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Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant
payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a
possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model
can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population
evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is
exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both
the maximum and the variance of the distribution using the Hamilton—Jacobi equation formalism.

1. Introduction

Evolutionary game theory!™ describes a process of
evolution, characterized by population dependent selection
(the fitness depends on the structure of population). Today,
there is no reasonable alternative within evolutionary theory
to this mathematical concept. Evolutionary games are usually
described through pair interaction; some fixed strategies and
fixed payoff matrices are generally assumed. The latter
defines the fitness of a population for a given distribution of
population via different strategies. Analytical investigation of
games with a finite population has been covered.*™®

While most literature focuses on evolutionary games with
fixed payoff matrices, there have been several works with
stochastic choice of strategies in repeated games,” mixed
strategies,!” as well as simple analytical dynamics for payoff
matrices,'" or the evolutionary choice of payoff matrix.'?

Evolutionary games have already been applied to describe
the evolutionary dynamics of cancer cells'>!'¥ and bacte-
ria,!>19 the theory of biological polymorphism,'” and public
traffic networks.!® Understanding the social cooperation of
cancer cells and acting against this cooperation'” is one
of the most promising directions in curing cancer. Another
forward-looking direction of modern virology and cancer
biology is the concept of a mutator gene’” —a gene whose
mutation drastically changes the properties of the whole
genome, including the whole fitness landscape change
(contrary to a simple epistasis between two genes).?!??

As both games and mutator genes are assumed to describe
the real evolution of microbes and cancer cells, it is
reasonable to consider the evolutionary dynamics of a
population with mutator genes, i.e., evolutionary games with
a mutator gene. In this article we follow to the wider notion
of mutator phenomenon, assuming either the change of
mutation rate or the fitness landscape.? In this work we
propose a simple generalization of standard evolutionary
games assuming switching of the system between two
different regimes with different payoff matrices. Similar
random switching between different games have been already
considered in game theory, related with the Parrondo
paradox.??
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We investigate finite populations with instructions on how
the agents act are probabilistic: the whole situation changes
with some probability, similar to the model of gene self-
regulation.”> In this paper we follow our recent work,?®
where we solved a modification of the master equation using
the Hamilton—Jacobi equation (HJE) method.?’—3?

Let us first consider a deterministic equation describing
the dynamics of a large population in the context of
ordinary evolutionary games. In our approach the popula-
tion consists of m strategies with a total number of players
N (N is a large number). The index i specifies the type of
strategy and i-th population size equals X;. This model is
formulated as a system of ordinary differential equations
(ODE):

X = xi((AX); — (X, A¥)) 1)

where ¥ = (x1,...,%n), X; = X;/N, N=Y ], X}, and A is
an m X m payoff matrix.

The replicator equation (1) describes the deterministic
situation with a definite strategy.

In this work we suggest a new version of evolutionary
games with a payoff matrix that can be changed between two
situations A and B, and give an analytical solution.

2. The Master Equation and Its Solution via Hamilton—
Jacobi Equation

Let us consider the model with constant matrices: A =
{a;j}, B={b;},i,j=1,2,...,m. The total population size
is N; variable X represents the number of players in the first
population category. As shown in Fig. 1, the whole system
can exist in two versions: the upper chain with matrix A and
the lower chain with matrix B, and there are transitions
between the two chains.

Here we have the probability conservation condition at any
moment of time 7:

Zocx<n(PX,7) + 0(X, 7)) = 1 2)

where P(X, ) is the probability that the system is in state A
and there are X players with the first strategy, and Q(X, 7) is
the probability that the system is in state B with X players
with the first strategy.
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Fig. 1. The scheme of available transitions for the system states (arrows
denote transitions). Upper chain corresponds to the game with matrix A, the
lower — with matrix B.

