x) grows like
∼ ax + O(x0) (case A33 ≠ 0) or like ∼ ax1/2 + O(x0) (case A33 = 0). From (5.19) we obtain the growth of hx: ∼ a + O(x−1)
in the case A33 ≠ 0 and ∼ ax−1/2

+ O(x−1) in case A33 = 0. In any of these two cases we see that the growth of the l.h.s. of
(5.18) is slower than that of the r.h.s. The contradiction shows that we must have A20 ≠ 0.

Now subtract the Eq. (5.17) from (5.18) with coefficient A00
A20

. We obtain the equation

hx · (2A20 · h(x)2 + A′

11 · h(x)+ A′

02) = −
1
3
A33 · x3 − A34 · x2 + A′

13 · x + A′

14 (5.20)
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with new constants A′

11, A
′

02, A
′

13, A
′

14 and the same constants A20 ≠ 0, A33, A34. Integration gives

2A20

3
· h(x)3 +

A′

11

2
· h(x)2 + A′

02 · h(x) = −
A33

12
· x4 −

A34

3
· x3 +

A′

13

2
· x2 + A′

14x + A15 (5.21)

with an integration constantA15. Our next possibility isA33 ≠ 0. In this case the sameargument as above gives the asymptotic
h(x) ∼ ax4/3 + O(x) and hx ∼

4a
3 x1/3 + O(x0) for x → ∞. Moreover, the coefficient a satisfies the relation A33 = −8A20 · a3.

Substituting these asymptotically in (5.17) gives the asymptotic −8A31 · a2 · x5/3 + O(x4/3) for the l.h.s. provided A31 ≠ 0.
This is a contradiction. Consequently, we must have A31 = 0. But then we obtain the asymptotic 64

27A31 · a3 · x + O(x2/3) for
the l.h.s., whereas on the r.h.s. we have the leading term A33x = −8A20 · a3x. As the result we conclude that the case A33 ≠ 0
is impossible and we must have A33 = 0.

Notice, that in this remaining case A33 = 0 we must have A34 since otherwise R = hxxxhx − h2
xx would be constant by

Lemma 4.2. Here as above from (5.21) we can conclude the asymptotic h(x) = ax + O(x0) and hx = a + O(x−1) for x → ∞.
The substitution of these asymptotic in (5.17) gives linear growth −6A31 · a · x + O(x0) for the l.h.s. provided A31 ≠ 0,
whereas the r.h.s. is constantly A34. So we must have A31 = 0. But the only solutions of the Eq. (5.17) with A31 = A33 = 0
are hx = const which contradict the hypothesis R = hxxxhx − h2

xx ≠ const. The latter contradiction demonstrates the
non-existence of Jordan blocks of size 4 × 4.

Finally, we describe cubic integrals F which give Jordan blocks of size 3 × 3. The latter condition means that F is given
by (5.11) with vanishing coefficients a3,j(x), j = 0, . . . , 3. From formulas (1)–(16) we see that this condition is equivalent
to vanishing of parameters A20, A31, A22. In this case we see from (5.17) that the coefficients A13, A14 must also vanish. Thus
the Eq. (5.17) becomes trivial, and the Eq. (5.18) simplifies to

hx · (A00 · h2
x − 2A11 · h(x)+ 2A02) = A13 · x + A14. (5.22)

The uniqueness of the equation proved in Theorem 4.1 ensures that the Eqs. (5.16) and (5.22) must be proportional to
each other and to the Eq. (1.2)(iii). Let us denote by C1, C2 the corresponding proportionality coefficients. This leads to the
following relations:

A00 = C1 · A0, A11 =
1
2

· C1 · A1, A02 =
1
2

· C1 · A2, A13 = C1 · A3, A14 = C1 · A4,

A10 = C2 · A0, A21 =
1
4

· C2 · A1, A12 =
1
2

· C2 · A2, A23 = C2 · A3, A24 = C2 · A4.

