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COVERING SEMIGROUPS

VIK.S. KULIKOV AND V.M. KHARLAMOV

Abstract. We introduce and study a semigroup structure on the set of irreducible
components of the Hurwitz space of marked coverings of a complex projective curve
with given Galois group of the coverings and fixed ramification type. As application,
we give new conditions on the ramification type that are sufficient for irreducibil-
ity of the Hurwitz spaces, suggest some bounds on the number of irreducibility
components under certain more general conditions, and show that the number of
irreducible components coincides with the number of topological classes of the cov-
erings if the number of brunch points is big enough.

Introduction

Let f : E → F be a finite morphism between complex non-singular irreducible
projective curves. Denote by C(E) and C(F ) the fields of rational functions on E
and F , respectively. The morphism f defines a finite extension f ∗ : C(F ) →֒ C(E)
of the field C(F ) (reciprocally, the field extension defines the covering f uniquely up
to isomorphisms of coverings over a fixed base). We denote by G the Galois group of
the Galois closure of this extension and call it the Galois group of f .

Let us fix a point q ∈ F that is not a branch point of f and order the points of E
lying over q. We call the morphism f with a fixed ordering of the points of f−1(q) a
marked covering.

Consider the fundamental group π1(F \ B, q) of the complement of the branch
set B ⊂ F of a marked covering f of degree d = deg f . Then, the ordering of the
points of f−1(q) defines a homomorphism f∗ : π1(F \B, q) → Sd of π1(F \B, q) to the
symmetric group Sd. Due to irreducibility of E, the image imf∗ ⊂ Sd acts transitively
on f−1(q) and is isomorphic to G, so that we can identify imf∗ and G and thus fix
this embedding G →֒ Sd.

The movement along a standard simple loops γ around branch points b ∈ B the
local monodromy f∗(γ) ∈ G of f at b. The homotopy class of this standard loop,
and hence the local monodromy, are defined by b uniquely only up to conjugation, in
π1(F \ B, q) and G, respectively. We denote by O ⊂ G the union of the conjugacy
classes of all the local monodromies of f and call the pair (G,O) the equipped Galois
group associated with f . The collection τ = (τ1C1, . . . , τmCm), where C1, . . . , Cm list
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all the conjugacy classes included in O and τi counts the number of branch points of
f with the local monodromies belonging to Ci, is called the monodromy type of f .

The degree d marked coverings of F with Galois group G and monodromy type
τ form a so called Hurwitz space HURd,G,τ (F ) (for precise definitions see subsection
2.7).

In the case F = P1, G = Sd and O is the set of transpositions, the famous Clebsch
– Hurwitz Theorem [3], [9] states that HURd,Sd,τ (P

1) consists of a single irreducible
component if τ = (nO) with even n > 2(d − 1) and it is empty otherwise. Gen-
eralizations of Clebsch – Hurwitz Theorem were obtained in [1], [18], [16], [7], and
[12] – [14]. In particular, Clebsch – Hurwitz Theorem was extended to the following
cases: in [1], if all but one local monodromies are transpositions; in [18], if all but
two local monodromies are transpositions; in [16], if all local monodromies are either
transpositions or cyclic permutations of length three; and in [12], if there are at least
3(d− 1) transpositions among the local monodromies.

In [13], it is proved that for an equipped group (Sd, O) such that the first conjugacy
class C1 of O contains an odd permutation leaving fixed at least two elements, the
Hurwitz space HURd,Sd,τ (P

1) is irreducible if τ1 is big enough. On the other hand,
the example in [18] shows that HUR8,S8,τ(P

1) consists of at least two irreducible
components if τ = (1C1, 1C2, 1C3), where C1 is the conjugacy class of the permutation
(1, 2)(3, 4, 5), C2 is the conjugacy class of (1, 2, 3)(4, 5, 6, 7), and C3 is the conjugacy
class of (1, 2, 3, 4, 5, 6, 7). Articles [7] and [14] are devoted to partial generalizations of
Clebsch – Hurwitz Theorem to the case of arbitrary group G. In particular, in [14],
it was proved that for a fixed equipped finite group (G,O) the number of irreducible
components of HURd,G,τ(P

1) (if it is non-empty) does not depend on τ if all τi are
big enough.

For higher genus, the irreducibility of HURd,Sd,τ (F ) is proved in [8] under hypothesis
that n ≥ 2d and all local monodromies are transpositions. After that, this result was
improved, first, in [10] where the hypothesis n ≥ 2d was replaced by n ≥ 2d− 2, and
next, in [17], where the second hypothesis was replaced by assumption that all but
one local monodromies are transpositions. Let us notice that the irreducibility of the
quotient of HURd,Sd,τ (F ) by the action of the mapping class group of F (considered
as a real surface) was proved in [1] under a weaker hypothesis n > d

2
.

One of the aims of this article is to extend results of [12] – [14] from F = P1 to
the case of F of arbitrary genus. The approach used there for counting the num-
ber of irreducible components of HURd,G,τ (P

1) is based on a systematic work with
semigroups over groups; in particular, factorization semigroups S(G,O) with factors
belonging to O (cf., subsections 1.1 and 1.2 below) play the crucial role in this study,
especially since subsets of elements of type τ of subsemigroup S(G,O)G

1
⊂ S(G,O)

are in a canonical bijection with the sets of irreducible components of the Hurwitz
space HURd,G,τ (P

1).
In the present paper, to treat the coverings of projective curves (or, the same,

real surfaces) of arbitrary genus we generalize the notion of factorization semigroups
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to that of semigroups of marked coverings. One can consider different levels of the
equivalence relations of coverings and so we introduce, respectively, different species
of semigroups of marked coverings. The equivalence relation of the level that is most
appropriate to construction of Hurwitz spaces is based essentially on moving of branch
points, while that the level most appropriate to topological classification of coverings
(like in [1], for example) includes, in addition, the action on the base of coverings by
the whole mapping class group. In particular, considering the coverings up to moving
of branch points we introduce a semigroup GSd(G,O) of marked degree d coverings
with Galois group G and set of local monodromies O ⊂ G. If we consider the same
coverings up to the action of the modular group, then we obtain another semigroup,
which we denote by GWSd(G,O). They are related by a natural epimorphism Φ :
GSd(G,O) → GWSd(G,O) of semigroups. Similar to genus 0 case, certain specific
subsemigroups of these two semigroups are in a canonical bijection with the set of
irreducible components of the Hurwitz space HURd,G,(F ) and, respectively, the set of
topological classes of marked degree d ramified coverings of F with Galois groups G.

By definition, the monodromy type of an element s = (f : E → F ) belonging to one
of these semigroups is the collection τ(s) = (τ1C1, . . . , τmCm) of local monodromies
of f . The monodromy type behaves additively and gives a homomorphism from
semigroups of coverings to the semigroup Zm

>0. Therefore, for any constant T ∈ N,
there appear well defined subsemigroups

GSd,T (G,O) = {s ∈ GSd(G,O) | τi(s) > T for i = 1, . . . , m}

and
GWSd,T (G,O) = {s ∈ GWSd(G,O) | τi(s) > T for i = 1, . . . , m}.

The main results are as follows.

Theorem 1. For any equipped finite group (G,O) such that the elements of O gen-
erate the group G, there is a constant T ∈ N such that the restriction of Φ to
GSd,T (G,O) is an isomorphism of GSd,T (G,O) and GWSd,T (G,O).

In [14], there was defined an ambiguity index for each equipped finite group (G,O)
(see subsection 1.3).

Theorem 2. For each equipped finite group (G,O), O = C1⊔ · · · ⊔Cm, such that the
elements of O generate the group G, there is a constant T such that for any projective
irreducible non-singular curve F the number of irreducible components of each non-
empty Hurwitz space HURd,G,τ(F ) is equal to a(G,O) if τi > T for all i = 1, . . . , m.

If the elements of Ok = C1 ⊔ · · · ⊔ Ck for some k < m generate the group G, then
there is a constant T ′ such that the number of irreducible components of HURm

d,G,τ (F )
is less or equal to a(G,Ok) if τi > T ′ for all i = 1, . . . , k.

Theorem 3. Let C be the conjugacy class of an odd permutation σ ∈ Sd such that
σ leaves fixed at least two elements. Then there is a constant NC such that for
any projective irreducible non-singular curve F the Hurwitz space HURd,Sd,τ (F ) is
irreducible if C enters in τ with a factor ≥ NC.
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The article consists of two sections. Section 1 is devoted to the algebraic part of
the proof. In subsections 1.1 – 1.3 we fix notation and recall necessary definitions
and results from [12] – [14]. In subsection 1.4 we introduce a notion of admissible
subgroups of the automorphism groups of free groups, which is necessary for the next
subsection where we define the algebraic coverings semigroups. The remaining sub-
sections of Section 1 contain the proofs of the algebraic part of main results. Section
2 starts from two preliminary subsections where we introduce such auxiliary notions
like monodromy encoding of ramified coverings and skeletons of surfaces. In 2.3 – 2.6
we introduce a series of geometric covering semigroups and prove comparison state-
ments between algebraic and geometric covering semigroups. In the final subsections,
we relate elements of the geometric coverings semigroups with irreducible components
of Hurwitz spaces and complete the proofs of main theorems.

1. Semigroups over groups

1.1. Definition of semigroups over groups. Here, we recall basic definitions and
some properties of semigroups over groups with a special emphasis to factorization
semigroups (for more details, see [11] – [14]).

A collection (S,G, α, ρ), where S is a semigroup, G is a group, and α : S → G,
ρ : G → Aut(S) are homomorphisms, is called a semigroup S over a group G if for
all s1, s2 ∈ S we have

s1 · s2 = ρ(α(s1))(s2) · s1 = s2 · λ(α(s2))(s1), (1)

where λ(g) = ρ(g−1).
Let (S1, G1, α1, ρ1) and (S2, G2, α2, ρ2) be two semigroups over groups G1 and G2,

respectively. A pair (h1, h2) of homomorphisms h1 : S1 → S2 and h2 : G1 → G2 is
called a homomorphism of semigroups over groups if

(i) h2 ◦ α1 = α2 ◦ h1,
(ii) ρ2(h2(g))(h1(s)) = h1(ρ1(g)(s)) for all s ∈ S1 and all g ∈ G1.

In particular, if G1 = G2 = G, then a homomorphism of semigroups ϕ : S1 → S2 is
said to be defined over G if α1(s) = α2(ϕ(s)) and ρ2(g)(ϕ(s)) = ϕ(ρ1(g)(s)) for all
s ∈ S1 and g ∈ G.

1.2. Factorization semigroups. One of the main examples of semigroups over
groups is given by, so called, factorization semigroups. To define them, consider
an equipped group (G,O), that is, G is a group and O is a subset of G invariant under
the inner automorphisms. Here and further on, we assume that:

(i) 1 6∈ O;
(ii) O consists of a finite number of conjugacy classes Ci of G, O = C1 ⊔ · · · ⊔Cm;
(iii) the (linear) ordering of these conjugacy classes is fixed.
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By homomorphisms of equipped groups (G1, O1) and (G2, O2) we understand homo-
morphisms f : G1 → G2 such that f(O1) ⊂ O2.

The factorization semigroup with factors in O is, by definition, the semigroup
S(G,O) generated by alphabet XO = {xg | g ∈ O} and subject to relations

xg1 · xg2 = xg2 · xgg21 , g1, g2 ∈ O, (2)

where gg21 denotes g−1
2 g1g2. The homomorphism α : S(G,O) → G, given by α(xg) = g

for each xg ∈ XO, is called the product homomorphism. The simultaneous conjugation

xa ∈ XO 7→ xgag−1 ∈ XO

defines a homomorphism G→ Aut(S(G,O)), which we denote by ρ. It is easy to see
that under such a choice, (S(G,O), G, α, ρ) is a semigroup over G.