We describe the dynamics of the distribution as

dlzjvo;}t) = PX— LORY, (X = D+ PX+ LORY (X + 1)
+ P(X, DRA(X) + O(X, )R®A (X);
= 00X = 1LORE (X = )+ Q0+ LORY (X + 1)

+ Q(X, DR (X) + P(X, R (X). 3)
Here transitions inside the chains have non-negative rates
R, R, (R, RB)) for the chain A (chain B), and between
the chains with rates R4? and RBA. All these rates are derived
from the infinite population fitness described via matrices A
and B, while different schemes are possible for the finite
population version of the model (see Appendices A and B).

To construct our theory for the mutator gene,?!*? we relate
P to a population of replicators with normal allele of a
mutator gene, while Q corresponds to a mutated gene, and the
transitions between P and Q can be considered as mutations
of the mutator gene.

There are two versions of the payoff matrix, each with two
strategies. There are transitions between the two regimes, and
any moment in time the system can exist in only one regime.
Therefore, the concrete player can choose a strategy, but
cannot choose a regime. The system moves together from one
regime to another with some probability. The situation is like
the annealed version of spin glass: first the spins (strategy
choice) change according to the given couplings (payoff
matrix), then the couplings themselves (payoff matrices)
change slowly.

We assume:
RY,(X) + Ry, (X) + RG(X) + RYP(X) = 0,
RE,(X) + R, (X) + R (X)) + RPA(X) = 0. 4)

Equation (4) is a balance condition for a smooth population
distribution, when the differences of P (Q) at X — 1, X, and
X + 1 can be neglected.

The system (3) is modified at the boundaries: for X = 0 we
hold only R4, R} terms and for X = N we hold only R, R*,
terms in Eq. (3). It is important to calculate both the
dynamics of the maximum and the variance, and we can
find them using the Hamilton—Jacobi equation approach.

Let us consider the system (3) at the limit N > 1 with the
following ansatz:

P(X,t) = vy exp[Nu(x,1)]; OX, 1) = vy exp[Nu(x,1)]. (5)

Here we denote x = X/N and define the functions rf‘(x),
rB(x), r*B(x), rPA(x) of continuous variable x:
RIXO) =rl(0), RIGO=rl(); [=-101
R0 = r'Po,  RPAX) = rPA (). (6)

We assume that r{'(x), r2(x), r48(x), r4(x) are the smooth
functions of x.
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Equation (4) gives:

o) = —rix) — r*(x) - rf();

ro(x) = —rf) = rf(x) - r# (). @)
Assuming the smoothness of the rate functions and

dropping the terms dv;/dt, i = 1,2, we derive the following
system of equations:

v = vl(rf(x)e_”/ + rf_‘(x)e”/ + ré(x)) + varB(x),

Vg = vz(rf(x)e_“, + rf(x)e”/ + rg(x)) + o). (8)
Here we denoted
, ou(x,t) ou(x, t)
u=—"==p; =—7.
o 1=

The consistency condition for linear system of Eq. (8) for
the variables v; and v, together with Eq. (7) gives the
following condition:

det[Mij(x’p) - q‘sij(x)] =0, )
where
M = rﬁ(e_p — D+ - 1) - r8;

My = rf(e_p — D+ rBe” = 1) - B4

My = r®4, My = r*8. (10)
Equations (9) and (10) imply that
det[M;;(x,0)] = 0. (11)

Expanding the left-hand side of Eq. (9) in the degrees of ¢,

we get the equation:
Ho —qH\ + ¢*H> = 0, (12)

where Hy and H, are defined by Eq. (16) below, and H, = 1.
Thus we have HIE ¢ = —H(x, p) with the Hamiltonian:

b Hi + /H? — 4HyH,

13

1, (13)

We take the “—" solution while considering the dynamics
of the maximum. From Eq. (11) we have:

Ho(x, p)lp=0 = 0. (14)

Looking at the exact dynamics of the maximum or the
variance of distribution, we can expand our solution (13) with
the “—"" sign to get:

H_Hl—,/H%—4H0 H0+H(2)
="~

ot (15)
where
Hy = det[Mj],
Hy = - L detM e, p) — gyl o (16)

dgq
To investigate the dynamics of the maximum, we assume
the ansatz

V()

- - YOI + O(lx — y®O) 1),

A7)

where y(f) is the average number of players with the first
strategy at time 7. For our purposes (to calculate exactly the
average number of players and the variance), it is enough
to keep the [x — y(r)]*> term. To calculate the higher order
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correlation, we should consider the higher order expansion
terms. These high order terms don’t change the found bulk
expressions for the y(#) and the V(¢).