(5.23)

Additionally set A03 = CL3 and A01 =
1
2CLH . Substituting these relations and formulas (1)–(16) we obtain the following

formula for a cubic integral F in the case µ = 0:

F = CL3 · p3y + CLH ·
1
2
h2
x(p

2
xpy + p3y) (5.24)

+ C1 ·


A0 · h3

x · p3x +
y
2

· A1 · h2
x · p2xpy +

1
2

· (3A0 · h2
x − A1 · h(x)+ A2) · hx · p2y · px

+
y
2

· (3A0 · h2
x − A1 · h(x)+ A2) · hxx · p3y


(5.25)

+ C2 ·


A0 · h3

x · y · p3x +


y2

4
· A1 · h2

x − A0 · h2
x · h(x)


· p2xpy +

1
2

· (3A0 · h2
x − A1 · h(x)+ A2) · hx · y · pxp2y

+


1
4

· (3A0 · h2
x − A1 · h(x)+ A2) · hxx · y2 − A0 · h2

x · h(x)−
1
2

· A4 · x −
1
4

· A3 · x2


· p3y


. (5.26)

Thus F is a linear combination of 4 independent cubic integrals as stated in Theorem 1.1, two of which are L3 and L · H , and
the other two are linear and quadratic in y.

Notice that the formulas (5.25) and (5.26) for cubic integrals differ from those in (1.5) and (1.6). To obtain the last oneswe
need to subtract from (5.25) and (5.26) the derivative of the Eq. (1.2)(iii) with coefficients y

2 · p3y and respectively y2

4 · p3y . �

5.2. Summing up: Theorem 1.1 is proved

As we explained in Sections 2.1–2.3, any metric g admitting linear integral L and cubic integral F such that L,H and F
are functionally independent has in an appropriate coordinate system the form h−2

x (dx
2

+ dy2), where the function h(x)
satisfies (2.8) or (2.13).
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In Theorem 4.2 we proved that µ in (2.8) is real, or pure imaginary, and the parameters A0, . . . , A4 in (2.8) and in (2.13)
become real after multiplication with an appropriate constant. Thus, the Eqs. (2.8) and (2.13) are essentially the Eqs. (1.2).

It follows from Sections 2.1–2.3 that the metric g = h−2
x (dx

2
+ dy2) admits at least one cubic integral F1 which has the

form fromTheorem1.1, and two functionally independent integrals F1, F2 in the caseµ ≠ 0. In the beginning of Section 5we
constructed an additional independent cubic integral F2 in the case µ = 0, and explained why there are no other integrals
(unless the metric has constant curvature).

Theorem 1.1 is proved.

6. Global solutions

In this section we show that if the function h(x) satisfies the Eq. (1.2) (ii) and h′(x0) > 0 at some point x0 whereas the
real parameters µ > 0, A0, . . . , A4 satisfy inequalities A0 > 0, µ · A4 > |A3| then the metric g =

1
h2x
(dx2 + dy2) smoothly

extends to the sphere S2 together with the linear integral L = py and the cubic integral F given by (1.4). More precisely, we
show that if (r, ϕ) are polar coordinates onR2 related to (x, y) by r = ex/µ, ϕ = y/µ, then g, L, and F arewell-defined on the
punctured plane R2

\ {0} and extend smoothly to the origin 0 and to the infinity point ∞ of the Riemann compactification
S2 = C = R2

∪ {∞}, such that the extended tensor g is still a (non-degenerate) Riemannian metric on the whole sphere S2.
The family of examples of superintegrable metrics obtained in this way on the sphere is new. Indeed, by [13] Darboux-

superintegrable metrics cannot live on a closed manifold, so the only known superintegrable metrics on the 2-sphere are
the standard metrics of constant curvature. In view of Corollary 3.1, for most values of the parameters satisfying the above
conditions, the metrics are not metrics of constant curvature.

