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The collective behaviour of soliton ensembles (i.e. the solitonic gas) is studied using the methods of 
the direct numerical simulation. Traditionally this problem was addressed in the context of integrable 
models such as the celebrated KdV equation. We extend this analysis to non-integrable KdV–BBM type 
models. Some high resolution numerical results are presented in both integrable and nonintegrable cases. 
Moreover, the free surface elevation probability distribution is shown to be quasi-stationary. Finally, we 
employ the asymptotic methods along with the Monte Carlo simulations in order to study quantitatively 
the dependence of some important statistical characteristics (such as the kurtosis and skewness) on the 
Stokes–Ursell number (which measures the relative importance of nonlinear effects compared to the 
dispersion) and also on the magnitude of the BBM term.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Solitary wave solutions play the central role in various non-
linear sciences ranging from hydrodynamics to solid and plasma 
physics [44,34,30]. These solutions can propagate without chang-
ing its shape. However, the most intriguing part consists in how 
these solutions interact with each other. The binary interactions of 
solitary waves have been studied in the context of various non-
linear wave equations [44,23,39,25,9,6]. It is well known that in 
integrable models the collision of two solitons is elastic, i.e. they 
interact without emitting any radiation. In non-integrable models 
usually the interactions are nearly elastic [4].

The collective behaviour of soliton ensembles is much less un-
derstood nowadays. When a large number of solitary waves are 
considered simultaneously the researchers usually speak about the 
so-called solitonic turbulence or a solitonic gas. The literature on 
this topic is abundant. Some recent studies on solitonic gas tur-
bulence in the KdV framework include Refs. [31,35,32]. The soli-
tonic turbulence in nonintegrable NLS-type equations was studied 
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in [47,12] and the authors showed that in conservative noninte-
grable systems the solitonic gas is a statistical attractor whose 
dimension decreases with time. Recently it was shown both nu-
merically and experimentally that solitonic ensembles appear in 
the laminar–turbulent transition in a fibre laser [41], modeled by a 
non-integrable nonlinear Schrödinger-type equation. However, the 
dominant number of studies is based on integrable models. This 
apparent contradiction motivated mainly our investigation to quan-
tify the non-integrable effects onto the collective behaviour of soli-
tons.

An approximate theoretical description of solitonic gases was 
proposed by V. Zakharov (1971) [45] using the kinetic theory. 
Later this research direction has been successfully pursued by 
G. El and A. Kamchatnov [14,15] who used the Inverse Scattering 
Technique (IST) [1] limited only to the integrable models. In this 
study the problem of solitonic gases will be investigated using the 
methods of direct numerical simulation. The evolution of random 
wave fields including solitonic gases was simulated numerically in 
[31,35,10] using symplectic, multi-symplectic and pseudo-spectral 
methods. However, previous investigators considered only a lim-
ited number of solitons (a few dozens) to simulate a solitonic gas. 
In this study we will adopt the pseudo-spectral method since it 
provides the high accuracy and computational efficiency necessary 
to handle large computational domains. Our goal will consist in:
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• Investigating the influence of soliton interactions on statistical 
characteristics of the wave field;

• Constructing the Probability Density Function (PDF) and com-
pute the first four statistical moments of the solitonic turbu-
lence;

• Studying the role of non-integrable terms on the characteris-
tics of soliton ensembles.

The present manuscript is organized as follows. In Section 2 we 
derive the governing equation used in this study and in Section 3
numerical results on a solitonic gas dynamics are presented. The
main conclusions of this study are outlined in Section 4.

2. Mathematical model

As the starting point we choose the celebrated Korteweg–de 
Vries equation [22,24,20,31] (in dimensional variables) which mod-
els the undirectional propagation (here in the rightwards direction) 
of weakly nonlinear and weakly dispersive waves:

ηt + c

(
1 + 3h

2
η

)
ηx + ch2

6
ηxxx = 0, (2.1)

where η(x, t) is the vertical excursion of the free surface above 
the still water level, h is the uniform undisturbed water depth and 
c = √

gh is the speed of linear gravity waves (g being the gravity 
acceleration).