Note that there is a well defined length homomorphism of semigroups,

l : S(G,O) → Z>0 = {a ∈ Z | a > 0}

that is defined by l(xg1 · . . . · xgn) = n.
Put ρS = ρ ◦ α, λS = λ ◦ α, where as above λ(g) = ρ(g−1).

Claim 1. ([15]) For all s1, s2 ∈ S(G,O) we have

s1 · s2 = s2 · λS(s2)(s1) = ρS(s1)(s2) · s1.

To each s = xg1 · . . . · xgn ∈ S(G,O), we associate a subgroup Gs of G generated
by the images α(xg1) = g1, . . . , α(xgn) = gn of the factors xg1, . . . , xgn and denote by
GO the subgroup of G generated by the elements of O.

Claim 2. ([12]) The subgroup Gs of G is well defined, that is, it does not depend on
a presentation of s as a product of generators xgi ∈ XO.

For subgroups H and K of a group G, we put

S(G,O)H = {s ∈ S(G,O) | Gs = H},

S(G,O)K = {s ∈ S(G,O) | α(s) ∈ K},

and S(G,O)HK = S(G,O)K ∩ S(G,O)H. It is easy to see that S(G,O)H (respectively
S(G,O)HK) is isomorphic to the semigroup S(H,H ∩O)H (respectively, isomorphic to
S(H,H ∩O)HK∩H) and the isomorphism is induced by the embedding (H,H ∩ O) →֒
(G,O).

Proposition 1. ([12]) Let (G,O) be an equipped group and let s ∈ S(G,O). We have

(1) ker ρ coincides with the centralizer CO of the group GO in G;
(2) if α(s) belongs to the center Z(Gs) of Gs, then for each g ∈ Gs the action ρ(g)

leaves fixed the element s ∈ S(G,O);
(3) if α(s · xg) belongs to the center Z(Gs·xg

) of Gs·xg
, then s · xg = xg · s,

(4) if α(s) = 1, then s · s′ = s′ · s for any s′ ∈ S(G,O).

Claim 3. ([12]) For any equipped group (G,O) the semigroup S(G,O)1 is contained
in the center of the semigroup S(G,O) and, in particular, it is commutative.
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Note that if g ∈ O is an element of order n, then xng ∈ S(G,O)1.

Lemma 1. ([12]) Let s ∈ S(G,O)Z(GO) and s1 ∈ S(G,O)GO, where Z(GO) is the

center of GO. Then

s · s1 = ρ(g)(s) · s1 (3)

for all g ∈ GO.

In particular, if s ∈ S(G,O)G, C ⊂ O is a conjugacy class of G, and gn1 belongs to

the center Z(G) of G for certain g1 ∈ C, then for any g2 ∈ C we have

xng1 · s = xng2 · s. (4)

Proposition 2. ([12]) The elements of S(G,O)G
1

are fixed under the conjugation

action of G.

1.3. Factorization semigroups over equivalent equipped groups. Here, we
introduce an additional assumption with regard to O in an equipped group (G,O):
we assume that

(iv) the elements of O generate the group G.

In [14], a C-graph was associated with each equipped group. By definition, the
C-graph Γ(G,O) of an equipped group (G,O) is a directed labeled graph. Its vertices
are labeled by elements of O, and this labeling is a bijection between O and the set
of vertices, V = {vg | g ∈ O}. Each edge of Γ(G,O) also is labeled by an element of O.
Namely, two vertices vg1 and vg2, g1, g2 ∈ O, are connected by an edge evg1 ,vg2 ,g with

label g ∈ O if and only if g−1g1g = g2. (A C-graph may contain loops, and several
edges, but with distinct labels, may connect the same pair of vertices in the same
direction.)

Obviously, the conjugacy classes Ci ⊂ O, 1 ≤ i ≤ m, are in one-to-one corre-
spondence with the connected components Γi of the C-graph Γ(G,O); more precisely,
vg ∈ Γi if and only if g ∈ Ci.

Two equipped groups (G1, O1) and (G2, O2) are called equivalent if their C-graphs,
Γ(G1,O1) and Γ(G2,O2), are isomorphic as C-graphs; in other words, if there is a bijection
O1 → O2 that induces an isomorphism of C-graphs between Γ(G1,O1) and Γ(G2,O2).

To each C-graph Γ = Γ(G,O) one associates a C-group GΓ = (G̃, Õ) equivalent to

(G,O). Denoting by g 7→ g̃ the bijection O → Õ, we can describe G̃ as the group

defined by generators g̃ ∈ Õ and the relations

{g̃−1
3 g̃1g̃3 = g̃2 if and only if there is an edge evg1 ,vg2 ,g3 ∈ Γ}

(equivalently, g̃−1
3 g̃1g̃3 = g̃2 if and only if the relation g−1

3 g1g3 = g2 holds in G).
These generators are called C-generators. They are in one-to-one correspondence
with the vertices of Γ due to the composed bijection g̃ 7→ g 7→ vg. Furhermore, two
C-generators g̃1 and g̃2 belong to the same connected component of Γ(G,O) if and

only if they are conjugate. The set Õ of C-generators of the C-group G̃ satisfies the
assumptions (i)-(iv).
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The one-to-one map β(G,O) : Õ → O given by β(G,O)(g̃) = g defines an epimorphism

β = β(G,O) : (G̃, Õ) → (G,O) of equipped groups and an isomorphism β∗ : S(G̃, Õ) →

S(G,O) of semigroups. By Claim 8 in [14], ker β is a subgroup of the center Z(G̃) of

the C-group G̃.
By adding the commutativity relations one shows that the abelianizationH1(G̃,Z) =

G̃/[G̃, G̃] of G̃ is isomorphic to Zm. Moreover, due to a fixed ordering of the conjugacy

classes {C̃1, . . . , C̃m} it comes with a natural basis, where in terms of the abelianiza-

tion homomorphism ab : G̃→ H1(G̃,Z) the i-th element of the basis is given by ab(g̃)

with g ∈ Ci, 1 ≤ i ≤ m.

The homomorphism τ = ab ◦ β−1
∗ : S(G,O) → Zm

>0 is called the type homomor-
phism, the image τ(s) = (τ1(s), . . . , τm(s)) ∈ Zm

>0 is called the type of s ∈ S(G,O),
and the ith coordinate τi(s) of τ(s) is called the ith type of s.

A C-group G̃ is called C-finite if the number of vertices of the graph Γ(G̃,Õ) is finite.

By Proposition 3 in [14], the commutant [G̃, G̃] of a C-finite group G̃ is a finite group.

The order a(G,O) = | ker β ∩ [G̃, G̃]| of the group ker β ∩ [G̃, G̃] is called the ambiguity

index of an equipped finite group (G,O). If O′ ⊂ O are two equipments of a finite

group G such that the elements of O′ generate the group G, then by Corollary 2 in

[14], we have a(G,O) 6 a(G,O′).
In [14] the following theorems are proved.

Theorem 4. Let (G,O), O = C1⊔· · ·⊔Cm, be an equipped finite group and (G̃, Õ) =

GΓ with Γ = Γ(G,O) the C-group equivalent to (G,O). Then there is a constant T ∈ N

such that for any element s1 ∈ S(G,O)G with τi(s1) > T for all i = 1, . . . , m there

exist a(G,O) elements s1, . . . , sa(G,O)
∈ S(G,O)G such that

(1) si 6= sj for 1 6 i < j 6 a(G,O);

(2) τ(si) = τ(s1) for 1 6 i 6 a(G,O);

(3) αG(si) = αG(s1) for 1 6 i 6 a(G,O);

(4) if s ∈ S(G,O)G, τ(s) = τ(s1) and αG(s) = αG(s1), then s = si for some i,

1 6 i 6 a(G,O).

(5) if s ∈ S(G,O)G and αG̃(s) = αG̃(s1), then s = s1.

Theorem 5. Let G be a finite group and O′ ⊂ O be two its equipments such that the

elements of O′ = C1⊔· · ·⊔Ck generate the group G. Then there is a constant T = TO′

such that if for an element s1 ∈ S(G,O)G the ith type τi(s1) > T for all i = 1, . . . , k,
then there are not more than a(G,O′) elements s1, . . . , sn ∈ S(G,O)G such that

(i) si 6= sj for 1 6 i < j 6 n;

(ii) τ(si) = τ(s1) for 1 6 i 6 n;

(iii) αG(si) = αG(s1) for 1 6 i 6 n,

where a(G,O′) is the ambiguity index of (G,O′).
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Theorem 5 is exactly Theorem 7 from [14]. Theorem 4, items (1)–(4), is Theorem
6 from [14], while the item (5) is a direct consequence of ([14], Theorems 5 and 6)
and the following straightforward remark.

Remark 1. The elements s1, . . . , sa(G,O)
∈ S(G,O)G, whose existence is claimed by

Theorem 4, are distinguished by their valuers αG̃(si) ∈ G̃. Namely, for i 6= j the

element αG̃(si)αG̃(sj)
−1 is a non-trivial element of ker β(G,O) ∩ [G̃, G̃].

1.4. Admissible subgroups of Aut(Fn+2p). In this subsection, in order to introduce
a notion of algebraic covering semigroups, we pick out some class of subgroups of the
automorphism groups of free groups, called admissible automorphism groups.

Let Fn+2p be a free group freely generated by n+2p elements. Let G = {γ1, . . . , γn} ⊂
Fn+2p, L = {λ1, . . . , λp} ⊂ Fn+2p, and M = {µ1, . . . , µp} ⊂ Fn+2p be three ordered
sets such that the elements of B = G ∪ L ∪M generate the group Fn+2p.

Let n = (n1, . . . , np+1) be an ordered non-negative partition of the number n, that
is, an ordered (p+ 1)-tuple of non-negative integers whose sum is equal to n:

n = n1 + · · ·+ np+1, ni ∈ Z>0.

We put ki =
∑i

j=1 nj. Each partition n defines its own ordering on B:

γ1, . . . , γk1, λ1, µ1, . . . , γki−1+1, . . . , γki, λi, µi, γki+1, . . . , γki+1
, . . . , λp, µp, γkp+1 . . . , γn

(here the set {γki−1+1, . . . , γki} is empty if ni = 0). Denote by Bn the set B with the
ordering defined by partition n and call it a frame of Fn+2p. In particular, B(n,0,...,0) =
{γ1, . . . , γn, λ1, µ1, . . . , λp, µp}. The element

∂Bn = γ1 . . . γk1[λ1, µ1] . . . γki−1+1 . . . γki[λi, µi]γki+1 . . . γki+1
. . . [λp, µp]γkp+1 . . . γn

of Fn+2p is called the boundary of Bn.
Given a set B′ = G ′ ∪ L′ ∪ M′ as above and two adjacent partitions, n′ =

(. . . , ni−1, ni, ni+1, ni+2, . . . ) and n′′ = (. . . , ni−1, ni − 1, ni+1 + 1, ni+2, . . . ), we de-
fine an elementary frame change hn′,n′′ that results both in change of the generating
set and the ordering. Namely, we put

hn′,n′′(B′
n′) = B′′

n′′,

where B′′ = G ′′ ∪ L′′ ∪ M′′ with λ′′j = λ′j and µ′′
j = µ′

j for all j = 1, . . . , p, while

γ′′j = γ′j for j 6= ki = n1 + · · ·+ ni and γ
′′
ki
= ([λ′i, µ

′
i])

−1γ′ki[λ
′
i, µ

′
i]. The inverse change

h−1
n′,n′′ = hn′′,n′ also will be called an elementary frame change. Two frames of Fn+2p

are said to be strongly equivalent if one of them can be obtained from the other one
by a finite sequence of elementary frame changes. Any composition of elementary
changes transforming a frame B′

n′ into a frame B′′
n′′ will also be denoted by hn′,n′′ .