Let us describe the conditions on parameters µ > 0, A0, . . . , A4 which distinguish our global solutions. Since we want
the linear integral L to be also globally defined on S2, the Killing vector field must be as in the standard rotation (see for
example [24]), and we must have the elliptic case, i.e., h must satisfy (1.2), (ii). Since the Darboux-superintegrable case is
impossible on closed surfaces due to [13], A0 is non-zero. Then dividing the equation by A0 we obtain A0 = 1. Applying the
action h(x) → h(x) + c we can make A1 = 0. Since µ ≠ 0, making an appropriate rescaling in x we can make µ = 1.
Further, we rewrite the free term A3sinh(x)+ A4cosh(x) in the form A+ex + A−e−x and we impose the positivity condition
A+, A− > 0. This means that the free term is positive for all x ∈ R. An appropriate translation in x direction transforms the
term A+ex + A−e−x into Ae · (ex + e−x). It is easy to see that in terms of the original parameters our conditions are

µ > 0, A0 > 0, A4 · µ− |A3| > 0. (6.1)

Lemma 6.1. For any Ae > 0, A2 and h(x0) there exists a unique real-analytic local solution h(x) of the ODE

E := hx(h2
x − h(x)2 + A2)− Ae · (ex + e−x) = 0 (6.2)

with the initial value h(x0) such that hx(x0) is the unique positive root of the characteristic polynomial χ(λ) := λ(λ2 + A2 −

h(x0)2)− Ae · (ex0 + e−x0).

Proof. Considering the graph of the polynomial λ(λ2 + a) for different a (mainly, for the cases a ≥ 0 and a < 0) we see that
there exists a unique positive solution of the equation λ(λ2 + a) = A with A > 0 which depends real-analytically on a and
A > 0. The standard theory of ODEs implies now the desired local existence and uniqueness of solutions of (6.2). �

Remark 6.1. Notice that depending on coefficients A > 0 and a one could have two distinct, one double, or none negative
roots of the equation λ(λ2 + a) = A. Vice versa, in the case A < 0 there is one negative root and there could be two
distinct, one double, or no positive roots. This explains our ‘‘Ansatz’’: we need the right hand side A3sinh(x)+ A4cosh(x) =

A+ex + A−e−x to remain positive.

Let h(x) be a local solution constructed in the previous lemma. Make the substitution x = log(t). Then the Eq. (6.2)
transforms intoE := t · ht((t · ht)

2
− h(t)2 + A2)− Ae · (t + t−1) = 0 (6.3)

defined for all t > 0.

Proposition 6.1. Any local solution h(t) of (6.3) with ht positive extends to the interval t ∈ (0,+∞). Moreover, the functions
t · h(t), t2ht , and t3htt extend real-analytically to some interval t ∈ (−ε, ε), ε > 0. In particular, the function h(t) has a simple
pole at t = 0.

Notice that in terms of the variable x the first assertion of the proposition states that every local solution h(x) as in
Lemma 6.1 is global, i.e., is defined for all x ∈ R.

Proof. Considering the local behavior of h(t) at t = 0, we show a stronger property, namely, that h(t) = f (t2)/t for some
real-analytic function f (τ ), defined in some interval τ ∈ [−ε,+∞]. This means that we make the substitution t =

√
τ , or

equivalently, t2 = τ or x =
1
2 log τ . However, we consider all three functions h(x), h(t), and h(τ ) as a single object given in

different coordinates.



Author's personal copy

1374 V.S. Matveev, V.V. Shevchishin / Journal of Geometry and Physics 61 (2011) 1353–1377

For A positive and h, A2 real, denote by η = η(h, A2; A) the unique positive root of the polynomial λ(λ2 + A2 − h2)− A.
Then η(h, A2; A) is monotone in every its argument A > 0, A2 and h ≠ 0: η(h, A2; A)will increase if we increase A > 0 and
the absolute value |h| and decrease A2. Consequently, for any given A2 and Ae > 0 any solution h(x) of (6.2) with positive hx
satisfies hx ≥ η∗

:= η(0, A2, ; 2Ae). In particular, h(x) is monotone.
Now let us observe the following two facts. First, the translation in x (which means the multiplication of t by a constant)

transforms our Eq. (6.2) into

hx(h2
x − h(x)2 + A2)− A+ · ex − A− · e−x

= 0 (6.4)

or respectively (6.3) into

t · ht((t · ht)
2
− h(t)2 + A2)− A+ · t − A− · t−1

= 0 (6.5)

with positive parameters A+, A−. Second, for any values of parameters our equation has a very simple function as the
solution. Namely, the function h̃(t) := Ch(−A−/t + A+ · t) satisfies the Eq. (6.5) if and only if the constant Ch is the unique
positive root of the polynomial Ch(4A+A− · C2

h + A2) = 1. We use these special solutions and their translations in x (⇔
reparametrizations t → c · t) to estimate the behavior of a general solution h(t).