Let us differentiate (12) with respect to x at the point
x = y(#). Using an ansatz Eq. (17), we obtain:

[_VaHou,p) B

=0.
op

p=0

(18)

Q;Hl (X’P)i|
We have the Hamilton equation for the particle with the
Hamiltonian given by Eq. (15). Using Hy(x, 0), we obtain:

dy(y _ Hp,(»,0)
dt H(y,0)
Using (10) and (16) we get:
Ho = Z'(x,p)Z" (x, p) = r*4()Z" (x. p)
- r'? @2 (x, p);
Z'x,p) =r ()’ =D+ ri(x)(e’ - 1); t=A,B.

= b(y). (19)

Note that Z7(y,0) =0, Hy(y,0)=0. Let us denote
Arf(x) = r.(x) — r_(x). We have:

Hy, (v, 0) = rPA(mart () + r*P (n)Aarf (y);
Hy(y,p) = =r**(») = P + 2 (v.p) + Z8 (3. p);

Hi(y,0) = =r*%(y) = r4(y). (20)
Then we derive
b(y) = Hpy ,(3,0) = 6Ar*(y) + (1 — 0)ArP(y); (21
__ W
where ¢ = ARGy
Consider the dynamics of the variance?® [we denote

QO =1/V and use the equality dQ/dt = dQ/dyb(y)]. Ac-
cording to the recent work?® we have for the variance:

Y c(x)dx .
O(y) = b(y) g W; c(x) = —H,,(x,0) (22)
Eq. (15) gives:
L __Hy HH, (Hy)
c(x) = pr(x, 0) = A +2 H% 2 H% (23)

where
H),(x,0) = —Ar* — Ar®
Hp,,(x,0) = 2074 ArP — rPAGE 4+ 72 — KB + P,
For the finite population dynamics via Moran process
(Appendix A) we get

A fAD) — (AX),
Aro = x( (%, AD) )
B,y _ [ (BX) — (BX)
Arf(x) = x(i(i, B9 ) (24)
For the local update law (Appendix B) we have
Art(x) = xx (A%), = (AD),);
Arf(x) = xa((BX), — (BR),). (25)

Using the formulas (A-2) and (A-3) in the master
equation (3) and (A-8) in the maximum and variance
dynamics equations (19), (21), (22), and (23), we can
compare the analytical results with the numeric solutions as
plotted in Figs. 2 and 3 which show that our analytical results
are very reliable.
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Fig. 2. (Color online) PD+PD: Maximum y(#) as a function of time ¢ via

Moran process for y = >\ [P(X,1) + O(X, )] % The numerical solution of y
calculated by Eq. (3) with N = 1000 (smooth line) versus our analytical
results by the HJE method Eq. (19) (squares). We take transition rates
1;3.2

=05 =1;,A=[3 1.51;B=[7 0.1;7.5 0.3].
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Fig. 3. (Color online) PD+PD: Variance V = 1/Q as a function of 7 with
V=>[PX, )+ 0X, t)](l% — 1)>. The numerical result for Q calculated
using Eq. (3) (smooth line) with N = 1000 versus the analytical results by
Eqgs. (22) and (23) (triangles). Parameters are the same as those in Fig. 1.

3. Different 2 X 2 Game Classes

In this section we first discuss ordinary two strategy
games, then in Sect. 3.1 consider the case of two payoff
matrices, in Sect. 3.2 the Moran version of finite population
model,” in Sect. 3.3 the local update mechanism® for the
iteration loop of finite population evolutionary dynamics. Let
us consider an ordinary two-strategy game with a single
regime corresponding to 2 X 2 matrix denoted by

a b
A= .
c d
When the simplex is S, = {ej,e,} the frequencies are
denoted by p = (p1,p2) € S2. According to evolutionary
game theory studies,® the dynamic is defined as
pr=pi(er-Ap—p-Ap)
=pil-p)(@a—c+d—-Db)p1 +b-d)
since pp = 1 — p;.