The proof of the following properties is straightforward.

Claim 4. Let B′
n and B′′

n be two frames strongly equivalent to a frame B(n,0,...,0). Then

B′
n = B′′

n.
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Claim 5. Let B′
n′ and B′′

n′′ be two strongly equivalent frames. Then ∂B′
n′ = ∂B′′

n′′. �

The group Aut(Fn+2p) naturally acts on the set of frames. This action respects the

partition. Given h ∈ Aut(Fn+2p) and a frame Bn, we put B′ = h(B) and h(Bn) = B′
n.

As usually, the orbit of Bn under the action of a subgroup H of Aut(Fn+2p) is denoted

by HBn. The following Lemma is obvious.

Lemma 2. Let H be a subgroup of Aut(Fn+2p) and B′
n′, B′′

n′′ two strongly equivalent

frames. Then

(i) for any h ∈ H, the frames h(B′
n′) and h(B′′

n′′) are strongly equivalent and

h(B′
n′) = h−1

n′,n′′(h(B′′
n′′)),

(ii) the map hn′,n′′ : HB′
n′ → HB′′

n′′ is one-to-one.

Let us fix a frame B1 = B(n,0,...,0) = {γ1, . . . , γn, λ1, µ1, . . . , λp, µp} and, for each
i with 2 ≤ i ≤ p + 1, put Bi = hn,n′B1 where n = (n, 0, . . . , 0) and n′ = (n −

1, 0, . . . , 0, 1, 0, . . . , 0) with 1 on the i-th place.

We specify several auxiliary automorphisms of Fn+2p.

The automorphism σi with i = 1, . . . , n− 1 is defined by its action in the frame B1

as follows:

σi(λj) = λj for j = 1, . . . , p,
σi(µj) = µj for j = 1, . . . , p,
σi(γj) = γj for j 6= i, i+ 1,
σi(γi) = γi+1,
σi(γi+1) = γ

γi+1

i .

The automorphism ξi,λ with i = 1, . . . , p is defined by its action in the frame Bi as

follows:

ξi,λ(λj,i) = λj,i for j 6= i,
ξi,λ(µj,i) = µj,i for j = 1, . . . , p,
ξi,λ(γj,i) = γj,i for j 6= n,
ξi,λ(γn,i) = γ

c1,i
n,i , where c1,i = λi,iµ

−1
i,i λ

−1
i,i γ

−1
n,i ,

ξi,λ(λi,i) = γn,iλi,i.

The automorphism ξi,µ with i = 1, . . . , p is defined by its action in the frame Bi as

follows:

ξi,µ(µj,i) = µj,i for j 6= i,
ξi,µ(λj,i) = λj,i for j = 1, . . . , p,
ξi,µ(γj,i) = γj,i for j 6= n,
ξi,µ(γn,i) = γ

c2,i
n,i , where c2,i = µi,iλ

−1
i,i µ

−1
i,i γn,i,

ξi,µ(µi,i) = γ−1
n,iµi,i.
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The automorphism ζi with i = 1, . . . , p is defined by its action in the frame Bi as
follows:

ζi(λj,i) = λj,i for j 6= i,
ζi(µj,i) = µj,i for j 6= i,
ζi(γj,i) = γj,i for j 6= n,
ζi(γn,i) = c3,i,
ζi(λi,i) = λ

c3,i
i,i ,

ζi(µi,i) = µ
c3,i
i,i ,

where c3,i = γ
[λi,i,µi,i]

n,i .

For 0 6 p1 6 p, denote by Brn,p1 the subgroup of the group Aut(Fn+2p) generated
by the elements σ1, . . . , σn−1, ξ1,λ, . . . , ξp1,λ, ξ1,µ, . . . , ξp1,µ, ζ1, . . . , ζp1. Obviously, for
p1 6 p the group Brn,p1 is a subgroup of Brn,p and the groups Brn,p1 ⊂ Aut(Fn+2p1)
and Brn,p1 ⊂ Brn,p ⊂ Aut(Fn+2p) are naturally isomorphic. The groups Brn,p will be
called algebraic braid groups.

Claim 6. The boundary ∂B1 = γ1 . . . γn[λ1, µ1] . . . [λp, µp] ∈ Fn+2p is fixed under the

action of Brn,p.

Proof. Obviously, ∂B1 is fixed under the actions of σi for i = 1, . . . , n − 1 and the
actions of ξ1,λ, ξ1,µ, ζ1, as well as ∂Bi with i > 2 is fixed under the actions of the
automorphisms ξi,λ, ξi,µ, ζi. Now, the statement follows from Claim 5. �

Let (. . . , γ′i, γ
′
i+1, . . . ) be a part of a frame B′

n that we assume to be strongly equiv-
alent to B1. Denote by σi,n an automorphism of Fn+2p such that σi,n(γ

′
i) = γ′i+1,

σi,n(γ
′
i+1) = (γ′i)

γ′
i+1, and σi,n leaves fixed all the other elements of B′

n. Similarly, if
(. . . , γ′j, λ

′
i, µ

′
i, . . . ...) is a part of a frame B′

n, then denote by ξi,n,λ, ξi,n,µ, and ζn,i the

automorphisms of Fn+2p that leave fixed all the elements of B′
n except γ′j, λ

′
i, µ

′
i and

act on γ′j, λ
′
i, µ

′
i by the same formulas as ξi,λ, ξi,µ, and ζn,i act on the elements γn, λi,

µi of the frame Bi (we just replace n by j).

Lemma 3. Let B′
n be strongly equivalent to B1. Then the automorphisms σi,n, ξi,n,λ,

ξi,n,µ, and ζn,i of F
n+2p belong to Brn,p.

Proof. Follows from Claim 5 and Lemma 2 by straightforward induction on p. �

We say that a subgroup Hn,p of Aut(Fn+2p) is admissible if:

1) Brn,p ⊆ Hn,p;
2) for each h ∈ Hn,p there is a permutation σh ∈ Sn such that h(γi) is conjugate

to γσh(i);
3) for each h ∈ Hn,p it holds the relation

h(γ1 . . . γn[λ1, µ1] . . . [λp, µp]) = γ1 . . . γn[λ1, µ1] . . . [λp, µp]

(here γ1 . . . γn = 1 if n = 0).
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Let us fix a frame B1 = {γ1, . . . , γn, λ1, µ1, . . . , λp, µp} of Fn+2p and let f : Fn+2p →
G be a homomorphism to an equipped group (G,O) such that f(γi) ∈ O (we call
such an f an equipped homomorphism to (G,O)). Put gi = f(γi) for 1 ≤ i ≤ n and
aj = f(λj), bj = f(µj) for 1 ≤ j ≤ p.

To each frame Bn strongly equivalent to B1, we associate a word Wf,Bn
in the

alphabet Z = Z(G,O) = XO ∪ YG, where XO = {xg | g ∈ O} is the alphabet we used
already in subsection 1.2 and YG = {ya,b | (a, b) ∈ G2}. We put

Wf,B1
= xg1 . . . xgnya1,b1 . . . yap,bp

and then construct the words Wf,Bn
iteratively by elementary moves: in notation

used in the definition of an elementary frame change hn′,n′′(B′
n′) = B′′

n′′ , where n′ =
(. . . , ni−1, ni, ni+1, ni+2, . . . ) and n′′ = (. . . , ni−1, ni − 1, ni+1 + 1, ni+2, . . . ) are two
adjacent partitions, the elementary moveWf,B′

n′
7→Wf,B′′

n′′
consists in the replacement

of two adjacent letters xg′
ki
ya′i,b′i in Wf,B′

n′
by ya′i,b′ix([ai,bi])−1g′

ki
[a′i,b

′
i]
(as in the definition

of elementary frame changes, ki = n1 + · · ·+ ni).
Denote by W f (G,O) the set of words which can be obtained from Wf,B1

by finite
sequences of elementary moves and put W n,p(G,O) =

⋃
f W f(G,O), where the union

is taken over all equipped homomorphisms f : Fn+2p → (G,O). We say that two
words are qf -equivalent if they belong to the same set W f(G,O).

Every admissible group Hn,p acts on W n,p(G,O). Namely, we put

h(Wf,Bn
) = Wf,B′

n
, B′

n = h(Bn).

In particular, ifWf,Bn
is obtained fromWf,B1

by a finite sequence of elementary moves,
then h(Wf,Bn

) is obtained from h(Wf,B1
) by the same sequence of elementary moves.

Let h be an element of an admissible groupHn,p. We have h(γi) = γwi

σh(i)
, h(λi) = ui,

and h(µi) = vi, where wi, ui, vi are some elements of Fn+2p. Denote by the same letters
the words wi = wi(γ1, . . . , γn, λ1, µ1, . . . , λp, µp), ui = ui(γ1, . . . , γn, λ1, µ1, . . . , λp, µp),
and vi = vi(γ1, . . . , γn, λ1, µ1, . . . , λp, µp) in letters γ1, . . . , γn, λ1, µ1, . . . , λp, µp and
their inverses representing these elements in Fn+2p. Consider elements g1, . . . , gn,
a1, b1, . . . , ap, bp of an equipped group (G,O), where g1, . . . , gn ∈ O, and let us substi-
tute gj for γj, aj for λj , bj for µj into the words wi, ui, vi and denote the corresponding
elements ofG by wi = wi(g1, . . . gn, a1, b1, . . . , ap, bp), ui = ui(g1, . . . gn, a1, b1, . . . , ap, bp),
and vi = vi(g1, . . . gn, a1, b1, . . . , ap, bp). Denote by 〈g1, . . . , gn, a1, b1, . . . , ap, bp〉 a sub-
group of G generated by the elements g1, . . . , gn, a1, b1, . . . , ap, bp ∈ G.

Claim 7. In notations and assumptions used above, we have

〈g1, . . . gn, a1, b1, . . . , ap, bp〉 = 〈gw1

σh(1)
, . . . , gwn

σh(n)
, u1, v1, · · · , up, vp〉.

Proof. It suffices to note that the subgroup 〈g1, . . . gn, a1, b1, . . . , ap, bp〉 of G is the
image in G of the group Fn+2p under the homomorphism f : Fn+2p → G given by
f(γi) = gi, f(λj) = aj, and f(µj) = bj . �
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1.5. Definition of covering semigroups. Let (G,O) be an equipped group. De-
note by FS(G,O) the free semigroup over the alphabet Z = Z(G,O) = XO ∪YG intro-
duced in subsection 1.4 and call FS(G,O) free covering semigroup over the equipped

group (G,O).
All the covering semigroups considered below are factor semigroups of FS(G,O). In

particular, this is the case of what we call the quasi-free algebraic covering semigroup

qFS(G,O) that we define as a semigroup generated by the alphabet Z and subject
to relations

xg · ya,b = ya,b · xg[a,b], g ∈ O, a, b ∈ G (5)

(in other words, the elements of qFS(G,O) are the sets of qf -equivalent words (see
subsection 1.4)).

