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Numerical modeling of dispersive shock waves called solibore in a stratified fluid is conducted. The theoretical model is based on
extended version of the Korteweg-de Vries equation which takes into account the effects of cubic nonlinearity and Earth rotation.
This model is now very popular in the physical oceanography. Initial conditions for simulations correspond to the real observed
internal waves of shock-like shape in the Pechora Sea, the Arctic. It is shown that a sharp drop (like kink in the soliton theory) in
the depth of the thermocline is conserved at a distance of one–three kilometers, and then it is transformed into dispersive shock
waves (shock wave with undulations).

1. Introduction

The theory of shock waves in fluid and gas in the framework
of hyperbolic set of equations is rather well developed [1–3].
An effective method to analyze shock waves is the use of con-
servation laws for appropriate quantities on the front of the
wave. The theory of shock waves in weakly dispersive media
is more difficult, because the shock profile contains damped
oscillations; it is called dispersive shock wave [4]. An example
of a system that enables existence of dispersive shockwave is a
well-known Korteweg-de Vries (KdV) equation with a small
parameter at the term with higher derivative:
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where 𝑢(𝜉, 𝜏) is a wave function, 𝜉 is spatial variable, 𝜏 is time,
𝜇 is a small parameter, and indices denote partial derivatives.
All the quantities in (1) are assumed to be nondimensional.
Here it is also possible to use the conservation laws; in parti-
cular for the Korteweg-de Vries equation there are an infinite
number of conservation laws [5]. An effectivemethod to ana-
lyze oscillating shock waves was proposed in the pioneering
paper [6], and then it was developed in the series of studies

by El and Kamchatnov with their coauthors [7–9]. The con-
sideration of a weak dissipation (less than dispersion) results
in a stabilization of dispersive shock wave, which then can
propagate as travelling wave [10].

Internal waves in the ocean can serve as an excellent
example of dispersive shock waves; such waves are called soli-
bores [11–14]. Solibores are generated by baroclinic tides and
were observed in many regions of the world ocean, especially
in shallow water. Their modelling is usually performed in
the framework of the Korteweg-de Vries-type equations (see
the papers cited below). Here we will give the results of the
modelling of internal solibore observed in Arctic waters. The
special feature of Arctic regions from the point of view of the
theory of nonlinear waves is the need to take into account
rotation of Earth that leads to the increase of the order of
evolutionary equations. In particular, the Korteweg-de Vries
equation should be replaced by the Gardner-Ostrovsky equa-
tion [15], which is not integrable. In Section 2 we describe
the observations of internal bore in the Pechora Sea (Arctic
basin). The model of internal wave transformation, based on
the Gardner-Ostrovsky equation, is given in Section 3. Coef-
ficients of this equation are calculated for the two-layer
model adapted for the real observed density stratification of
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the region of measurements; they are described in Section 4.
Section 5 contains the results of numerical modeling of inter-
nal solibore. The main conclusions are given in Section 6.

2. Observations of Internal Bore in
the Pechora Sea (Arctic Basin)

Internal bore was observed on the Barents Sea shelf in the so-
called Pechora Sea.Thebathymetricmap is shown in Figure 1.
The sea waters in this area are quite shallow; the depths are in
the range of 10–30m.

Measurements of internal waves in the Pechora Sea were
carried out during the 13th cruise of the R/V “Akademik Ser-
gey Vavilov” in August 1998 [16].The place of observations in
the southern shallow water region of the Pechora Sea (depth
16m) ismarked by red asterisk in Figure 1. Herewe reproduce
the description of the observed internal shock-like wave
from [16]: “An abrupt upward shift of the thermocline for
approximately 3m was registered (front duration was about
2 minutes), indicating the passage of internal bore. Imme-
diately after the bore forefront passage, the “yo-yo” profiles
yielded intense temperature inversions with an amplitude up
to 1∘C. Shortly thereafter the inversions disappeared, and the
thermocline became completely smooth within 2 hours after
the bore passage.” We will not reproduce original record due
to low quality, but its character will be visible then in Figure 4.