(26)
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There are three qualitatively different classes of the phase
portrait for standard replicator dynamics. The rest points of
this dynamic (i.e., those 0 < p; < 1 for which p; = 0) are
p1 =0 and p; = 1. The interior rest point (if it exists) is
given by the solution

(@—c+d-b)py=d-0>.

In the theory of biological polymorphism with only two
possible phenotypes of a species, the rest points p = 0 and
p =1 correspond to the existence of only one phenotype,
while the interior rest point corresponds to the co-existence of
two phenotypes.'”

Depending on the constants a, b, ¢, d one can get:3)

e Prisoner’s dilemma (PD) class. The payoffs satisfy
(a —c)(d—b) £ 0. For this class every interior initial
point evolves monotonically to 0 or 1, it means that the
entire population will eventually consist of only one
type of players.

e Coordination (CO) class. The payoffs satisfy a > c,
d>b, (a—c)d—->b)>0. Here different convergent
trajectories may have different stable limit points, the
interior rest point is unstable.

e Hawk-Dove (HD) class. The payoffs satisfy a < c,
d < b, and every interior initial point evolves monoton-
ically to the interior rest point. It can be understood as a
coexistence of the two types of players.

3.1 Combinations of payoff matrices

We can analyze the maximum dynamics (19) using
different types of matrices A and B (B = [; /;];). There are
six different combinations of payoff matrices in (21).
(1) PD+PD. PD is a well-known paradigm of the game
theory: individuals could either cooperate or defect. The
payoff to a player is defined proportionally to the effect on its
fitness (survival and fecundity)," these payoffs are also
known as “temptation” (T), “reward” (R), “punishment” (P).
We consider the situation when individuals can use either the
A-payoff matrix or the B-matrix in a PD conflict. For
example, the cooperation with some individuals can be more
productive, but with a greater damage (with lower “sucker”
payoff).
(2) HD4+HD. In the case of HD game! two animals are
contesting a resource of some value V (here we suppose that
fitness of an individual obtaining a resource increases
proportionally to this value). This resource could be, for
example, a territory in a favorable habitat. The animals could
suffer some injuries from the conflict, so the fitness could
decrease by C. It is supposed that each animal in the
population can play one of the two roles in this conflict:
“Hawk” —when the animal escalates and continues until
injured or until the opponent retreats, or “Dove” —the arcnmal
displays, retreats at once if opponent escalates. A = [ 7- V].
In our case we consider the two different payoff matrlces
We suppose that there is a population living in a specific
geographic area. There are two different valuable resources
(with values V; and V,: V| < V;). We can also interpret these
resources as the preferable territories. The contest between
two animals is one of the two types (corresponding to the
different territories). Each animal chooses the habitat and is
involved in only one conflict at the same time [with payoff
matrix (2): A1(Vy) or A,(Vo)].
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(3) CO+CO. The most studied game in CO class is the
Battle of the Sexes game,” when players have a mutual
interest in cooperation, but different strategies are more
preferable for each one. In the two-chain model we can
suppose that there are two areas (with A and B payoff matrix)
consisting of two alternative types of habitat.
(4) PD+HD or PD+CO. We consider the PD game with the
following matrix App = [1; f,]; where T> R > P > S. We
suppose that the payoff S could increase: S; > P, so the fist
strategy (cooperation) could become a dominant strategy.
The matrix Byp = [T P] represents the HD-case.
If the S-payoff remains the same and R increases (R, > T),
we will have a CO-type interaction: Cco = [RT2 IS)].
(5) HD+CO. Let us consider the HD-HD case with (2) type
of matrices and profit values Vi, V,. If we change the set
of strategies in the second payoff matrix and put “Choose
V1/V,” instead of “Hawk/Dove”, it will be the CO-type:
=[" 8 ]. So the individuals either conflict for the
territories or coordinate.