We follow notation of Subsection 1.4. Let H = {Hn,p}{n>0,p>0} be a collection of
automorphism groups that satisfy conditions 2), 3) from the definition of admissible
automorphism groups. We associate with each h ∈ Hn,p a set Rh of relations

xg1 · . . . · xgn · ya1,b1 · . . . · yap,bp = x
g
w1
σh(1)

· . . . · x
g
wn
σh(n)

· yu1,v1 · . . . . · yup,vp (6)

taken over all (g1, . . . , gn) ∈ On and all (a1, b1, . . . , ap, bp) ∈ G2p. Denote by

RH =
⋃

n,p

(
⋃

h∈Hn,p

Rh)

and consider a factor semigroup qFS(G,O)/RH. In particular, the semigroup

S(G,O) = qFS(G,O)/{RB}

is called the strong covering semigroup, where B = {Brn,p}{n>0,p>0}. For a collection
H = {Hn,p}{n>0,p>0} of admissible automorphism groups, we denote the semigroup
qFS(G,O)/RH by SH−equiv(G,O) and call it an admissible covering semigroup.

Proposition 3. The strong covering semigroup S(G,O) is isomorphic to the semi-

group generated by the alphabet Z = Z(G,O) = XO ∪ YG and subject to relations

xg1 · xg2 = xg2 · xgg21 (7)

for any xg1 , xg2 ∈ XO, and

xg · ya,b = ya,b · xg[a,b], (8)

xg · ya,b = xgc1 · yga,b, c1 = ab−1a−1g−1, (9)

ya,b · xg = ya,g−1b · xgc2 , c2 = ba−1b−1g, (10)

xg · ya,b = xg[a,b] · yag[a,b] ,bg[a,b] (11)

for any xg ∈ XO and any ya,b ∈ YG.
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Proof. Follows from Claims 5, 6 and Lemmas 2, 3. �

Since every admissible automorphism group Hn,p contains the group Brn,p, for
any collection H of admissible automorphism groups there is a natural epimorphism
rH−equiv : S(G,O) → SH−equiv(G,O) of semigroups.

The semigroup S(Sd,Sd\{1}) that we denote by V Sd will be called a strong algebraic

versal degree d covering semigroup. Note that an embedding i : G →֒ Sd of a group
G into Sd induces the semigroup embedding of S(G,O) into V Sd.

Claim 8. The map α : Z → G given by α(xg) = g for xg ∈ XO and α(ya,b) = [a, b]
for ya,b ∈ YG defines a homomorphism SH−equiv(G,O) → G.

Proof. Straightforward inspection of relations (5) and (6) shows that for each of these
relations the product of the images of the left-side factors is equal in G to the product
of the right-side factors. �

Further on we denote this homomorphism SH−equiv(G,O) → G by αG,H−equiv, or
simply αG, and call it the product homomorphism.

The action ρ of the group G on the set Z, given by

xg1 ∈ XO 7→ ρ(g)(xg1) = xgg1g−1 ∈ XO,

ya,b ∈ YG 7→ ρ(g)(ya,b) = ygag−1,gbg−1 ∈ YG,

defines a homomorphism ρS : G → Aut(S(G,O)) and homomorphisms ρH−equiv :
G → Aut(SH−equiv(G,O)). Obviously, these actions are compatible with the homo-
morphism rH−equiv.

If it does not lead to a confusion, we replace the notation SH−equiv(G,O) by S(G,O)
and then denote the both homomorphisms ρS and ρH−equiv simply by ρ. The action

ρ(g) on S(G,O) is called the simultaneous conjugation by g ∈ G. Put λ(g) = ρ(g−1)
and λS = λ ◦ αG, ρS = ρ ◦ αG.

Whatever is an admissible covering semigroup SH−equiv(G,O) = S(G,O), the col-

lection (S(G,O), G, αG, ρ) is a semigroup over the group G and the embedding i :
XO →֒ Z defines an embedding i∗ : S(G,O) →֒ S(G,O), which is a semigroup homo-
morphism over G. Note also that epimorphisms rH−equiv : S(G,O) → SH−equiv(G,O)
are also semigroup homomorphisms over G.

Using relations (7) – (11), any element s ∈ S(G,O) can be written in a so called
reduced form, s = s1 · s2, where s1 ∈ S(G,O) and s2 = ya1,b1 · . . . · yap,bp for some
a1, b1, . . . , ap, bp ∈ G. We put τ(s) = τ(s1) and g(s) = p and call them type of s and

genus of s, respectively. It is easy to see that the type and the genus of s ∈ S(G,O)
are well defined, that is, τ(s) and g(s) do not depend on the reduction of s to a
reduced form s = s1 · s2.

Let s1 · s2 with s1 = xg1 · . . . · xgn and s2 = ya,b · . . . · yak,bk be a reduced form

of an element s = s1 · s2 ∈ S(G,O). As it follows from Claim 7, the subgroup of G
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generated by g1, . . . , gn, a1, b1, . . . , ak, bk does not depend on the choice of a reduced
form of s. In what follows, we denote this subgroup by Gs.

As in the case of factorization semigroups, for subgroups H1 and H2 of a group G,
we put

S(G,O)H1 = {s ∈ S(G,O) | Gs = H1},

S(G,O)H2 = {s ∈ S(G,O) | α(s) ∈ H2},

and S(G,O)H2
H1

= S(G,O)H2 ∩ S(G,O)H1.

Let GΓ = (G̃, Õ) be the C-group equivalent to (G,O) (see subsection 1.3). For

any set RH of admissible relations, the epimorphism β = β(G,O) : (G̃, Õ) → (G,O) of

equipped groups defines an epimorphism β∗ = β(G,O)∗ : S(G̃, Õ) = SH−equiv(G̃, Õ) →

S(G,O) = SH−equiv(G,O) over groups.

Claim 9. The restriction of β∗ to the subsemigroup S(G̃, Õ) ⊂ S(G̃, Õ) coincides with

the isomorphism of semigroups S(G̃, Õ) and S(G,O) ⊂ S(G,O) (defined in subsection

1.3).

Proof. Obvious. �

1.6. Solvability of some equations in strong covering semigroups. In this
subsection, we will assume that in S(G,O) there is the unity, 1 ∈ S(G,O) (we add it
into S(G,O)).

Let s1, s2, s3 ∈ S(G,O). We say that an equation

s1 = s2 · z · s3 (12)

is solvable in S(G,O) ⊂ S(G,O) if there is an element s ∈ S(G,O) such that s1 =
s2 · s · s3.

Note that s is a solution of equation (12) if and only if the following holds: if we
write s, s1, s2, s3 as products of generators of S(G,O), then there is a finite sequence of
elementary transformations transforming the factorization of s1 into the factorization
of s2 · s · s3, here an elementary transformation means a change of some pair of two
neighboring factors into another one according to the one of relations (7) – (11)
(reading either from the left to the right or from the right to the left).

Consider four elements s1, . . . , s4 of S(G,O) and let us fix their presentations as
products of generators of S(G,O). Let S be a subset of S(G,O) the elements of which
have a fixed type. We say that the equations

s1 · s · s2 = s3 · z · s4, (13)

where s ∈ S, are universally solvable if, first, there is a solution s ∈ S of (13) for any s
and, second, there is a finite sequence of elementary transformations which satisfy the
following property: for any presentation of s as the product of generators of S(G,O)
there is a presentation of a solution s as the product of generators such that this
sequence of elementary transformations transforms the factorization of s1 · s · s2 into
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the one of s3 · s · s4. The element s together with its factorization mentioned above

will be called the universal solution (for s and its factorization) of equation (13).

Claim 10. For any s ∈ S(G,O) of any fixed type and any a, b ∈ G each of the

following equations

s · ya,b = z · yα(s)a,b, (14)

ya,b · s = ya,(α(s))−1b · z, (15)

s · ya,b = z · ya,(α(s)−1)[a,b]b (16)

is universally solvable in S(G,O).

Proof. Let s = xg1 · . . . · xgn. If n = 1, then a universal solvability of equation (14)
follows from relation (9). Assume that equation (14) is universally solvable for any s

of length n− 1 and let us write an element s of length n in the form: s = s1 ·xgn. We

have

s · ya,b = s1 · xgn · ya,b = s1 · z1 · ygna,b = ρS(s1)(z1) · s1 · ygna,b,

where z1 is an universal solution of equation xgn · ya,b = z · ygna,b. By assumption, for

some z2 we have: s1 · ygna,b = z2 · yα(s1)ga,b. Therefore

s · ya,b = ρS(s1)(z1) · s1 · ygna,b = ρS(s1)(z1) · z2 · yα(s1)gna,b = (ρS(s1)(z1) · z2) · yα(s)a,b,

that is, equation (14) is universally solvable always.

The proof of universal solvability of equation (15) is similar to one for equation

(14). Only we must use relation (10) instead of relation (9).
To prove the universal solvability of equation (16), note that α(λ([a, b])(s)) =

(α(s))[a,b]. Therefore, by relation (8), we have

s · ya,b = ya,b · λ([a, b])(s) = ya,(α(s)−1)[a,b]b · z1,

where z1 is a universal solution of equation ya,b ·λ([a, b])(s) = ya,(α(s)−1)[a,b]b ·z. Now to
prove the universal solvability of equation (16), it suffices several times to use relation

(8). �

The following proposition is a generalization of Main Lemma 2.1 in [10].

Proposition 4. Let O ⊂ G be a finite set. Then for any

h ∈ 〈g1, . . . , gn, a1, b1, . . . , ak, bk〉

and for any sg−1 ∈ S(G,O) such that α(sg−1) = g−1 the following equation

xg1 · . . . · xgn · xg · sg−1 · ya1,b1 · . . . · yak,bk = xg1 · . . . · xgn · xgh · z · ya1,b1 · . . . · yak,bk

is solvable in S(G,O).
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Proof. For s1, s2 ∈ S(G,O) denote by G(s1, s2) the subset of G such that h ∈ G(s1, s2)
if and only if the equations

s1 · xg · sg−1 · s2 = s1 · xgh · z · s2 (17)

are universally solvable in S(G,O) for each g ∈ O ⊂ G and any sg−1 ∈ S(G,O) of
fixed type and such that α(sg−1) = g−1. Note that if z1 is a solution of equation (17),
then α(z1) = (gh)−1.

Claim 11. Let O ⊂ G be a finite set. Then for any s1, s2 ∈ S(G,O) the set G(s1, s2)
is a subgroup of G.

Proof. Let us show that if h ∈ G(s1, s2), then h
−1 ∈ G(s1, s2).

Let z1 be an universal solution of equation (17). If we apply the inverse sequence of
the sequence of elementary transformations giving the universe resolution of equation
(17), then it is easy to see that sg−1 is the universal solution of the equation

s1 · xg1 · z1 · s2 = s1 · xgh11
· z · s2,

where g1 = gh. For any h ∈ G the conjugation of the elements of S(G,O) by h
is a bijection, and for each g ∈ G the set of different factorizations of elements
s ∈ S(G,O) of fixed type and such that α(s) = g−1 is finite. Therefore h−1 ∈ G(s1, s2)
if h ∈ G(s1, s2).

Let us show that if h1, h2 ∈ G(s1, s2), then h1h2 ∈ G(s1, s2). It is easy to see that
if z1 is an universal solution of the equation

s1 · xg · sg−1 · s2 = s1 · xgh1 · z · s2

and if z2 is an universal solution of the equation

s1 · xgh1 · z1 · s2 = s1 · x(gh1 )h2 · z · s2,

then z2 is an universal solution of the equation

s1 · xg · sg−1 · s2 = s1 · xgh1h2 · z · s2. �

Claim 12. For any s1 = s′1 · s
′′
1, s2 = s′2 · s

′′
2 ∈ S(G,O), we have G(s′′1, s

′
2) ⊂ G(s1, s2).