The KdV equation (2.2) is known to be integrable [18,27]. How-
ever, the full water wave problem is known to be a non-integrable 
system, since the interaction of solitary waves is inelastic [7,16,8,
9]. Moreover, we will modify the original equation (2.2) in order 
to include an additional dispersive term of the BBM-type [2]. Thus, 
the resulting KdV–BBM equation will not be integrable [17,11,21].

Consider the following scaled dependent and independent vari-
ables:

η ← η

a0
, x ← x

l
, t ← ct

l
,

where a0 is the characteristic wave amplitude and l is the charac-
teristic wavelength. In dimensionless variables KdV equation (2.2)
reads:

ηt +
(

1 + 3ε

2
η

)
ηx + μ2

6
ηxxx = 0,

where parameter ε := a0/h measures the nonlinearity and μ2 :=
(h/l)2 is the dispersion parameter. The relative importance of these 
two effects is measured by the so-called Stokes–Ursell number [42]
(sometimes denoted as Ur):

S := ε

μ2
≡ a0l2

h3
.

The last equation can be further simplified if we perform an addi-
tional change of variables:

η ← 3μ2

2
η, x ←

√
6

μ
(x − t), t ←

√
6

μ
t,

which yields the following simple equation including explicitly the 
Stokes–Ursell number S:

ηt + Sηηx + ηxxx = 0. (2.2)

The last scaled KdV equation can be further generalized by using 
the low-order asymptotic relations in order to alternate higher-
order terms as it was proposed by Bona and Smith (1976) [5] and 
Nwogu (1993) [28]. This step is rather standard and we do not 
provide here the details of the derivation:
ηt + Sηηx + ηxxx − δηxxt = 0, (2.3)

where δ ∈ R is a free parameter. The solitary wave collisions in 
this equation were studied earlier by Francius et al. (2001) [17]
and Kalisch et al. (2013) [21]. Below we will study the solitonic 
gas behaviour1 under the dynamics of the KdV (2.2) (δ = 0) and 
KdV–BBM (2.3) (δ �= 0) equations. In the absence of the KdV term, 
we recover the celebrated BBM equation derived in [33,2].

Remark 1. We note that for a particular value of the Stokes–Ursell 
number S ≡ 1 another simpler scaling is possible when all the 
lengths (x and η) are scaled by the mean water depth h. How-
ever, we do not adopt it in this study since below in Section 3.1
the dependence of some statistical characteristics on the Stokes–
Ursell number S is investigated.

2.1. Properties

2.1.1. Linear well-posedness
In order to ensure the linear well-posedness of Eq. (2.3), the 

free parameter δ has to satisfy the following constraint δ ≥ 0. In 
the following we will consider only nonnegative values of this pa-
rameter. Recall that for δ = 0 we recover an scaled version of the 
classical KdV equation (2.2).

2.1.2. Invariants
Assuming that the solution η(x, t) has either the compact sup-

port or decays sufficiently fast at the infinity along with its first 
derivative (η → 0, ηx → 0 as x → ±∞), one can easily show that 
the following quantities are conserved [11]:

I1(t) =
∫
R

η(x, t)dx, I2(t) =
∫
R

(
η2(x, t) + δη2

x (x, t)
)

dx.

In other words, I1(t) ≡ I1(0) and I2(t) ≡ I2(0), ∀t > 0. The invari-
ant I1(t) is related to the mass conservation property, while the 
integral I2(t) can be assimilated to the generalized kinetic energy. 
The conservation of these quantities has not only the theoretical 
importance, but also the practical one. For example, it will allow 
us to check the global accuracy of the employed numerical scheme. 
We note also that the same invariants hold also in finite, but pe-
riodic domains (below we use periodic boundary conditions). The 
conservation laws to the BBM equation can be found in [29].

2.1.3. Solitary wave solutions
Eq. (2.3) admits an exact localized (solitary) traveling wave so-

lution which can be found analytically:

η(x, t) = a sech2
(

1

2
κ(x − cst)

)
, κ :=

√
aS

3 + aSδ
,

cs := 1

3
aS. (2.4)

The dependence of the solitary wave shape on parameters a, S
and δ is shown in Fig. 1. For instance, one can see that solitary 
waves become thiner when the amplitude a (and hence the speed) 
and/or the Stokes–Ursell number S are increased (see Fig. 1(a, c)). 
On the other hand, the increase of the BBM coefficient δ leads to 
the growth of the tail (see Fig. 1(b)). If both parameters S and δ are 
increased simultaneously, the ‘thinning’ effect of the Stokes–Ursell 
number dominates (see Fig. 1(d)).