3.2 Moran process

Consider the Moran process,” which is a way to describe
simply the finite population dynamics in population genet-
¢s.%? To organize iteration loop we need to describe the
growth of different types according to their fitness functions,
then organize the dilution of population to hold the constant
population size, we need complete information about the
system. We use (A-9) in (21). In general, there are trivial rest
points in the maximum equation: y =0 and y =1 satisfy
b(y) = 0 (except the case with the baseline fitness w = 1 and
special type of matrices, which we analyze separately). For
some matrices A and B, there is a rest point y* € (0, 1]. Note,
that in the following sections we consider constant transition
rate between chains (#4584 = const). Let p* be the rest
point for A-dynamics and ¢g* for the B.

Let us consider the type of the rest point, depending on the
type of matrix.
(1) A, B are zero-diagonal. In this case y = b(y) takes the

 tl-0 ) +1
8

form
1
b(y) = ( btc 7+

a. PD+PD. Either there is no rest point or there is only an
interior rest point. A = [? _03]; B = [g _Ol]; We get
y*=0.25.

b. HD+HD or CO+CO. There is always an interior rest
point.

c. PD+HD or PD+CO. There is no interior rest point
in this case. For example, A is a PD-type matrix,
B—HD-type. fA=[) 1 B=[? 'l: then y* »
0.41. But when B = © —04]; there is no rest point in
0, 1).

d. HD+CO. It is easy to show, that there is always an
interior rest point.

(2) A and B have a general form. Now y =0 and y = 1 are
always rest points, when az, # 0; by # 0. For any combi-
nation of chain types it is possible to find such matrices A, B
that there is only one or there is no interior point.

3.3 Local update mechanism
Consider now the local update mechanism.> Contrary to
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Moran scheme we just choose a couple of replicators to
organize the iteration loop. We have:

b(y) = oyk1((Ay); — (Ay),)

+ (1 = o)yxa((By); — (BY)2) (27)
Equation (27) implies that y = 0 (and y = 1) is always a rest
point. As it has a quadratic form, it either has no interior point
or has an interior rest point.
(1) PD+PD. There is no interior rest point, when A and B
matrices have the same dominant strategy (rest points for the
replicator equation are both in 1 or in 0). We can consider the
situation, when A and B represent PD-type, but with different
stable states.

-1 -2 -2 -7
A= ; B=
-09 -1.5 =25 -7.1
For A; the second strategy is dominant, for B— the first; the
interior rest point we get is y* = 0.5.
To illustrate the new behaviour of the system with transitions,
we present Figs. 4, 5, and 6 for three situations: for
o =1—pure A-matrix game, for ¢ = 0—pure B-matrix
game and for o = 0.5, the latter being the case under
consideration here. In each figure we show the evolution
of y(1) =Y 4[PX. 1) + Q(X, t)]% (fraction of first strategy
playing agents) for different initial conditions.
(2) HD+HD or CO+CO. There is always an interior rest
point, and it is either stable or unstable for both chains.
(3) PD+HD or PD+CO. It can be no or one interior rest
point in this case. For example, A is a PD-type matrix,
B—HD-type. A = [g _03]; B = [2 (1)]; we have no rest
point in the interval (0, 1).
But for the following matrices A =] _1
[ _335 _3] We have the rest point y* = 0. 4545
@ HD+CO We observe two cases (there is only one or no
interior point). A = [? (1)], B = [(3) ?], we have no rest point
in the interval (0, 1).
Taking A= [~} 21, B=1[_7
*=0.5.