Proof. Obvious. �

Claim 13. For any h1, . . . , hn ∈ O, we have 〈h1, . . . , hn〉 ⊂ G(xh1 · . . . . · xhn
, 1).

Proof. It easily follows from Claim 11 and from the following equalities:

xh · xg · sg−1 = x
g(h

−1) · ρ(h)(sg−1) · xh = xh · xg(h−1) · ρ(h)(sg−1),

since x
g(h

−1) · ρ(h)(sg−1) · xh = ρS(xg(h−1) · ρ(h)(sg−1))(xh) · xg(h−1) · ρ(h)(sg−1) and

α(x
g(h

−1) · ρ(h)(sg−1)) = 1. �

Claim 14. For any a, b ∈ G, we have ab−1a−1 ∈ G(1, ya,b).



COVERING SEMIGROUPS 17

Proof. By Claim 10, we have

xg · sg−1 · ya,b = xg · z1 · yg−1a,b = ρ(g)(z1) · xg · yg−1a,b,

where z1 is an universal solution of equation sg−1 · ya,b = z · yg−1a,b. By relation (9),

xg · yg−1a,b = xgg−1aba−1ggg−1ab−1a−1 · ya,b = x
gab

−1a−1 · ya,b.

Therefore

xg · sg−1 · ya,b = ρ(g)(z1) · xg · yg−1a,b = ρ(g)(z1) · xgab−1a−1 · ya,b,

that is, ab−1a−1 ∈ G(1, ya,b). �

Claim 15. For any a, b ∈ G, we have aba−1b−1a−1 ∈ G(1, ya,b).

Proof. Applying ln(xg · sg−1) times relation (8) and after that applying ln(sg−1) times

relation (7), we have

xg · sg−1 · ya,b = ya,b · xg[a,b] · z1 = ya,b · z2 · xg[a,b] ,

where z1 = λ([a, b])(sg−1) and z2 = ρ(g[a,b])(z1). It is easy to see that α(z2) = (g[a,b])−1.

By Claim 10 and relation (10),

ya,b · z2 · xg[a,b] = z3 · ya,g[a,b]b · xg[a,b] = z3 · ya,b · xg[a,b]ba−1b−1 ,

where z3 is an universal solution of equation ya,b · z2 = z · ya,g[a,b]b.
Applying relation (8), we obtain

z3 · ya,b · xg[a,b]ba−1b−1 = z3 · xg[a,b]ba−1b−1[b,a] · ya,b = z3 · xgaba−1b−1a−1 · ya,b

and to complete the proof it suffices to use the relation

z3 · xgaba−1b−1a−1 = x
gaba

−1b−1a−1 · λ(gaba
−1b−1a−1

)(z3). �

Claim 16. For any a, b ∈ G, we have a, b ∈ G(1, ya,b).

Proof. By Claims 14 and 15, the elements ab−1a−1 and aba−1b−1a−1 belong toG(1, ya,b).

It follows from Claim 11 that

(ab−1a−1)(aba−1b−1a−1) = (ab)−1 ∈ G(1, ya,b).

Therefore ab ∈ G(1, ya,b) and hence a = (ab−1a−1)(ab) ∈ G(1, ya,b). Applying one

more Claim 11 to a and ab, we obtain that b ∈ G(1, ya,b). �

Claim 17. For any a1, b1, . . . , ak, bk ∈ G, we have

〈a1, b1, . . . , ak, bk〉 ⊂ G(1, ya1,b1 · . . . · yak,bk).
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Proof. Let us use induction on k. In the case k = 1, it is Claim 16. Assume that for
some k − 1 Claim is true. Therefore, by Claim 12,

〈a1, b1, . . . , ak−1, bk−1〉 ⊂ G(1, ya1,b1 · . . . · yak,bk).

Denote by ut = [a1, b1] . . . [at, bt]. We have

xg ·sg−1 ·ya1,b1 · . . . ·yak−1,bk−1
·yak,bk = ya1,b1 · . . . ·yak−1,bk−1

·xguk−1 ·λ(uk−1)(sg−1) ·yak ,bk .

Denote by z1 = λ(uk−1)(sg−1) and let zc (see Claim 16) be an universal solution of
equation xguk−1 · z1 · yak,bk = xguk−1c · zc · yak ,bk , where c = ak or bk. We have

xg · sg−1 · ya1,b1 · . . . · yak,bk =
ya1,b1 · . . . · yak−1,bk−1

· xguk−1c · zc · yak,bk =
x
gc

uk−1 · λ(uk−1)(zc) · ya1,b1 · . . . · yak−1,bk−1
· yak,bk .

Now, since by assumption, uk−1 ∈ G(1, ya1,b1 · . . . · yak,bk), we obtain that the element
c ∈ G(1, ya1,b1 · . . . · yak,bk). �

Now the proof of Proposition 4 easily follows from Claims 11 – 17. �

Proposition 5. Let (G,O) be an equipped finite group such that the elements of

O = C1 ⊔ · · · ⊔ Cm generate the group G. Denote by ni the number of elements of

the conjugacy class Ci and by pi the order of elements of Ci. Let s1 ∈ S(G,O) be

such that τi(s1) > nipi for all i, 1 6 i 6 m, and s2 = ya1,b1 · . . . · yak,bk be such that

s1 · s2 ∈ S(G,O)G. Then the equation

s1 · s2 = z · (y1,1)
k

is solvable in S(G,O).

Proof. Let a1 = g−1
1 . . . g−1

n , where g1, . . . , gn ∈ O, and let s1 = xh1 · . . . . · xhN
. Let

g1 ∈ Ci. Since τi(s1) > nipi, among the factors xh1 , . . . , xhN
there are at least pi + 1

factors with the same hj ∈ Ci. Moving pi of these factors to the right (using relation
(7)), we obtain that

s1 · s2 = s′1 · xhj
· (xhj

)pi−1 · s2

for some s′1 ∈ S(G,O) such that s′1 · s2 ∈ S(G,O)G.
Applying Proposition 4, we have

s′1 · xhj
· (xhj

)pi−1 · s2 = s′1 · s
′ · xg1 · s2

for some s′ ∈ S(G,O) such that τ(s′) = τ((xhj
)pi−1) and α(s′) = g−1

1 .
By relation (9), we have

s′1 · s
′ · xg1 · s2 = s′1 · s

′ · xg1 · ya1,b1 · . . . · yak ,bk = s′1 · s
′ · xg′1 · ya′1,b1 · . . . · yak,bk ,

where g′1 is an element conjugate to g1 and a′1 = g−1
2 . . . g−1

n .
Note that s̃1 = s′1 · s′ · xg′1 and s̃2 = ya′1,b1 · . . . · yak,bk satisfy all conditions of

Proposition 5. Therefore, by induction on n, we obtain that

s1 · s2 = s1 · (y1,b1 · ya2,b2 · . . . · yak,bk)
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for some s1 which together with s2 = y1,b1 · ya2,b2 · . . . · yak,bk satisfies all conditions of
Proposition 5.

The same arguments (only instead of relation (9) we must use relation (10)) give
that

s1 · s2 = s̃1 · (y1,1 · ya2,b2 · . . . · yak,bk)

for some s̃1 which together with s̃2 = ya2,b2 · . . . · yak,bk satisfies all conditions of
Proposition 5.

Now to complete the proof of Proposition 5, it suffices to note that y1,1 commutes
with any element s ∈ S(G,O) (relation (8)) and to use induction on k. �

1.7. On the number of solutions of equation α(z) = g. Let (G,O) be an
equipped group such that the elements of O generate the group G, O = C1⊔· · ·⊔Cm

decomposition into a disjoint union of conjugacy classes of G. In this subsection, we
investigate the following problem: for fixed type t ∈ Zm

>0, fixed genus p and given ele-

ment h ∈ G to estimate the number of solutions in an admissible covering semigroup

S(G,O)G of the equation αG(z) = h under the restrictions τ(z) = t and g(z) = p.
In [14], this problem was solved in the case of p = 0 and t = (t1, . . . , tm) such that

all ti are big enough (see Theorems 4 and 5). In this subsection we generalize these
results to the case of arbitrary genus, namely, we prove

Theorem 6. Let S(G,O) = SH−equiv(G,O) be an admissible covering semigroup over

an equipped finite group (G,O), O = C1 ⊔ · · · ⊔Cm. Then there is a constant T1 ∈ N

such that if for an element s1 ∈ S(G,O)G the i-th type τi(s1) > T1 for all i = 1, . . . , m,

then there are a(G,O) elements s1, . . . , sa(G,O)
∈ S(G,O)G such that

(1) si 6= sj for 1 6 i < j 6 a(G,O);

(2) τ(si) = τ(s1) for 1 6 i 6 a(G,O);

(3) g(si) = g(s1) for 1 6 i 6 a(G,O);

(4) αG(si) = αG(s1) for 1 6 i 6 a(G,O);

(5) if s ∈ S(G,O)G is such that τ(s) = τ(s1), g(s) = g(s1), and αG(s) = αG(s1),
then s = si for some i, 1 6 i 6 a(G,O).

Proof. Let p be the genus of s1 and T be a constant the existence of which is claimed
in Theorem 4. Without loss of generality, we can assume that T > max16i6m nipi,
where ni is the number of elements of the conjugacy class Ci and pi is the order of
elements of Ci. By Proposition 5 (and since rH−equiv is an epimorphism), the element
s1 can be written in the form s1 = s1 · (y1,1)

p. By Theorem 4, there are exactly
a(G,O) different elements s1, . . . , sa(G,O)

∈ S(G,O)G satisfying conditions (1) – (4) of
Theorem 6.

Consider the elements si = si · (y1,1)
p, 1 6 i 6 a(G,O). By Proposition 5 and

Theorem 4, they satisfy conditions (2) – (5) of Theorem 6. Let us show that they
also satisfy condition (1) of Theorem 6. Assume that for some i 6= j we have si = sj,
that is, if we write si and sj as products of generators xg, g ∈ O, then there is a
finite sequens Tr of elementary transformations (see subsection 1.6) transforming the
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factorization of si into the factorization of sj. By Claim 9, the selected factorizations

alow us to lift the element si into S(G̃, Õ) = SH−equiv(G̃, Õ) (that is, to consider

an element s̃i ∈ S(G̃, Õ) with the same factorization as the one of si), where GΓ =

(G̃, Õ) is the C-group equivalent to (G,O). Let us apply the same sequence Tr of
elementary transformations to the element s̃i. As a result we obtain an element

s̃j = sj · (ya1,b1 · . . . · yap,bp) = s̃i such that al, bl ∈ ker β(G,O) ⊂ Z(G̃) for 1 6 l 6 p. But
it is impossible, since in this case we have αG̃(yal,bl) = 1 for 1 6 l 6 p and therefore
by Remark 1, we must have α

G̃
(s̃i) 6= α

G̃
(s̃j). �

Theorem 7. Let G be a finite group and O′ ⊂ O be two its equipments such that
the elements of O′ = C1 ⊔ · · · ⊔ Ck generate the group G. Then there is a constant

T = TO′ such that if for an element s1 ∈ S(G,O)G its i-th type τi(s1) > T for all

i = 1, . . . , k, then there are not more than a(G,O′) elements s1, . . . , sn ∈ S(G,O)G such
that for 1 6 i < j 6 n

(i) si 6= sj;
(ii) τ(si) = τ(s1);
(iii) αG(si) = αG(s1),
(iv) g(si) = g(s1),

where a(G,O′) is the ambiguity index of (G,O′).