Let h(t) be any solution of (6.3) defined in a neighborhood of the initial value t0. Denote h0 := h|t=t0 . Let h̃(t) be the
unique solution of (6.5) of the form h̃(t) := Ch(−A−/t + A+ · t) with Ch > 0. In the case when h̃(t0) = h0 we must have
h(t) = h̃(t) everywhere and thus h(t) is defined globally on (0,+∞).

Assume that h̃(t0) > h0. Since both functions are solutions of the same 1st order ODE, h̃(t) > h(t) for every t from the
maximal existence interval (t−, t+) ⊂ (0,+∞) of the solution h(t). Further, since h(t) is monotone increasing and bounded
from above by the function h̃(t) defined on the whole ray (0,+∞), we conclude that the solution h(t) does not explode and
exists on the whole interval (t0,+∞). In particular, the existence interval for h(t) is (t−,+∞). Moreover, h(t) ≤ ChA+t for
all t ∈ (t−,+∞).

Our next step is construction of a similar lower bounding function h−(t)which also has the form h−(t) = Ch · (−A′
−
/t +

A+ · t) and satisfies the Eq. (6.5) with some new parameters A′
−
and A2. This means that constructing h−(t) from h̃(t) we

change only one parameter, namely A−. By increasing it the value h−(t0) will decrease. Thus we can find the new value
A′

−
> A− from the condition h−(t0) = h0. Then we find the new value A′

2 from the relation Ch(4A+A′
−

· C2
h + A′

2) = 1. Notice
that since A′

−
was increased, A′

2 is lower than A2, i.e., A′

2 < A2. Assume additionally that h0 ≤ 0. Then h(t) < 0 for every
t ∈ (t0, t0). Now using the monotonicity on the function η(h, A2; A) and comparing the equations for h(t) and h−(t) and the
initial values h−(t0) = h(t0) and d

dt h−(t0) > d
dt h(t0), we conclude the following: for every t in the whole existence interval

(t−, t0) left from the initial point t0 we have h−(t) < h(t), |h−(t)|2 > |h(t)|2, and d
dt h−(t) > d

dt h(t).
The mononoticity argument above can be applied in the case when h0 > 0. In this case we need an additional step.

Namely, since we have the uniform estimate h′(t) ≥ η∗ > 0, our solution h(t) vanishes at the unique t1 lying in the
existence interval (t−, t0) left from t0. Then we apply the same argument above at the point t1 instead of t0.

Finally, recall that abovewe have proceeded under assumption h̃(t0) > h0. The remaining case h̃(t0) < h0 is treated quite
similarly, and we only indicates the changes. In this new situation the function h̃(t) := Ch(−A−/t + A+ · t)will be a lower
bound for our solution h(t), i.e., h(t) > h̃(t) everywhere in the existence interval. This fact together with the monotonicity
of h(t) will imply the extensibility of h(t) left until the value t− = 0. To construct the upper bounding function h+(t) we
increase the parameter A+ and also decrease A2. Moreover, in the case h0 < 0 we need an additional step, in which we go
right to the unique point t1 ∈ (t0, t+) such that h(t1) = 0, and apply the argument at this point t1.

For the second assertion of the proposition in the case h̃(t0) < h0 we need one bounding function, namely, the function
h+(t) of the familiar form h+(t) := Ch(−A′

−
/t + A+ · t) such that h+(t) > h(t) for t < t0 (h+(t) does this for t > t0 or

respectively for t > t1 > t0). As before in the case h0 > 0 we go left to some point t2 < t0 such that h(t2) < 0. Notice that
h̃(t2) is still less than h(t2), and hence h̃(t2) < 0. Now, if we start to decrease A−, the value h̃(t2)will increase until it arrives
at 0. Consequently, for some A′