In the present study we used averaged hydrographic data
from climatological atlas [17], which was created exactly for
the Arctic region. The nearest points to the point of records
in this atlas were two points (numbered 3445 and 3493) with
depths 15 and 25m. For these points temperature and salinity
are given for 5 to 6 levels in vertical. On a base of these data
the buoyancy (Brunt-Väisälä) frequency𝑁(𝑧)was estimated:

𝑁(𝑧) = √−

𝑔𝑑𝜌0
𝜌0𝑑𝑧
, (2)

where 𝑧 is the vertical coordinate,𝑔 is the gravity acceleration,
and 𝜌0(𝑧) is the undisturbed density of sea water.The profiles
of𝑁(𝑧) are shown in Figure 2.

3. Theoretical Model of Internal Wave
Transformation in a Rotating Ocean

One of the main mechanisms of generation of short-period
internal waves is the transformation of internal tides [12].
Therefore, a proper theoretical model should be able to des-
cribe this process of transformation of long waves into a train
of short waves. An important point here is that Earth’s rota-
tion can notably affect these initially long waves. This impact
apparently is particularly large at higher latitudes and in the
case of wave propagation over long distances. The effect of
background rotation generally causes a short internal wave to
decay through the radiation of inertia-gravity waves; see the
review [18] and the recent studies [17, 19]. In practice, the time
scale for this decay is one or two inertial periods.

Several studies [16, 20, 21] address theoretical models that
include rotational effects on the same order (of weakness)
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Figure 1: Bathymetric map of the Pechora Sea. The place of obser-
vations is marked by red asterisk.

as effects of nonlinearity and dispersion. Because internal
solitary waves are often of large amplitudes, it is sometimes
useful to include a cubic nonlinear term in (1). A dimensional
extension of Korteweg-de Vries model (1) that accounts for
the cubic nonlinearity and Coriolis forcing due to Earth’s
rotation is the Gardner-Ostrovsky equation (also known as
the extended rotation-modified KdV equation):
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where 𝜂(𝑥, 𝑡) is an unknown function, 𝑥 is a spatial variable
(horizontal coordinate), 𝑡 is time, 𝑐 is the relevant linear long
wave speed, coefficients 𝛼, 𝛼

1
, and 𝛽 of the nonlinear and dis-

persive terms, respectively, are the environmental parameters
of internal waves determined by the properties of the basic
state (all these coefficients are described below), and 𝑓 is the
Coriolis parameter, which depends on the period of Earth’s
rotation 𝑇

𝑒
= 24 h and the geographical latitude 𝜑:

𝑓 =

4𝜋
𝑇
𝑒

sin𝜑. (4)

Corresponding numericalmodel of (3) is described in [15,
22]. This model was verified for the shelves of Australia and
Europe [23] and was used for the study of internal solitary
wave transformations on the shelves of the Kara Sea and the
Laptev Sea; internal breathers were also modeled for the con-
ditions of the Baltic Sea [24].

It is worthy to note that internal wave dynamics essen-
tially depends on the signs of the coefficients of (3).The coef-
ficient of dispersion 𝛽 is always positive; however, the coeffi-
cients of quadratic nonlinearity 𝛼 and cubic nonlinearity 𝛼1
can have either sign and even may vanish. The possible com-
binations of the signs of the nonlinear coefficients in the
Gardner equation correspond to different wave propagation
regimes.

4. Coefficients of the Gardner-
Ostrovsky Model

It was already mentioned that parameters of model (3)
depend on the background density stratification (buoyancy
frequency profile) and sea depth. As one can see from
Figure 2, there are only a few points in vertical coordinate in
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Figure 2: Buoyancy frequency profiles in the Pechora Sea near the region of observation of internal bore.
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Figure 3: Scheme of the two-layer model.

the hydrological data, and this fact implies quite rough esti-
mates of the parameters of (3).Therefore we (following origi-
nal paper [16]) decided to use a two-layer approximation of
vertical density profile (Figure 3).