Proof. It is similar to the proof of Theorem 6. �

Corollary 1. Let C1 be a conjugacy class of an odd permutation σ1 ∈ Sd such that
σ1 leaves fixed at least two elements. Then in the case when C1 is contained in an
equipment O = C1 ⊔ · · · ⊔ Cm of Sd, there is a constant T = TC1 such that for any
σ ∈ Sd, any fixed integer p > 0, and any t = (t1, . . . , tm) ∈ Zm

>0 such that t1 > T the
equation

αSd
(z) = σ (18)

has in each covering semigroup S(Sd, O) at most one solution s satisfying conditions
g(s) = p and τ(s) = t. Under assumption t1 > T , the existence of solution of equation
(18) does not depend on p and depends only on t.

Proof. It follows from Theorem 7 and the main result of [13]. �

Let S(G,O) be an admissible covering semigroup over an equipped finite group
(G,O), O = C1 ⊔ · · · ⊔ Cm, and let T = (t1, . . . , tm) ∈ Z>o. Denote by

S(G,O)>T = {s ∈ S(G,O) | τi(s) > ti}

a subsemigroup of S(G,O). By Theorem 6, we have

Corollary 2. For any equipped finite group (G,O), O = C1 ⊔ · · · ⊔ Cm, there is a

constant T = (t1, . . . , tm) ∈ Z>o such that the restrictions rH−equiv : S(G,O)G>T →
SH−equiv(G,O)

G
>T of the epimorphisms rH−equiv : S(G,O) → SH−equiv(G,O) to the

subsemigroup S(G,O)G>T are isomorphisms for any set RH of admissible relations.
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2. Geometric semigroups of coverings

2.1. Monodromy encoding of ramified coverings. To describe ramified cover-
ings of a given connected manifold M (in most cases, M will be a connected compact
oriented surface with one hole and a base point on the boundary) we use a traditional
monodromy encoding of non-ramified coverings and the unicity of manifold ramified
completions.

Namely, given a non-ramified, possibly disconnected, degree d covering π : M̃ → M
over a connected manifold M with a base point q ∈ M , the lifts of a loop at q form
a set of d paths in M̃ starting each at a different point of π−1(q) and, thus, they
give rise to a permutation of the set π−1(q). This permutation depends only on the
homotopy type of the loop and in this way one obtains an encoding of the covering
by a homomorphism from π1(M, q) to the permutation group of π−1(q). In particular,
if the covering π is equipped with a marking ν : Id = [1, . . . , d] → π−1(q) it gives a
well defined homomorphism π1(M, q) → Sd.

The foliowing Proposition is well known and straightforward.

Proposition 6. Two non-ramified marked coverings over the same based space (M, q)
are isomorphic as marked coverings if and only if they define the same homomorphism
π1(M, q) → Sd. If an isomorphism exists, it is unique; equivalently, marked coverings
have no non-trivial automorphisms.

Each homomorphism π1(M, q) → Sd corresponds to a certain non-ramified marked
degree d covering of M . The covering space is connected if and only if the action of
π1(M, q) on π−1(q) is transitive. The orbits of the action correspond canonically to

connected components of the covering space.

Manifold completions of non-ramified coverings by ramified ones are most trans-
parent in low dimensions.

The following result is also well known and straightforward; it can be found, for
example, in [5].

Proposition 7. Let (M, q) be a based two-dimensional manifold and B = {P1, . . . , Pn}
a finite subset ofM disjoint from q and ∂M . Then each marked non-ramified covering

of (U, q) with U =M \B has one and only one ramified completion M̃ → M .

2.2. Surfaces with a hole and their skeletons. Our main building blocks are
connected compact oriented surfaces (2-dimensional manifolds) with one hole and one
marked point on the boundary. We equip them, in addition, with a semi-skeleton,
skeleton, or caudate skeleton.

We define a semi-skeleton of a connected compact oriented 2-dimensional manifold
(with one hole) to be the union of disjoint embedded bouquets of two oriented circles
with a property that the complement of the union is homeomorphic to a punctured
disc. Clearly, the number of connected components of a semi-skeleton is equal to the
genus of the surface. We distinguish the two circles of a bouquet that represents a
connected component of a semi-skeleton by means of intersection index, namely, we
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speak on λ- and µ-circles in a bouquet Cλ ∨ Cµ by respecting the convention that
Cλ · Cµ = −1 (and not 1).

Given such a triple (F, q, S∞), where S∞ is a semi-skeleton of a surface F with
a fixed point q ∈ ∂F , we can represent it by an open-eyes plane diagram, that is
to draw a disc with a marked point on its boundary and p = g(F ) holes inside the
disc, and trace the standard 4-gone identification scheme on the boundary of each
hole, see the left drawing on Figure 1; the orientation of F should be induced by the
counter-clock wise orientation of the disc. When it happens to be more convenient
and transparent, we use also another, equivalent, presentation and draw a disc with
”pince-nez”, that is p pairs of holes with ”bridges”, see the right drawing on Figure
1 (there, the λ-circles are a and c, while b and d are the µ-circles).

Open-eyes plane diagrams of a given triple (F, q, S∞) are defined up to orientation
preserving (stratified) homeomorphisms of the disc respecting the marked point and
the orientation of the boundary identification strata. Converse statement is also true,
an open-eyes plane diagram defines the triple (F, q, S∞) up to orientation preserving
homeomorphism (of triples). A similar statement is also true for diagrams with pince-
nez, but as to the former one, one should take also into account the possibility for
each handle to replace its λ-pince-nez presentation by the µ-pince-nez one, and vice
versa.

A skeleton of a genus p connected compact oriented 2-dimensional manifold with
one hole is, by definition, a semi-skeleton enhanced by a system of pathes that join
the marked point q ∈ ∂F with the components of the semi-skeleton, the pathes are
called strings, they are taken disjoint and each of the p strings is chosen in such a
way that in the disc model with p holes the string riches its hole at the vertex with
outgoing λ- and µ-edges.

Now, let us assume that F is equipped with a finite subset B ⊂ F \ ∂F (later on,
such a subset B is appearing as the branch locus of a finite cover). In such a case, by
a caudate skeleton we understand a triple (F, q, Scdt) where Scdt is a skeleton disjoint
from B and extended by a system of tails, that is a collection of n = |B| simple paths
connecting the points of B one-by-one with q, the tails being chosen disjoint from
each other and from the skeleton. In particular, Scdt is homeomorphic to the wedge
sum of a skeleton with n intervals.

The above notion of open-eyes plane diagrams extends to triples (F, q, S), where
S is either a skeleton or caudate skeleton of F . These diagrams consist of p = g(F )
holes or pince-nez in a disc, a marked point on the boundary of the disc, and a system
of strings, which is enhanced by a system of tails in the case of caudate skeletons,
see Figure 2. Open-eyes plane diagrams of surfaces with a skeleton or, respectively,
caudate skeleton are defined up to isotopies; and conversely the triple (F, q, S) is
defined up to orientation preserving homeomorphisms of triples by its open-eyes plane
diagram.
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Figure 1. Plane diagrams of a genus-2 surface with its semi-skeleton.
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In the case of skeletons, and up to isotopy, for a given genus p there is one and only
one open-eyes plane diagram. We denote this diagram by ∆p and write (Πp, q,Σp) to
denote the triple that this diagram defines.

If p = 0, then ∆0 = Π0 is just the standard disc and Σ0 is reduced to q (the marked
point on the boundary of the disc).

If p > 0, then the skeleton Σp contains a non-trivial semi-skeleton, which we denote
by Σ∞

p . A choice of a skeleton induces in a natural way an ordering on the set of the
components of the semi-skeleton. Namely, we fix the ordering induced by the counter-
clockwise order on the strings of the skeleton, see Figure 3, and denote the strings
of Σp by T1, . . . , Tp following this, counter-clockwise, order. Note that an ordering of
the components of Σ∞

p is equivalent to a choice of the skeleton up to isotopy.
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Figure 2. Plane diagrams of a genus-2 surface with its caudate skeleton.
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Note also that a skeleton S being given, one has a canonical choice of geometric free
generators λ1, µ1, . . . , λp, µp of the fundamental group π1(F, q), where λi, 1 ≤ i ≤ p,
(respectively, µi) are represented by the loops Ti⋆Cλ,i⋆T

−1
i (respectively, Ti⋆Cµ,i⋆T

−1
i );

the numbering respects the above ordering of the strings.
For given genus p ≥ 1 and number n ≥ 1 of tails, the number of isotopy classes

of plane diagrams of surfaces with caudate skeletons is greater than 1 and equal to
the binomial coefficient Cn

p+n. Indeed, similar to the case of skeletons, a choice of
a caudate skeleton induces a counter-clock wise ordering on the the set of tails and
strings (or, equivalently, on the set that consist of points of B and the connected
components of the semi-skeleton). Conversely, the counter clock-wise ordering of the
set of tails and strings determines the diagram up to isotopy.

Thus, a caudate skeleton Scut being given, one gets not only a canonical choice of
geometric free generators λ1, µ1, . . . , λp, µp of the fundamental group π1(F, q), but also
an extension of it to a set of geometric free generators of π1(F \B, q) by a sequence
γ1, . . . , γn represented by the loops Γi ⋆Ci ⋆Γ

−1
i , where Ci denotes a small loop around

a point bi of B and Γi a portion of the tail going to bi. Note that this whole set of
generators of π1(F \B, q) is equipped with counter clock-wise ordering.

2.3. Free semigroups of marked coverings. We continuer to consider connected
compact oriented 2-dimensional manifolds F with one hole and a marked point q ∈ ∂F
and turn to a study of their ramified finite degree coverings f : E → F . Let us recall
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Figure 3. Strings ordered counter-clock wise.
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once more that we allow disconnected covering spaces, but forbid ramifications at

the boundary of F . Our aim is to organize such coverings of a fixed degree d in a
semigroup.

To achieve this goal we equip each covering with a marking, that is a numbering ν
by 1, . . . , d of the elements of f−1(q), and consider the coverings up to certain natural
equivalence relations. Different choices of the equivalence relations lead to different
semigroups.

We start from introducing the free geometric degree d covering semigroup, which
we denote by GFSd. To build such a semigroup, we equip the base F of each marked
covering (f : E → F, ν, q) with a caudate skeleton Scdt whose tails end at the branch
points of the covering. The elements of GFSd are the triples (f : E → F, ν, Scdt)
considered up to homeomorphisms of coverings respecting all the ingredients; more
precisely, two triples (f1 : E1 → F1, ν1, S

cdt
1 ) and (f2 : E2 → F2, ν2, S

cdt
2 ) are equivalent

if there are homeomorphisms φ : E1 → E2 and ψ : F1 → F2 such that f2 ◦ φ = ψ ◦ f1,
φ ◦ ν1 = ν2, and ψ(S

cdt
1 ) = Scdt

2 .
The semigroup structure on GFSd is defined in a similar way that was used in

[12] in the case of genus zero. Namely, the product h = f · g of two elements of
GFSd represented by marked ramified coverings (f : E1 → F1, ν1, S

cdt
1 ) and (g : E2 →

F2, ν2, S
cdt
2 ) (by abuse of notation we denote by the same symbols both the elements
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Figure 4. Plane diagram of a semigroup product.

= ·
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of GFSd and the underlying coverings) is given by the marked ramified covering
(h : E → F, ν, Scdt

1 ∪ Scdt
2 ), where F and h : E → F are obtained, first downstairs, by

gluing F1 with F2 along an arc of ∂F2 issued from q2 in the counter-clockwise direction
and an arc of ∂F1 issued from q1 in the clockwise direction, (see Figure 4) and, second
upstairs, by a gluing of f and g that preserves the markings over q = q1 = q2. This
operation respects the equivalence relation.