0 ∈ (0, A0) the function h+(t) := Ch(−A′
−
/t + A+ · t) has value h+(t2) = h(t2). The same

monotonicity argument as above gives us h(t) < h+(t) for t ∈ (0, t2).
This gives the desired global existence of the solution h: the maximal existence interval is (0,+∞) for the coordinate t

which means that h(x) exists for all x ∈ R.
As a consequence of the above argument, we obtain the estimate −

C
t < h(t) < −

c
t for 0 < t ≪ 1 with some positive

constants c, C for any solution of (6.3).
Now let us make the substitution t =

√
τ and h(t) = f (t2)/t = f (τ )/

√
τ . Then the Eq. (6.3) transforms into

8 · f 3τ · τ 2 + (−12 · f 2τ · f (τ )− Ae + 2 · fτ · A2) · τ − f (τ ) · A2 − Ae + 4 · f (τ )2 · fτ = 0. (6.6)

For τ small enough and f < 0 we can resolve this equation with respect to the derivative fτ , and then (6.6) transforms into
the form

fτ = Φ(τ , f (τ ); A2, Ae) (6.7)
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for some real-analytic function Φ(τ , f ; A2, Ae) of arguments τ ∈ [−ε, ε], f < 0, A2, Ae. In particular, Φ|τ=0 =
Ae+A2·f

4f 2
. It

follows, that for every A2, Ae, every negative f0, and every τ0 small enough there exists the unique solution of the Eq. (6.6)
with the initial value f (τ0) = f0. More precisely, for given intervals A2, Ae ∈ [−C, C], f0 ∈ [−C,−c] with 0 < c < C there
exists an ε = ε(c, C) > 0 such that the Eq. (6.6) has the unique solutionwith the initial value f (τ0) = f0 at τ0 ∈ [−ε, ε] such
that fτ (τ0) = Φ(τ0, f0; A2, Ae). Moreover, this solution is well-defined and real-analytic on the whole interval τ ∈ [−ε, ε].

Next, we observe that the above estimate−
C
t < h(t) < −

c
t for 0 < t ≪ 1 is equivalent to the estimate−C < f (τ ) < −c

for 0 < τ ≪ 1. The proposition follows. �

Now we state the result about the extensibility of g and F to a metric and a cubic integral defined globally on S2.

Theorem 6.1. For any Ae > 0, A2 and h0, let h(t) be the unique solution of the Eq. (6.3) with the initial value h|t=1 = h0 and
with ht |t=1 > 0. Then the metric

g =
dt2 + t2 · dϕ2

t4h2
t

(6.8)

defined on the plane R2 with the polar coordinates (t, ϕ) extends to a real analytic metric on the sphere S2 = C = R2
∪ {∞}

with the Killing vector v =
∂
∂ϕ

which admits a cubic integral F also well-defined and real-analytic globally on S2.
Moreover, the metric g has constant curvature if and only if h0 = 0.

Proof. By Proposition 6.1 the function h(t) is well-defined for all t ∈ (0,+∞) and for t small enough h(t) =
f (t2)
t with

some real-analytic function f (τ ) such that f (0) < 0. Consequently, in a neighborhood of the origin the function t2ht is real-
analytic and non-vanishing. It follows that the formula g =

dt2+t2·dϕ2

t4h2t
defines a non-degenerate real-analytic Riemannian

metric in a neighborhood of the origin in R2 with the polar coordinates (t, ϕ). Substitution t = ex, ϕ = y transforms this
metric into the familiar form g =

dx2+dy2

h2x
and the Eq. (6.3) into (6.2). By Proposition 6.1 the metric g =

dx2+dy2

h2x
is well-

defined for all x ∈ R or equivalently for all t ∈ (0,+∞). This means that the metric g =
dt2+t2·dϕ2

t4h2t
is well-defined on the

whole plane R2.
To show the extensibility to the infinity point∞we apply the inversion of the sphere S2 = R2

∪{∞}with respect to the
unit circle given by the condition t = 1. Recall that the inversionmap interchanges the origin 0 and the infinity point∞ and
that in the polar coordinates it is given by (t, ϕ) → (t−1, ϕ). Changing to the coordinates x = log(t), y = ϕ we obtain the
formula (x, y) → (−x, y). So we conclude immediately that the extensibility of the metric g to the infinity ∞ is equivalent
to the extensibility to the origin 0, and thus this is the case.