The solitary waves interact elastically only in the integrable KdV 
case (δ ≡ 0) [26], while some dispersive tails are generated after 
the interaction in the general KdV–BBM model. We note that some 

1 Sometimes it is also called the solitonic turbulence, e.g. in [47,12].
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Fig. 1. Solitary wave shape dependence on various parameters: (a) amplitude a = 1.0, 1.2, 1.5 for S = 1.0, δ = 0, (b) δ = 0.0, 1.0, 2.0 for a = 1.0, S = 1.0, (c) S = 1.0, 2.0, 3.0
for a = 1.0, S = 1.0, (d) simultaneous change of (δ, S) = (0.0, 1.0), (1.0, 2.0), (2.0, 3.0) for a = 1.0.
authors came to the wrong conclusion about the elasticity of soli-
tary wave interactions in the BBM equation [13] on the basis of 
low accuracy numerical simulations.

3. Numerical results

In order to solve numerically equation (2.3) we use a Fourier-
type pseudo-spectral method with 3/2-antialiasing rule [40]. For 
the time discretization we use the Verner’s embedded adaptive 
9(8) Runge–Kutta scheme [43]. The time step is chosen adaptively 
using the so-called H211B digital filter [37,38] to meet some pre-
scribed error tolerance (generally of the order of machine precision 
∼10−15). The number of Fourier modes, the length of the compu-
tational domain and other numerical parameters are specified in 
Table 1.

In long time simulations presented below the invariants I1,2
were conserved within the numerical accuracy 10−11 and 10−9

correspondingly. For the sake of illustration the error of the invari-
ant I1(t) conservation in KdV and KdV–BBM simulations is shown 
in Fig. 2. This accuracy is satisfactory to draw some robust conclu-
sions on a solitonic gas statistical behaviour.

The initial condition for the KdV equation is composed of a fi-
nite number Ns of solitons with random amplitudes ai ∼ N (a, σ), 
Table 1
Physical and numerical parameters used for simulations of the solitonic gas in the 
KdV and KdV–BBM (in parentheses) dynamics.

Stokes–Ursell number: S 1.0
BBM term coefficient: δ 0.0 (2.0)
Number of Fourier modes: N 217 = 131 072
Half-length of the domain [−�, �]: � 4558.0 (5580.0)
Final simulation time: T 30 000 (35 000)
Average time step: �t 0.02 (0.0194)
Number of solitons in the gas: Ns 200
Average distance between solitons: 〈�xs〉 45.0 (55.0)
Average amplitude of a soliton: a 1.0
Variance of soliton amplitude: σ 0.2
Variance of the soliton position: σ2 4.0
Number of Monte Carlo realizations: M 100

i = 1, . . . , Ns , separated by quasi-uniform distance �xs which is 
randomized to improve the ergodicity of the initial state:

�xs := 〈�xs〉 +N (0,σ2),

where 〈�xs〉 denotes the mean value reported in Table 1 and 
N (μ, σ) is the normal distribution with the mean μ and the vari-
ance σ . The solitonic gas initial state generated in this way is 
depicted in Fig. 3(a). We use the same parameters for the initial 
solitonic gas state for the simulation with the KdV–BBM equation 
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Fig. 2. Conservation of the invariant I1(t) during the KdV (a) and KdV–BBM (b) simulations.
except for the domain size and the spacing between two soli-
tons (see Table 1). They are larger in the KdV–BBM case since 
the soliton width increases with the parameter δ ≥ 0 (see Fig. 1). 
Consequently, we can say that two initial conditions are approxima-
tively isomorphic up to the horizontal coordinate stretching trans-
formation. The simulation times T1 (KdV) and T2 (KdV–BBM) are 
chosen so that an average soliton has enough time to go around 
the whole computational domain. The final states of the simula-
tions are shown in Fig. 3(b, c). One can notice how the initially 
quasi-uniform distribution of solitons is mixed by forming instan-
taneous soliton clusters as long as some void spaces due to the 
mass conservation property. The complete space–time dynamics 
simulated using the KdV and KdV–BBM equations is depicted in
Fig. 4(a, b). Individual lines correspond to solitons trajectories. The 
convergence of these lines corresponds to solitons collisions. It 
might appear in Fig. 4 that collisions involve multiple solitons, 
however it is not the case. A zoom on a portion of the space–time 
domain is shown in Fig. 5. One can see that interactions are only 
binary in agreement with [45]. It is interesting to estimate the total 
number of collisions in our simulation. The models under consid-
eration are unidirectional. Thus, we can experience only overtaking 
collisions. Since the simulation time is chosen so that almost every 
soliton has enough time to travel across the whole computational 
domain, the number of collisions scales with O(m+m−), where m±
is the number of solitons which travel with the speed above (be-
low) the average. By construction of the initial condition we have 
m± = O( 1