For the case of two-layer stratification explicit expressions
of the coefficients of the Gardner-Ostrovsky equation are
known [25–27]:

𝑐 = √

𝑔Δ𝜌

𝜌

ℎ1ℎ2
ℎ1 + ℎ2
,

𝛼 =

3𝑐
2
ℎ1 − ℎ2
ℎ1ℎ2
,

𝛽 =

𝑐ℎ1ℎ2
6
,

𝛼1 = −
3𝑐

8ℎ21ℎ22
(ℎ

2
1 + ℎ

2
2 + 6ℎ1ℎ2) .

(5)

Here ℎ
1
and ℎ

2
are the undisturbed widths of the upper and

lower layers, respectively, 𝜌 is the reference density, and Δ𝜌 is
density jump between the layers.The sea depth is taken equal
to 15m. The characteristics of the two-layer model are given
in Table 1.The latitude to calculate the Coriolis parameter (4)
was taken to be 69.5∘N. Coefficients (5) of (3) are given in
Table 2 (Δ𝜌/𝜌 = 0.0027). They were calculated using the data
from Table 1.
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Figure 4: The shape of the initial condition (at 𝑥 = 0 km) for (3).

Table 1

Temperature Salinity Density
Upper layer,
ℎ
1
= 10m 𝑇

1
= 6∘C 𝑆

1
= 30‰ 𝜌1(𝑇1, 𝑆1) =

1023,60 kg/m3

Lower layer,
ℎ
2
= 5m 𝑇

2
= 3∘C 𝑆

2
= 33‰ 𝜌2(𝑇2, 𝑆2) =

1026,36 kg/m3

Table 2

Parameter Value
𝑐 0.297m/s
𝛽 2.475m3/s
𝛼 0.0445 s−1

𝛼
1

−0.0233 (m⋅s)−1

Note that using of the two-layer approximation leads to an
essential increase (up to two times and evenmore) of values of
nonlinear and dispersive coefficients of (3) in comparison to
similar continuous density stratification. The absolute value
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Figure 5: Continued.
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Figure 5: Transformation of internal wave from the point 𝑥 = −10 km to 𝑥 = 10 km.
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of coefficient 𝛼1 at the cubic nonlinear term here is compara-
ble to the quadratic nonlinearity parameter 𝛼. Therefore one
can expect an increase of the influence of nonlinearity in such
a model.

The internal wave record presented in [16] was digitized
with the time step of 18 seconds. High-frequency nontidal
oscillations and noise were filtered out with the help of stan-
dard algorithm given in [28]. The numerical model of the
boundary problem for (3) was solved with periodical bound-
ary conditions in time; therefore the time interval of the
record was enlarged up to 13.5 hours. Also initial signal 𝜂(𝑥 =
𝑥0, 𝑡) = 𝜂0(𝑡) was recalculated from the given level of 10.54m
from the seabed to the level of the interface between layers in
two-layer model (5m from bottom). The shape of the initial
condition is given in Figure 4.

5. The Results of the Modeling

Themodeling of internal wave evolution was carried out with
the aim of estimations of “lifetime” for certain forms of wave
motion, in particular, for internal bore (not containing undu-
lations) and solibore (with undulations).The initial wave was
used either for calculations of positive 𝑥-direction or negative
one (estimated prehistory, or past state of thewave). Transfor-
mation of the wave from the point 𝑥 = −10 km to 𝑥 = 10 km is
presented in Figure 5.