Let ξ := t · cos(ϕ) and η := t · sin(ϕ) be the Cartesian coordinates corresponding to the polar coordinates (t, ϕ) and
pξ , pη the corresponding momenta, i.e., dual coordinates on T ∗S2. Then the vector field ∂y = ∂ϕ is given by ξ∂η − η∂ξ . This
means that the linear integral L = py is given by L = ξpη−ηpξ and hence L extends smoothly to the origin. By the symmetry
argument L extends also to the infinity point ∞.

It remains to show that the cubic integral F given by (1.4) also extends to the origin and to the infinity point ∞. Our
argumentation is as follows. First, we substitute in the formulas (1.4) our values of parameters A0 = µ = 1 and A1 = 0.
Next, without loss of generality wemay set φ = 0 for the ‘‘phase parameter’’ in (1.4). Then each function a0(x), . . . , a3(x) in
(1.4) becomes a sumof linear and cubicmonomials in functions h(x), hx, hxx. Nowwe observe that each function h(x), hx, hxx,
considered as a function of the variable t , has the form fi(t2)/t for certain real-analytic function fi(τ ), namely, f0(τ ) = f (τ )
as in the proof of Proposition 6.1, f1(τ ) = 2τ f ′(τ ) − f (τ ) and f2(τ ) = 4τ 2f ′′(τ ) + f (τ ). Further, in the same way
as for py = ξ∂η − η∂ξ , we obtain the formula px = ξpξ + ηpη . Substituting all these relations and also the relations
cos(y) =

ξ

t , sin(y) =
η

t in (1.4) we see that in coordinates (ξ , η) the integral F has the form

F(ξ , η; pξ , pη) =

3−
i=0

4−
j=0

p3−i
ξ piηξ

4−jηj
ψij(τ )

τ 2

where τ = t2 = ξ 2 + η2 and ψij(τ ) are some real-analytic functions. It follows that to establish the real-analyticity of F
we need to know only the linear parts of the functions ψij(τ ). Considering the expressions of these linear parts of ψij(τ )
in terms of the functions h(x), hx, hxx we see that only two lower monomials of each function h(x), hx, hxx are involved.
We write h(t) = −c0 · t−1

+ c1 · t + O(t3). Differentiation yields hx = t · ht = +c0 · t−1
+ c1 · t + O(t3) and

hxx = t · d
dt (t ·ht) = −c0 · t−1

+ c1 · t +O(t3). Substituting these expressions in the Eq. (6.3) and considering the coefficients
by t±1, we obtain algebraic equations

4 · c20 · c1 + c0 · A2 − Ae = 0, 4 · c21 · c0 + c1 · A2 − Ae = 0.
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So we conclude the equality c1 = c0 and the formula Ae = c0 · (4 · c20 + A2). Now, substituting all these formulas in (1.4) we
obtain

F = c30 · pξ · (p2ξ + p2η)+ (3 · c30 · ξ 2 +
c0 · (A2 + 6 · c20 )

2
· η2) · p3ξ − c0 · (2 · c20 + A2) · η · ξ · p2ξ · pη

+


c0 · (10 · c20 + A2)

2
· ξ 2 + c30 · η2


· p2η · pξ + 2 · c30 · η · ξ · p3η + O(ξ 4 + η4)

in which O(ξ 4 + η4)means term of higher degree in ξ, η.
This shows that the cubic integral F extends real-analytically to the origin as desired. The extensibility of F to the infinity

point ∞ can be obtained from the extensibility to the origin by means of the inversion.
The theorem follows. �

7. Conclusion

We found all two-dimensional Riemannian metrics whose geodesic flows admit one integral linear in momenta (L) and
one integral cubic in momenta (F) such that L, F and the Hamiltonian H of the geodesic flow are functionally independent.
Within these metrics, we point out the metrics that are already known, and proved that most of our metrics are new. We
have also shown that, in the case when the parameters satisfy certain inequalities, the metric and the integrals L and F
extend real-analytically to the sphere S2, giving new unexpected examples of integrable metrics on the sphere.