2 Ns). Consequently, the total number of collisions scales 
with O( 1

4 N2
s ).

Since the initial conditions are approximatively self-similar, af-
ter an appropriate rescaling of the spatial and time variables, 
the space–time dynamics is similar in both simulations (see 
Fig. 4(a, b)). The difference between two simulations can be no-
ticed if one makes a zoom on solitons background in order to see 
small radiating oscillations due to the inelasticity of collisions in 
the KdV–BBM case. This zoom on a portion of the computational 
domain is shown in Fig. 6. In contrast, Fig. 6(a) shows the absence 
of phonon modes in the KdV simulation.

It is custom to use the statistical methods to describe random 
wave fields [3,19]. The probability distribution of the normalized 
free surface elevation η0(x, t) := (η(x, t) − 〈η〉)/〈η2〉1/2 at times 
t = 0 and t = T1 is shown in Fig. 7 (under the KdV dynamics). One 
can see that this distribution is quasi-stationary which is a direct 
consequence of the fact that solitons preserve perfectly their shape 
during the interactions. We note that the KdV–BBM numerical re-
sult shows the same invariance property since the inelasticity is 
too weak to modify significantly the probability distribution. More-
over, for comparison we plot also on the same figure the standard 
normal (Gaussian) distribution. One can see that numerical results 
show much heavier tails than the standard distribution depicted 
on the same plot.

The probability distribution can be characterized by several pa-
rameters. Perhaps two most important characteristics are listed 
herein below:

• Kurtosis κ := μ4

μ2
2

, which measures the heaviness of the spec-

trum tail.
• Skewness ς := μ3

μ
3/2
2

, which measures the asymmetry of the 

spectrum with respect to the mean.

These quantities are defined in terms of the normalized free sur-
face elevation moments μn := 〈ηn

0〉. We note that κ = 3 and ς = 0
for the normal (Gaussian) distribution N (0, 1). The evolution of 
these quantities is shown in Fig. 8. The kurtosis κ is shown on 
top panels (a,b) and the skewness ς on the bottom (c,d). The 
KdV simulation results are represented on the left images (a,d) and 
the KdV–BBM on the right (b,d). One can see that the qualitative 
behaviour of these quantities is similar in integrable and noninte-
grable cases. After a rapid initial transient period both quantities 
κ and ς enter in a quasi-stationary regime which consists of fast 
small amplitude (±1.6%) oscillations around the mean value. Initial 
values of the moments are higher, but then it drops down quickly 
due to soliton interactions. We note also that corresponding val-
ues of κ and ς are slightly lower in the KdV–BBM case due to the 
differences in solitary wave shapes.

3.1. Estimation of statistical moments

In order to estimate efficiently kurtosis and skewness for vari-
ous values of parameters S and δ without performing a series of 
direct numerical simulations we will adopt an approximate an-
alytical method of statistical moments estimation employed also 
in [36].