As the effect of cubic nonlinearity is significant for our
model, it leads to generation of one thick (top-table) solitary
wave (having maximal possibility for solitons amplitude) and
a number of usual KdV-solitary waves with amplitude being
twice less than limiting one (𝐴 lim = |𝛼/𝛼1| [14]) in the process
of degeneration of internal bore. This process was studied
theoretically in [29]. The top-table solitary wave is clearly
visible both at direct (𝑥 = 8.3 km) and at inverse (𝑥 = −10 km)
transformation of the initial bore-like wave.Thus, kink (steep
wave front without undulations on its profile) is present at
almost all the stages of the wave transformation. In fact, the
wave shape, which is given in experimental record, is formed
in the neighborhood of the point 𝑥 = −1.7 km and remains
the same almost until the point 𝑥 = 1.7 km. It exists on the
distance of about 3.5 km during around 3 hours.

The action of positive quadratic and significant negative
cubic nonlinearity leads to asymmetry (to positive polarities)
of the distribution function for wave displacements due to
formation of solitons. In the vicinity of 𝑥 = 0, where there are
no solitary waves, one can observe a deeper trough between
two crests, while the amplitude of this trough decreases in the
regions before and after 𝑥 = 0. This can be explained by pos-
itive quadratic and significant cubic nonlinearity when the
formation of solitons leads to asymmetry of the distribution
function of the displacement in the wave in the positive
region.

6. Conclusion

Numerical calculations of the evolution of the field of internal
waves in the Pechora Sea, in which measurements of inter-
nal bore were carried out in August 1998, are performed.

Measured form of internal bore is used as the initial condi-
tion for numerical simulations. Numerical model based on
the Gardner equation allows enabling the forecast of wave
evolution. It is shown that a sharp drop (kink) in the depth of
the thermocline is saved at a distance of one–three kilometers,
and then it is transformed into solibore (shock wave with
undulations).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The presented results were obtained within the framework
of the State Order in the sphere of scientific activity (Task
5.30.2014/K) and organization of scientific research (Task
2014/133).

References

[1] J. J. Stoker, Water Waves: The Mathematical Theory with Appli-
cations, Interscience Publishers, New York, NY, USA, 1957.

[2] G. B. Whitham, Linear and Nonlinear Waves, Wiley-Intersci-
ence, New York, NY, USA, 1974.

[3] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum
Physics, Springer, New York, NY, USA, 2009.

[4] T. B. Benjamin and M. J. Lighthill, “On conoidal waves and
bores,” Proceedings of the Royal Society—Series A:Mathematical,
Physical and Engineering Sciences, vol. 224, pp. 448–460, 1954.

[5] M. J. Ablowitz,Nonlinear DispersiveWaves. Asymptotic Analysis
and Solitons, CambridgeUniversity Press, Cambridge,UK, 2011.

[6] A.V.Gurevich and L. P. Pitaevskii, “Nonstationary structure of a
collisionless shock wave,” Soviet Physics—JETP, vol. 38, pp. 291–
295, 1974.

[7] A. M. Kamchatnov, Nonlinear Periodic Waves and Their Mod-
ulations: An Introductory Course, World Scientific, Singapore,
2000.

[8] G. A. El, “Resolution of a shock in hyperbolic systems modified
by weak dispersion,” Chaos, vol. 15, no. 3, Article ID 037103,
2005.

[9] A. M. Kamchatnov, Y.-H. Kuo, T.-C. Lin et al., “Undular bore
theory for theGardner equation,”Physical ReviewE—Statistical,
Nonlinear, and Soft Matter Physics, vol. 86, no. 3, Article ID
036605, 2012.

[10] S. Myint and R. H. J. Grimshaw, “The modulation of nonlinear
periodic wavetrains by dissipative terms in the Korteweg-de
Vries equation,”Wave Motion, vol. 22, no. 2, pp. 215–238, 1995.

[11] N. F. Smyth and P. E. Holloway, “Hydraulic jump and undular
bore formation on a shelf break,” Journal of Physical Oceanogra-
phy, vol. 18, no. 7, pp. 947–962, 1988.

[12] V. Vlasenko, N. Stashchuk, and K. Hutter, Baroclinic Tides:
Theoretical Modeling and Observational Evidence, Cambridge
University Press, Cambridge, UK, 2005.