-21. p_
—2.5]’ B=

99, .. .
- 0], gives the rest point

4. Conclusion and Discussion

In conclusion, we suggested a new finite population
version of evolutionary games. There are two regimes for the
whole system with their corresponding payoff matrices and
there is a possibility of random transitions between these two
regimes. Such transitions between different games has been
already considered in the game theory, related with Parrondo
paradox.”” We consider the annealed version of disorder in
the payoff matrix with a realistic case of two strategies,
versus the quenched disorder of payoff matrix with infinite
number of strategies,lo) and our version of stochastic choice
of strategies is much simpler than those in Ref. 9. The
investigation of cooperation between cancer cell is a very
important area of research, as the cooperation can be a target
of therapy without selection pressure of individual cancer
cells, often initiating the metastasis.!” Recently the games
have been applied to the bacteria and cancer as a simplest
mathematical tool describing the cooperation, and one of the
central ideas in cancer biology is the idea of the mutator gene.
Our model just describes the combination of these two ideas:
for the un-mutated gene we have the matrix A, for the
mutated gene the matrix B.
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Fig. 4. The case PD+PD, see Sect. 3.3, (1). Maximum y(¢) as a function of
time ¢ via Local update mechanism for different initial distributions. The
numerical solutions obtained for N = 1000 and ¢ = 1. First strategy is
dominant, no interior rest points.

Fig. 5. The case PD+PD, see Sect. 3.3, (1). Maximum y(¢) as a function of
time ¢ via Local update mechanism for different initial distributions. The
numerical solutions obtained for N = 1000 and ¢ = 0. Second strategy is
dominant, no interior rest points.
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t

Fig. 6. The case PD+PD, see Sect. 3.3, (1). Maximum y(¢) as a function of
time ¢ via Local update mechanism for different initial distributions. The
numerical solutions obtained for N = 1000 and ¢ = 0.5. Additional interior
rest point at y = 0.5.
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We formulated the finite population dynamics using both
the Moran and the local update schemes and carefully
analyzed all the possible situations. We solved the model
mapping the large system of differential equations, the
chains of equations with some transitions between them,
into a single partial differential equation, HJE. According
to Eq. (26), the switching between the two regimes is
described via a very simple law. While deriving Eq. (8),
we missed the terms (dv;/dt)/N, (dv,/dt)/N. The dropped
terms don’t affect the maximum or the variance for the full
distribution P(X, 1) + Q(X, 1), while can affect the distribu-
tions P(X,7) or (X,f) for the small transition rates. One
can consider analytically the switching between the three
payoff matrices as well. In case of games the three
strategies allow an oscillating dynamics. We assume that
the new “dimension”, allows a very rich physics, a similar
system of two chains of equation reveals an algebraic
structure, close to the one in strings.>® A very interesting
is to look the ratchet like phenomena®® in this case in our
HJE approach. While considering the dynamics of the
maximum and variance, we used only one branch of the
Hamiltonian (13). It is highly interesting look the
situations, when both branches of Hamiltonian are relevant
for the dynamics.

From numerical simulations®® or analytic calculations,
statistical physics has been applied to understand scaling®
and universal®” behaviors of critical physical systems very
successfully (for a recent review, see’®), e.g., critical
exponents of a Lennard—Jones system obtained by molecular
dynamics simulations®” are consistent very well those of
the gas-liquid critical systems obtained by experiments.*?
Statistical physics has been applied to understand relaxation,
folding, and aggregation of proteins,*'*? biological evolu-
tion**=*> and the origin of life***” from the molecular level.
Following this trend, the two-chain model of Fig. 1 can be
used to represent interesting biological problems, such as the
static and the mutator gene problem, in which the mutator
gene can be either normal or abnormal. In the later case, the
mutator rate of alleles will increase. One can use the upper
chain of Fig. 1 to represent alleles with normal mutation rate
and the lower chain to represent alleles with higher mutation
rate. One can use Crow—Kimura model***> on such chains
to calculate the phase diagram of cancer*® and dynamic
behavior of a mutator gene model.*”

35)
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Appendix A: The Finite Population Dynamics via
Moran Process

There are different ways to define the rate functions R;,
(r=A,B; m=+l1) in the master equation (3) and r;,
(rt=A,B; m==+1) in our HJE. Here we analyze the
selection dynamics of the game with two players and two
different situations with matrices A and B. So we interpret
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each chain in (3) as a frequency-dependent Moran process
in the case of finite population (which provides a
stochastic microscopic description of a birth—death proc-
ess).