We equip GFSd with a map α : GFSd → Sd that evaluates the boundary mon-
odromy (taken in the direction of boundary orientation). As it follows from the
gluing procedure, this map is a homomorphism. Furthermore, the symmetric group
Sd naturally acts on GFSd by renumbering the points of the fibre f−1(q). Thus, GFSd

becomes in a canonical way a semigroup over Sd.
For each g ∈ Sd denote by Xg ∈ GFSd the element represented by a ramified

covering f : E → Π0 with one branch point, a marked point q ∈ ∂Π0, and the
monodromy α(Xg) equal to g. Such an element is defined uniquely, as it follows, for
example, from Proposition 7.

Next, consider the torus Π1 with a hole, a marked point q ∈ ∂Π1 and a skeleton Σ1

that includes the semi-skeleton Σ∞
1 and the string T1. Pick a pair a, b ∈ Sd and denote

by Ya,b ∈ GFSd the element represented by a non-ramified covering f : E → Π1 with
monodromy a along the loop T1 ⋆Cλ ⋆T

−1
1 and b along the loop T1 ⋆Cµ ⋆T

−1
1 . Such an



COVERING SEMIGROUPS 27

element is also defined uniquely, as it follows, for example, from Proposition 6. Note
that α(Ya,b) = aba−1b−1.

Proposition 8. The semigroup GFSd is a free semigroup over the group Sd, its set

of free generators is formed by Xg, g ∈ Sd \ {1}, and Ya,b, a, b ∈ Sd.

Proof. Follows from the following isotopy unicity: for a surface with a given caudate

skeleton, its open-eyes caudate skeleton plane diagram (Σcdt
p , q) ⊂ (∆p, q) is unique

up to isotopies in (∆p, q). �

As a set, the semigroup GFSd splits in a disjoint union of subsets, (GFSd)n,p, that

correspond to coverings with a given number n of branch points over surfaces of given
genus p, or, saying in another way, to words with n letters Xg and p letters Ya,b.

2.4. Very strong semigroup of marked coverings. As a next step, we replace
caudate skeletons by skeletons, that is forget the tails going to the branch points,
and thus construct another semigroup over Sd replacing everywhere in the above
construction of GFSd the caudate skeletons by skeletons. We call this new semigroup
the very strong semigroup of degree d marked coverings and denote it by GVSd.

The forgetful map GFSd → GVSd consisting in replacing a caudate skeleton by the
skeleton is a well defined homomorphism of semigroups over Sd. Let us denote by Kh: us
the same symbols Xg, Ya,b the images in GVSd of the above free generators Xg, Ya,b ∈
GFSd.

Proposition 9. The elements Xg, g ∈ Sd \ {1}, and Ya,b, a, b ∈ Sd, form a set of

generators of the semigroup GVSd. They satisfy the relations

Xg · Ya,b = Ya,b ·Xg[a,b] (19)

and

Xg1 ·Xg2 = Xg2 · Xg
g2
1

(20)

for any g1, g2, a, b ∈ Sd. These are the defining relations of GVSd.

Proof. For a surface with a given skeleton and branch locus, an enhancing of its
open-eyes skeleton plane diagram (Σp, q) ⊂ (∆p, q) to an open-eyes caudate skeleton
diagram (Σcdt

p , q) ⊂ (∆p, q) with a given ordering of strings and tails is unique up to
isotopies of (Σp ∪B, q) in (∆p, q). The relation (19) reflects the elementary change of

ordering (see Figure 5), and (20) the standard Artin-Hurwitz half-twist of two points
of B in ∆p \ Σp (cf., [14]). �

Similar to GFSd, the semigroup GVSd splits as a set in a disjoint union of subsets,
(GVSd)n,p, that correspond to coverings with a given number n of branch points over

surfaces of given genus p.
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Figure 5. Plane diagram of an elementary change of ordering.

=

b b

b b

2.5. Strong versal geometric covering semigroups. These semigroups are most
close to the classical theory of Hurwitz spaces.

We equip the base of each covering with a skeleton and consider the triples (f1 :
E1 → F1, ν1, S1) and (f2 : E2 → F2, ν2, S2), where S1 and S2 are skeletons of F1 and
F2, respectively, up to the equivalence generated by two binary relations: first, up to
isotopy of coverings with fixed base, marking, and skeleton, but moving branch points
(which can move, in particular, through the skeleton); second, up to homeomorphisms
respecting all the ingredients, that is up to homeomorphisms φ : E1 → E2 and
ψ : F1 → F2 such that f2 ◦ φ = ψ ◦ f1, φ ◦ ν1 = ν2, and ψ(S∞

1 ) = S∞
2 . The only,

but major, difference with respect to the previous very strong covering semigroups is
that we authorize the branch points to cross the skeleton.

Taking into account this additional equivalence relation, we obtain another semi-
group over Sd, which we denote by GSd and call the strong versal geometric degree
d covering semigroup. The quotient map GVSd → GSd is a homomorphism of semi-
groups over Sd and, set theoretically, it splits in quotient maps (GVSd)n,p → (GSd)n,p.

For each n and p, let us fix the surface F (of genus p) and its skeleton S, and place
the branch locus B (of cardinality n) to be disjoint from S. Then the braid group on
n strands, that is the group Brn(F, ∂F ) of isotopy classes of orientation preserving
identical on the boundary self-homeomorphisms of (F,B), becomes to act naturally
on (GVSd)n,p, and, as it follows also directly from the definitions, the fibers of the
quotient map (GVSd)n,p → (GSd)n,p are the orbits of this action.

Let us recall that, on the other hand, the braid groupBrn(F, ∂F ) can be canonically
identified with the fundamental group π1(F

(n) \ ∆), where F (n) is the symmetric
product of n copies of F and ∆ is the discriminant locus, that is, the set of those
n-tuples that contain fewer than n distinct points. More precisely, we start from
fixing a set B = {P1, . . . , Pn} ⊂ F \ ∂F consisting of n distinct points and treat
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Figure 6. Simple path joining a branch point with a bouquet vertex.

b

Cλ

I

b

b

Brn(F, ∂F ) as the group of homotopy classes of geometric braids, where as is usual:
by a geometric braid on F based at B we understand an n-tuple Ψ = (ψ1, . . . , ψn) of
paths ψi : [0, 1] → F \ ∂F such that

(1) ψi(0) = Pi and ψi(1) ∈ B for each i = 1, . . . , n;
(2) ψ1(t), . . . , ψn(t) are distinct points of F \ ∂F for each t ∈ [0, 1];

and multiplication is given by concatenation of paths.
By a λ- (respectively, µ-) move we understand a geometric braid whose all but one

strands are constant and the remaining one follows a path I ⋆ Cλ ⋆ I
−1 (respectively,

I ⋆ Cµ ⋆ I
−1) where I is a simple path in the complement of S ∪ (B \ {b}) joining a

point b ∈ B with the vertex of a bouquet Cλ ∨ Cµ ⊂ S, see Figure 6. The standard
Artin-Hurwitz (half-twist) geometric braids exchanging two points of B will be called
H-moves.

The following proposition is well known. In fact, it follows easily, for example, from
the exact sequences

1 → π1(F \B′) → PBrn(F, ∂F ) → PBrn−1(F, ∂F ) → 1

and

1 → PBrn(F, ∂F ) → Brn(F, ∂F ) → Sn → 1,

where the second sequence is the definition of the pure braid groups, PBrn, and B
′

denotes B \ {P1}.

Proposition 10. ([4, 6]) The braid group Brn(F, ∂F ) is generated by H-, λ-, and
µ-moves. �
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The following claim is an immediate consequence of the above Proposition.

Corollary 3. The relations imposed by the partial quotient maps (GVSd)2,0 → (GSd)2,0
and (GVSd)1,1 → (GSd)1,1 imply all the other relations imposed by the quotient map
GVSd → GSd. �

To describe finally the semigroup GSd in terms of generators and relations, let us
denote by the same symbols Xg, Ya,b the images in GSd of Xg, Ya,b ∈ GVSd.

Proposition 11. The elements Xg, g ∈ Sd \ {1}, and Ya,b, a, b ∈ Sd, form a set of
generators of the semigroup GSd. They satisfy the relations:

Xg1 ·Xg2 = Xg2 · Xg
g2
1

(21)

for any g1, g2 ∈ Sd; and
Xg · Ya,b = Ya,b ·Xg[a,b], (22)

Xg · Ya,b = Xgc1 · Yga,b, c1 = ab−1a−1g−1, (23)

Ya,b ·Xg = Ya,g−1b ·Xgc3 , c2 = ba−1b−1g, (24)

for any g, a, b ∈ Sd. These are the defining relations of GSd.

Proof. Due to Propositions 9, 10 and Corollary 3, the only new, with respect to
Proposition 9, relations are given by the λ- and µ-moves in (GVSd)1,1.

Under pulling the branch point through λ- or µ-cuts as it is shown in Figures 7 and
8, we obtain the the relations (23) and (24). In particular, the elements g′ appearing in
the relations Xg ·Ya,b = Xg′ ·Yga,b and, respectively, Ya,b ·Xg = Ya,g−1b ·Xg′ (see Figures
7 and 8) can be found, for example, from the identities expressing the unchanged
monodromy along the hole: gaba−1b−1 = g′a′b(a′)−1b−1, a′ = ga under the move
across the λ-cut, as is shown in Figure 7, and gaba−1b−1 = g′ab′a−1(b′)−1, b′ = g−1b
under the µ-cut, as is shown in Figure 8. �

Corollary 4. The elements Xg, g ∈ Sd \ {1}, and Ya,b, a, b ∈ Sd, satisfy the relation

Xg · Ya,b = Xg[a,b] · Yag[a,b] ,bg[a,b] (25)

Proof. This relation follows from the relations (22), (23), and (24). It expresses the
braiding of a branch point around the handle (that is around the hole on the open-eyes
plane diagram) . �

Due to Proposition 11 and Corollary 4, there arises a canonical morphism

̺d : GSd → Sd

that maps Xg to xg and Ya,b to ya,b, see subsection 1.5.

Proposition 12. The morphism ̺d : GSd → Sd is an isomorphism of semigroups
over Sd.

Proof. The morphism ̺d literally translates the list of generators and defining rela-
tions in GSd given in Proposition 11 and extended by (25) into the list of generators
and defining relations in Sd given in Proposition 3. �



COVERING SEMIGROUPS 31

Figure 7. Moving a branch point through an λ-cut in an XY -product
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Figure 8. Moving a branch point through a µ-cut in a Y X-product
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2.6. Admissible geometric covering semigroups. Again, to define new geomet-
ric covering semigroups, we start from the very strong semigroup of degree d marked
coverings, GVSd, and add supplementary relations between the triples (f : E →
F, ν, Scdt) representing the elements of GVSd. For that purpose, it is convenient to
introduce some auxiliary category F .