The results and the methods of our paper suggest the following directions of further investigations.

Problem 1. Generalize our result for integrals of higher degree.

In other words, we suggest to construct all two-dimensional metrics whose geodesic flows admit one integral linear in
momenta (L) and one integral polynomial in momenta of degree 4, (5, 6, etc.) in momenta (F) such that L, F and H are
functionally independent.

The main trick that allowed us to solve the case (linear integral L + cubic integral F ) survives in this setup: the Poisson
bracket {L, F} is again an integral of the same degree as F . Arguing as in Section 2.1 one can reduce the problem to analyze
certain systems of ODE. Though it is not clear in advance whether one can reduce this system of ODE to one equation (as
we did in the case (linear integral L + cubic integral F )), the approach should at least allow to construct new examples of
superintegrable metrics.

Problem 2. Generalize our results for pseudo-Riemannian metrics.

We expect that it is possible to do the local description using the same idea. We do not expect that one can find the
analog of our global examples on closed surfaces in the pseudo-Riemannian case. Generally, it could be complicated to
generalize global Riemannian construction to the pseudo-Riemannian setting. In certain cases though the existence of
additional structure such as additional integrals (as for example in [29]) allows to keep control over the situation.

Problem 3. Quantize the cubic integral.

Take a metric g from Theorem 1.1 and consider its Laplacian∆ (since our metric is 1
h2x
(dx2 + dy2),∆ = h2

x


∂2

∂2x
+

∂2

∂2y


;

one can view it as a mapping ∆ : C∞(M2) → C∞(M2) though one also can consider its Laplacian as a linear operator on
bigger function spaces).

Does there exist a differential operator F̃ of degree 3,

F̃ = a0(x, y)
∂3

∂3x
+ a1(x, y)

∂2

∂2x
∂

∂y
+ a2(x, y)

∂

∂x
∂2

∂2y
+ a3(x, y)

∂3

∂3y

+ b0(x, y)
∂2

∂2x
+ b1(x, y)

∂

∂x
∂

∂y
+ b2(x, y)

∂2

∂2y
+ c0(x, y)

∂

∂x
+ c1(x, y)

∂

∂y
+ d(x, y),

such that F̃ commutes with∆, i.e., such that for every smooth function f : M2
→ R

[∆, F̃ ](f ) := ∆(F̃(f ))− F̃(∆(f )) ≡ 0,

and such that its symbol

a0(x, y)p3x + a1(x, y)p2xpy + a2(x, y)pxp2y + a3(x, y)p3y
coincides with the integral F from Theorem 1.1?

Recall that for all previously known superintegrable systems such quantization of the integralwas possible (see [30]), and
was extremely useful for the describing of eigenfunctions of∆. Note that quantum superintegrability can bemost effectively
used (if it exists) in the case of metrics from Theorem 6.1, since in this case the Laplacian is a selfadjoint operator.
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Problem 4. Find physical ormechanical systems realizing theHamiltonian systems corresponding to (at least some)metrics
constructed in Theorem 1.1.

This problem is an interesting challenge for both mathematicians and physicists, especially in the case of global systems
given by Theorem 6.1. Let us note thatmany classical examples of global integrable systems have arisen as themathematical
models for concrete naturally defined dynamical systems in physics and mechanics, and that many superintegrable metrics
have physical realization or can be applied to solving physical problems.

Problem 5. Describe the metrics from Theorem 6.1 in the terms of [26, Chapter 4].

As we already mentioned above, all geodesics of the metrics from Theorem 6.1 are closed. By construction, the metrics
are the metrics of revolution. Then, these metrics are a subclass of the so-called Tannery metrics from [26, Chapter 4].

Problem 6. Find isometric imbeddings of metrics from Theorem 6.1 in (R3, gstandard).

Such isometric imbeddings are possible at least for certain metrics from 6.1, since they have positive curvature as small
perturbations of the standard metric. This problem is related to Problem 4, and is a geometric analog of it. It also is related
to Problem 5 in view of [26, Chapter 4(C)].
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