Let us introduce the average density of a solitonic gas:

ρ := Ns
,

2�
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Fig. 3. The initial condition (a) and the final state (b) of a random solitonic gas simulated using the KdV equation (δ = 0). The final state of the KdV–BBM simulation is shown 
on panel (c). Please, note that the final simulation times T1 �= T2 (see Table 1 for the values of T1,2). Parameter τ0 denotes the time needed for an average solution to go 
over the whole computational domain.
where N S is the number of solitons and � is the half-length of the 
computational domain (see also Table 1). We will assume that the 
solitonic gas is rarefied, i.e. ρ � 1. Under this assumption we can 
represent approximatively the instantaneous free surface elevation 
η(x, t) as a linear superposition of distinct solitary waves (the in-
teracting part is neglected):
η(x, t) ≈
Ns∑

i=1

ηi(x, t) =
Ns∑

i=1

ai sech2
(

1

2
κiξ

)
, ξ := x − csit − xi,

where {ai}, {csi} and {xi} are respectively the amplitudes, speeds 
and phase shifts of individual solitary waves. By assuming that the 
supports of solitons do not overlap, we can estimate the statistical 
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Fig. 4. Space-time plot of a random solitonic gas under the KdV (a) and KdV–BBM 
(b) dynamics. The time arrow is directed upwards (the initial state corresponds to 
the bottom line). The rectangular box in the upper image (a) shows the area zoomed 
in the next Fig. 5.

Fig. 5. Zoom on space–time domain (x, t/τ0) ∈ [−2600, −2000] × [0.22, 0.32] simu-
lated under the KdV equation dynamics. See Fig. 4 for the whole picture.

Fig. 6. Zoom on a portion of the computational domain at the final time of the 
KdV and KdV–BBM simulations. (b) Tiny oscillations between the solitary waves 
correspond to the radiation created by inelastic collisions in the KdV–BBM equation.

moments of any order. For the sake of simplicity let us consider 
the first order μ1, i.e. the mean:

μ1 = 〈
η(x, t)

〉 = 1

2�

Ns∑
i=1

�/2∫
−�/2

ηi(ξ)dξ

≈ 1

2�

Ns∑
i=1

ai

+∞∫
−∞

sech2
(

1

2
κiξ

)
dξ = 4ρ

〈
ai

κi

〉
,

where we took the limit � → +∞ in order to compute analyti-
cally the integrals. Note also that the solitary wave parameter κi
is a function of the amplitude ai according to the relations given 
in (2.4).

Higher order moments μn = 〈ηn〉, n > 1 can be computed in 
a similar way. In this study we will need the moments up to the 
fourth order:

μ2 = 8

3
ρ

〈
a2

i

κi

〉
, μ3 = 32

15
ρ

〈
a3

i

κi

〉
, μ4 = 64

35
ρ

〈
a4

i

κi

〉
.

Using these moments we can estimate the skewness ς and kurto-
sis κ in the rarefied gas limit ρ → 0:

ς = 〈(η − μ1)
3〉

〈(η − μ1)2〉3/2
= μ3

μ
3/2
2

+O
(
ρ1/2)

≈ 2
√

3

5
√

2
ρ−1/2 〈a3

i /κi〉
〈a2

i /κi〉3/2
, (3.1)

κ = 〈(η − μ1)
4〉

〈(η − μ )2〉2
= μ4

μ2
+O(1) ≈ 9

35
ρ−1 〈a4

i /κi〉
〈a2/κ 〉2

. (3.2)

1 2 i i
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In order to validate these asymptotic expressions we compare 
their predictions for the solitonic gas described in Section 3. The 
skewness ς and kurtosis κ are computed from numerical sim-
ulations and the time average is then taken. The results of the 
comparison are provided in Table 2. One can see that the simple 

Fig. 7. Probability distributions of the squared normalized free surface elevation.
analytical model presented in this Section is clearly able to de-
scribe rarefied solitonic gases. Moreover, one can infer from (3.1), 
(3.2) the behaviour of the skewness and kurtosis as the density of 
the gas decreases ρ → 0. However, as ρ → 0, the jump from the 
initial value of ς(0) or κ(0) to the stationary one will diminish, 
since the interactions between solitons become sparser.