The objects of F are the triples (F, q, Scdt) where F is a connected compact oriented
surface with one hole, q is a fixed point on its boundary, and Scut is a caudate skeleton
of F ; we denote the set of ends of the tails of Scdt by B, its cardinality by n, and the
genus of F by p. The morphisms of F are the preserving orientation homeomorphisms
of triples (F, q, B).1

We denote by Homeo the whole set of morphisms of F ; by Homeon,p the subset of
Homeo consisting of the morphisms between the triples (F, q, Scdt) with given |B| = n
and g(F ) = p; and by H(F, q, Scdt) the group consisting of the self-homeomorphisms

(F, q, B) → (F, q, B).2 We say that a collection of subsets H̃n,p ⊂ Homeon,p, n > 0,
p > 0, is geometrically admissible, if it contains the isotopies of B in F \ ∂F and for
each two triples (F, q, Scdt) and (F, q, Scdt) with the same n and p there is a morphism

(F, q, Scdt) → (F, q, Scdt) belonging to H̃n,p.
For each n and p, we fix the triple (F, q, Scdt). The caudate skeleton Scdt defines

a frame in the free group π1(F \ B, q), while each element ψ ∈ H(F, q, Scdt) defines
an automorphism of this free group Fn+2p = π1(F \B, q). Let us denote by Hn,p the

subgroups of Aut(Fn+2p), Fn+2p = π1(F \B, q), representing H̃n,p ∩H(F, q, Scut).
As follows directly from the definitions, Hn,p are admissible subgroups ofAut(Fn+2p),

if the collection H̃n,p ⊂ Homeon,p is geometrically admissible. For example, one
get geometrically admissible collections by considering the homeomorphisms pre-
serving λ-circles up to isotopy (respectively, µ-circles), or taking the whole sets,

H̃n,p = Homeon,p. In fact, one can easily go other way round and, starting from
a collection of admissible subgroups Hn,p of Aut(F

n+2p), build a geometrically admis-

sible collection by attributing to H̃n,p ∩H(F, q, Scdt) all the elements in H(F, q, Scdt)
that act in Fn+2p = π1(F \B, q) as elements of Hn,p (with respect to the frame defined
by Scdt).

Let H̃ = {H̃n,p}n>0,p>0 be a geometrically admissible collection. Assume in addition
that this collection of homeomorphisms is closed under the boundary connected sum
of the triples (F, q, B) (see definition of the product in the semigroup GFSd). We say

that two triples (f1 : E1 → F1, ν1, S
cdt
1 ) and (f2 : E2 → F2, ν2, S

cdt
2 ) are H̃-equivalent

if there are homeomorphisms φ : E1 → E2 and ψ : (F1, q1, B1) → (F2, q2, B2) such

that f2 ◦ φ = ψ ◦ f1, φ ◦ ν1 = ν2 , and ψ ∈ H̃n,p. By means of such an additional
equivalence relation, we obtain a semigroup over the group Sd taking the quotient

1Note that morphisms are not supposed to respect skeletons.
2Note that H(F, q, Scut) is in a canonical bijection with the set of self-morphisms (F, q, Scdt) →

(F, q, Scdt).
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GSd,H̃−equiv = GVSd/{f1
H̃
∼ f2}; we call the semigroups thus obtained admissible versal

geometric degree d covering semigroups. In particular, if H̃n,p = Homeon,p for each n
and p, the semigroup GSd,H̃−equiv is called the weak versal geometric degree d covering

semigroup and denoted by GWSd.
Let G be a subgroup of Sd and O ⊂ G be some its equipment. A subsemigroup

GSd,H̃−equiv(G,O) of the semigroup GSd,H̃−equiv generated by Xg, g ∈ O, and Ya,b,
a, b ∈ G, is a semigroup over G. Its elements are H-equivalence classes of degree d
coverings with local monodromies in O and Galois groups contained in G, and we
call this semigroup an admissible geometric degree d covering semigroup with local

monodromies in O and Galois group in G.
The following statement is straightforward.

Claim 18. Any admissible geometric degree d covering semigroup GSd,H̃−equiv(G,O)
is isomorphic over G to the admissible algebraic covering semigroup SH−equiv(G,O),

where H = {Hn,p}n>0,p>0 is the collection of subgroups representing H̃ = {H̃n,p}n>0,p>0

in Aut(Fn+2p).

2.7. Construction of Hurwitz spaces of marked coverings. Here, we adapt
Fulton’s construction of Hurwitz spaces, see [2], to the case of marked coverings.

Let D ⊂ F be an open disc in a projective irreducible non-singular algebraic curve
F . We put F = F \D, choose a point q ∈ ∂F , and fix an n-point set B ⊂ F \ ∂F .

Let us recall that for any surface F its braid group on n strands, Brn(F, ∂F ), can
be seen as fundamental group π1(F

(n) \∆), where F (n) is the symmetric product of
n copies of F and ∆ is the discriminant locus.

Due to our assumptions, the fundamental group π1(F \ B, q) is isomorphic to the
free group Fn+2p where p is the genus of F , and in such a way the braid group
Brn(F, ∂F ), which acts naturally (the right action) on π1(F \B, q) ≃ Fn+2p, becomes
anti-isomorphic to the algebraic braid group Brn,p introduced in Subsection 1.4 (this
is usually called Artin presentation theorem and follows from a comparison of the
actions of the generators of these groups on Fn+2p ≃ π1(F \B, q)).

To detail these identifications, let us pick a caudate skeleton Scdt of F the set of
ends of whose tails is B. In notation of subsection 2.2, the choice of Scdt defines the
set {λ1, µ1, . . . , λp, µp} of free generators of the group π1(F, q) and loops γi around the
points of B, so that γ1, . . . , γn, λ1, µ1, . . . , λp, µp are free generators of π1(F \B, q) ≃
Fn+2p and γ1 . . . γn[λ1, µ1] . . . [λp, µp] = ∂F in π1(F \ B, q) (as usual ∂F is taken
counter-clockwise).

The set {γ1, . . . , γn, λ1, µ1, . . . , λp, µp} is a frame of the free group π1(F \ B, q) ≃
Fn+2p, which in accordance with notation of Subsection 1.4 we denote by B1. As to the
standard generators σ1, . . . , σn−1, ξ1,λ, . . . , ξp,λ, ξ1,µ, . . . , ξp,µ, ζ1, . . . , ζp of the algebraic
braid group Brn,p, they turn in terms of the geometric braid group Brn(F, ∂F ) into
H-moves, λ- and µ-moves, and braiding of a point around a handle (see Subsection
2.5).
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This anti-isomorphism Brn(F, ∂F ) → Brn,p defines a right action of Brn(F, ∂F ) on
the set of words WB1

(G,O) =
⋃

f Wf,B1
, where the union is taken over all equipped

homomorphisms f : Fn+2p → (G,O) to an equipped group (G,O). Obviously, the
subset WG

B1,1
(G,O) of words inWB1

(G,O) representing the elements of the semigroup

S(G,O)G
1
is invariant under the action of Brn(F, ∂F ). Therefore this action defines

homomorphisms ω = ωn,p,(G,O) : π1(F
(n) \ ∆) = Brn(F, ∂F ) → S|WB1

(G,O)| and ω
G
1
:

π1(F
(n) \ ∆) = Brn(F, ∂F ) → S|WG

B1,1
(G,O)| to the symmetric groups S|WB1

(G,O)| and

S|WG
B1,1

(G,O)| acting, respectively, on the sets WB1
(G,O) and WG

B1,1
(G,O).

Put F0 = F \ ∂F . As it follows from Proposition 6, the homomorphisms ω and ωG
1

define a |WB1
(G,O)|-sheeted unramified covering

θn = θn(G,O) : H̃UR(G,O),n(F ) → F
(n)
0 \∆

and a |WG
B1,1

(G,O)|-sheeted unramified covering

θGn = θn(G,O)
G
1
: HUR(G,O),n(F ) → F

(n)
0 \∆,

respectively. Furthermore, there is a canonical embedding j : HUR(G,O),n(F ) →֒

H̃UR(G,O),n(F ) such that θGn = θn ◦ j. Moreover, the both coverings are marked

(by words of WB1
(G,O) and WG

B1,1
(G,O), respectively) over the point in F

(n)
0 \ ∆

represented by B, and j respects the markings.
According to the usual construction of covering spaces by means of the groupoid

of homotopy classes of paths, the covering space H̃UR(G,O),n(F ) as a set is the set of

pairs (B′, f ′), where B′ ∈ F
(n)
0 \∆ and f ′ : π1(F \B′, q) → G are epimorphisms such

that the conjugacy classes of their values at the loops around the points of B′ belong

to O and f ′(∂F ) = 1. We call H̃UR(G,O),n(F ) the Hurwitz space of marked n-branched
coverings of F with equipped Galois group (G,O). This construction being functorial,

a choice of an embedding i : G →֒ Sd provides an embedding of H̃UR(G,O),n(F ) into

H̃URd,n = H̃UR(Sd,Sd\{1}),n(F ), which we call the Hurwitz space of marked n-branched
degree d coverings of F .

The advantage of considering marked coverings is that the Hurwitz spaces H̃URd,n

come then with a universal family of coverings, Fd,n → H̃URd,n. Such a family can
be obtained as manifold completion (see Subsection 2.1) of the unramified covering

of U = {(p, B′) : p /∈ B′} ⊂ F × (F
(n)
0 \ ∆), that is the covering defined by the

homomorphism π1(U, (q, B)) → SId×WB1
(G,O), G = Sd, O = Sd \ {1} that sends the

images of elements ς ∈ π1(F \ B, q) to permutations (x, w) 7→ (α(ς)x, w) and the
images of elements χ ∈ π1(F

(n) \∆) to permutations (k, w) 7→ (k, ω(χ)w).

Claim 19. The connected components of the spaces H̃UR(G,O),n(F ) and HUR(G,O),n(F )
are in one-to-one correspondence with the elements of the strong covering semigroup

S(G,O) and its subsemigroup S(G,O)G
1
, respectively.
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Proof. By Proposition 6 and due to existence of universal families, the connected

components of H̃UR(G,O),n(F ) (respectively, HUR(G,O),n(F )) are in one-to-one corre-
spondence with the orbits of the action of Brn(F ) on the set WB1

(G,O) (respectively,
WG

B1,1
(G,O)). Via the anti-isomorphism Brn(F ) → Brn,p and due to the definition of

the strong covering semigroups, these orbits coincide with the elements of S(G,O). �

Let F = F \D and F ′ = F \ D′, where D′ ⊂ D are open discs in a closed genus
p oriented surface F without boundary such that the marked point q ∈ ∂D ∩ ∂D′.
Then there is a natural embedding jF,F ′ : HUR(G,O),n(F ) →֒ HUR(G,O),n(F

′) which is

compatible with the covering maps and the embedding jF,F ′ : F
(n)
0 \∆ →֒ F

′(n)
0 \∆. Let

i : G →֒ Sd be an embedding of a groupG such that its image acts transitively on Id. If
a word wf∗ represents an element of S(G,O)G

1
, then, first, the covering space E of the

d sheeted marked covering f : E → F is connected, and, second, the covering f can be
extended uniquely to a d sheeted marked (at q ∈ F ) covering f : E → F unbranched
at the points of D. The embeddings HUR(G,O),n(F \ Di) →֒ HUR(G,O),n(F \ Di+1)
corresponding to an infinite sequence of open discs

· · · ⊂ Di+1 ⊂ Di ⊂ · · · ⊂ D1

such that ∩∞
i=1Di = ∅ and q ∈ ∂Di for all i define an unramified covering θn(G,O)

G
1
:

HUR(G,O),n(F , q) → (F \ q)(n) \∆ the covering space of which is called the Hurwitz

space of marked (at a point q ∈ F ) coverings of a projective algebraic curve F with
equipped Galois group (G,O) and branched at n points.

2.8. Proof of Theorems 1, 2, and 3. Due to Proposition 12: Theorem 1 follows
from Corollary 2; Theorem 2 follows from Claim 19, Theorems 6, and 7; and Theorem
3 follows from Claim 19 and Corollary 1.
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