We consider the 2 X 2 constant matrices A = [i‘_ d]; B =
[; i]. Let indices 1 and 2 represent the number of chosen
strategy. N4, N describe the total number of species (here we
assume N4 = Np = N). Suppose that at the time ¢ there are X
players with type A, playing their first strategy, or X players
with type B and the same strategy. In this model we have the
following payoffs (we consider only intra-specific intercon-
nections):
aX—-1)+bN-X)

g = WX DN
n’?(X) _ cX+ dIE]N_—IX— 1) ,

) = A DHNZX,

e = 5 k]E]N_—lX ~ 1) A

The probability that the number of A-type individuals
playing the first strategy increases from X to X 4+ 1 (here
1 —w+ wx] determines the relative contributions of the
baseline fitness, normalized to one®):

1—w+w7rf‘(X) X N-X
l—w+w(xzA(X)) N N

A —
RA(X) = (A2)
where w is the selection coefficient.

To describe the decrease of the same number, we can use
the analogous equation

l-w+wryX) X N-X

A — L. .
RO=107 w(z4(X)) N N (A3
In both cases
(ﬂA(X)> _ ﬁf()0X+ ﬂf(X)(N -X) (A4)

N ;
represents the average payoff in the population.

We consider this model in the case of two strategies, so the
increase of the number of A individuals playing the 1 strategy
means the decrease of the number of the same species
playing the 2 strategy (if there is no switching between A and
B type). For the B-type player we can use (A-2) and (A-3)
equations substituting B in upper-indexes instead of A.

For the N - co we have (x = {):

7 (x) = ax + b(1 — x); 7 (x) = ex + d(1 - x)
nf(x) =ex+f(1 - x);ﬂ:f(x) =gx+ k(1 —x). (A-5)

Here we can derive the equations for densities of both players
(r =A,B):

. . mY)-m5Y) X N-X
ri(x) =limN — oo( ;(+ (”T(i§>) NN )
B x
- T+ ()
where (77(x)) = x7(x) + 75(x)(1 — x); T’ = 1=2—the base-
line fitness.

(1 () = (7" (0))); (A-6)

X

T+ (7 () (A7

ri(x) =

(m5(x) = (7" (x))).

©2015 The Physical Society of Japan
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It yields to the adjusted replicator dynamics®

AX AX
P = x( D) A = o 222
(x,AX) (%, A%)
here braces (¥, Ax) represent simple scalar product. For the B
matrix rates rf and 2 take the same form as (A-8). Therefore

- 1) (A-8)

Apn _ [AX) = (AX), .
Arf(x) = x<—(£,AJE) ),

B, _(BX) — (BX), )
Ar’(x) = x<7(i’ Bo) ) (A-9)

Appendix B: The Population Dynamics via Local
Update Mechanism

The second approach to analyze each chain is a local
update mechanism.

We consider the same 2 X 2 constant matrices as in the
Moran process with the same fitness 77, i = 1,2; 7= A, B.
But for the probabilities of changing the number of the fist
strategy players (A type) we have:

RAX) = (% " %ﬂ@rﬁ;ﬂ? 5.8 N]‘VX); (B-1)
A A
RAX) = <%+%”2 (AX)ﬂgaxﬂl -%-NNX) (B-2)
When we consider the limit N — oo in this case (7 = A, B):
() = lim N — oo(%+ %%) %%
= kx(n] — (7°(x))); (B-3)
where k = A”’”max.
ri(x) = kx(my — (7'(x))); (B-4)
For the 2 X 2 matrices it takes the form
ri() = kx((AD); — (%, AD);
rd(x) = kx((A%), — (£, AX)); (B-5)
So
Art(x) = xxi (AD); — (AX),);
ArP(x) = xy((BX), — (BX),). (B-6)
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