The asymptotic formulas (3.1), (3.2) can be used to estimate 
the skewness ς and kurtosis κ for various values of model pa-
rameters δ and S in initial stages of the solitonic gas evolution. 
However, these formulas contain the statistical averages. The pro-
posed Monte Carlo approach is briefly summarized here. Namely, 
we generate M random independent realizations of a solitonic gas, 
each sample consisting of Ns solitons. The numerical values of pa-
rameters M and Ns used in simulations are given in Table 1. Then 
we use the assumption of the rarefied gas along with the knowl-
edge of the analytical soliton shape in order to estimate some 
statistical quantities of the gas (see Eqs. (3.1), (3.2), for example). 
A big number of Monte Carlo realizations allows to annihilate local 
fluctuations and to obtain robust estimations.

The numerical results are presented in Figs. 9–11 where the 
shadowed areas show the statistical error due to Monte Carlo sim-
ulations (±σ , ±1.96σ , where σ is the estimated variance). From 
these results one can clearly see that for the fixed density ρ an 

Table 2
Comparison of the numerical (left) to the approximate analytical (right) estimations 
for the skewness (3.1) and kurtosis (3.2) on the data analyzed in the previous sec-
tion.

Skewness, ς Kurtosis, κ

KdV (δ = 0) 2.6111/2.6365 7.5402/7.7047
KdV–BBM (δ = 2) 2.5482/2.5732 7.1759/7.3359
Fig. 8. Evolution of the kurtosis and skewness in numerical simulations of the KdV and KdV–BBM equations.
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Fig. 9. Initial kurtosis (left) and skewness (right) dependence on the Stokes–Ursell 
number S.

Fig. 10. Initial kurtosis (left) and skewness (right) dependence on the BBM-term 
coefficient δ.

increase in the Stokes–Ursell number S leads to an increase in ς
and κ (see Fig. 9). The BBM coefficient δ has the antagonistic effect 
as it is illustrated in Fig. 10. When both parameters S and δ are in-
creased simultaneously,2 the dependence of statistical quantities is 
not monotonic anymore (see Fig. 11).

4. Conclusions and perspectives

In this study we presented several numerical experiments on 
the solitonic gas turbulence in the framework of an integrable KdV 
and a nonintegrable regularized KdV–BBM equation. The numeri-
cal results reported above generalize previous investigations [31,
10] where only a limited number (a few dozens) of solitons were 
used to represent a solitonic gas. Consequently, we reduce the sta-
tistical error according to the law of large numbers.

First of all, we showed that the probability distribution for 
the solitonic gas remains quasi-invariant during the system evo-
lution for both KdV and KdV–BBM cases. The special attention was 
payed to the statistical characteristics such as kurtosis and skew-

2 It means that we introduce an auxiliary homotopy parameter λ ∈ [0, 1] which 
parametrizes the simultaneous change of parameters S and δ in the following way:

S = Smin(1 − λ) + Smaxλ, δ = δmin(1 − λ) + δmaxλ.

In the computations presented below we took the values: Smin = 0.1, Smax = 6.0, 
δmin = 0.0 and δmax = 4.0.
Fig. 11. Initial kurtosis (left) and skewness (right) behaviour when one increases 
simultaneously δ and S.

ness which measure the ‘heaviness’ of tails and the asymmetry 
of the free surface elevation distribution. In particular, using the 
asymptotic methods and Monte Carlo simulations we showed that 
both skewness and kurtosis increase with the Stokes–Ursell num-
ber S and decrease when the BBM term coefficient δ. When both 
parameters S and δ are increased gradually and simultaneously, 
these effects are in competition: first we observe the increase of 
these statistical characteristics, but then, this tendency is inversed 
and they decrease after reaching their respective maximal values 
(see Fig. 11). We would like to underline that the proposed Monte 
Carlo methodology is much less computationally expensive than 
direct numerical simulations. Despite the small number of Monte 
Carlo runs (M = 100) the estimated statistical error is sufficiently 
small for the purposes of this study. On the other hand, this ap-
proach is restricted, strictly speaking, to the situations where the 
solitons are well separated, since it does not take into account su-
perpositions of solitons.

The present study opens a number of perspectives for future 
investigations. More general nonlinearities could be included into 
the model along with some weak dissipative and forcing effects. 
This could allow us to observe Kolmogorov spectra of a solitonic 
gas [46]. The nonintegrable effects need some time to be accumu-
lated. Consequently, even longer simulation times are needed. The 
interaction of a solitonic gas with a random radiation field has to 
be studied as well.
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