[13] J. R. Apel, L. A. Ostrovsky, Y. A. Stepanyants, and J. F. Lynch,
“Internal solitons in the ocean and their effect on underwater
sound,” Journal of the Acoustical Society of America, vol. 121, no.
2, pp. 695–722, 2007.



Shock and Vibration 7

[14] R. Grimshaw, E. Pelinovsky, T. Talipova, and O. Kurkina,
“Internal solitary waves: propagation, deformation and disin-
tegration,” Nonlinear Processes in Geophysics, vol. 17, no. 6, pp.
633–649, 2010.

[15] P. E. Holloway, E. Pelinovsky, and T. Talipova, “A generalized
Korteweg-de Vries model of internal tide transformation in the
coastal zone,” Journal of Geophysical Research: Oceans, vol. 104,
no. 8, pp. 18333–18350, 1999.

[16] G. I. Shapiro, V. P. Shevchenko, A. P. Lisitsyn, A. N. Serebryany,
N. V. Politova, and T. M. Akivis, “Influence of internal waves
on the suspended sediment distribution in the Pechora Sea,”
Doklady Earth Sciences, vol. 373, pp. 899–901, 2000.

[17] J. C. Sánchez-Garrido andV.Vlasenko, “Long-term evolution of
strongly nonlinear internal solitary waves in a rotating channel,”
Nonlinear Processes in Geophysics, vol. 16, no. 5, pp. 587–598,
2009.

[18] K. R. Helfrich and W. K. Melville, “Long nonlinear internal
waves,” Annual Review of Fluid Mechanics, vol. 38, pp. 395–425,
2006.

[19] R. Grimshaw and K. Helfrich, “Long-time solutions of the
Ostrovsky equation,” Studies in Applied Mathematics, vol. 121,
no. 1, pp. 71–88, 2008.

[20] Joint U.S.—Russian Atlas of the Arctic Ocean, University of
Colorado, Boulder, Colo, USA, 1998.

[21] L. A. Ostrovsky, “Nonlinear internal waves in a rotating ocean,”
Oceanology, vol. 18, pp. 119–125, 1978.

[22] D. Y. Tyugin, O. E. Kurkina, and A. A. Kurkin, “Software pack-
age for the numerical simulation of the internal gravity waves in
the ocean,” Fundamental and Applied Hydrophysics, vol. 4, no. 2,
pp. 32–44, 2011 (Russian).

[23] T. G. Talipova, E. N. Pelinovsky, 0. 0. Kurkin, and \. @.
Kurkina, “Modeling of long internal wave dynamics on the
shelf,” Izvestiya, Atmospheric and Oceanic Physics, vol. 50, no.
6, pp. 714–722, 2014.

[24] E. Rouvinskaya, f. Talipova, O. Kurkina, T. Soomere, and D.
Tyugin, “Transformation of internal breathers in the idealised
shelf sea conditions,” Continental Shelf Research. Submitted.

[25] V. D. Djordjevic and L. G. Redekopp, “The fission and disinte-
gration of internal solitary wavesmoving over two-dimensional
topography,” Journal of Physical Oceanography, vol. 8, no. 6, pp.
1016–1024, 1978.

[26] T. Kakutani and N. Yamasaki, “Solitary waves on a two-layer
fluid,” Journal of the Physical Society of Japan, vol. 45, no. 2, pp.
674–679, 1978.

[27] C. G. Koop and G. Butler, “An investigation of internal solitary
waves in a two-fluid system,” Journal of FluidMechanics, vol. 112,
pp. 225–251, 1981.

[28] V. Guerra and R. A. Tapia, “A local procedure for error detection
and data smoothing,” MRC Technical Summary Report 1452,
Mathematics Research Center, University of Wisconsin, Madi-
son, Wis, USA, 1974.

[29] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, and A. Slunyaev,
“Generation of large-amplitude solitons in the extended Kor-
teweg–de Vries equation,” Chaos, vol. 12, no. 4, pp. 1070–1076,
2002.


