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Abstract

Just as intuitionistic proofs can be modeled by functions, linear logic proofs, being symmetric in the inputs and outputs, can
be modeled by relations (for example, cliques in coherence spaces). However generic relations do not establish any functional
dependence between the arguments, and therefore it is questionable whether they can be thought as reasonable generalizations of
functions. On the other hand, in some situations (typically in differential calculus) one can speak in some precise sense about an
implicit functional dependence defined by a relation. It turns out that it is possible to model linear logic with implicit functions
rather than general relations, an adequate language for such a semantics being (elementary) differential calculus. This results in a
non-degenerate model enjoying quite strong completeness properties.
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1. Introduction

Linear logic (LL), introduced by J.-Y. Girard in the late eighties [11], has become an extremely popular subject.
One of the attractive features of this system consists in combining its constructive nature (a possibility of functional
interpretation of proofs), typical for intuitionistic logic, with the familiar symmetries of classical logic, such as the
involutivity of negation and De Morgan dualities between connectives.

From the constructive point of view, a proof should be understood as a function, or, in more modern and general
terms, a morphism, that can be composed with other proofs. Typically, proofs of the implications A → B and B→ C
can be composed to yield a proof of A → C (the rule of syllogism). Thus one can think of a category, whose objects
are formulas, and whose morphisms are equivalence classes of proofs. In other words, one assumes existence of an
equivalence relation on proofs that turns the set of proofs and formulas into a well-defined category. However such a
functional interpretation is non-trivial only if there exist hom-sets with more than one element, in other words if there
exist formulas with several non-equivalent proofs.

This is the case for intuitionistic logic, whose proofs can indeed be interpreted as functions (say, λ-terms). In
this sense, intuitionistic logic is constructive, in fact a prototype of a constructive logic. Whereas classical logic
admits only a degenerate categorical interpretation, defined by declaring all proofs of the same formula equivalent
[14], pp. 67 -116. (The corresponding category is the Boolean algebra of provably equivalent formulas.) On the other
hand, classical logic enjoys a number of attractive symmetries, such as the duality between connectives, the involutive
negation, the law of excluded middle — all of which are lost in the intuitionistic case.
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Linear logic combines the constructive nature of intuitionistic logic and the symmetries of classical logic. This is
achieved by taking control over unlimited use of hypotheses. In LL each hypothesis in the proof should be used only
once and exactly once. (In this paper we discuss only the so-called multiplicative fragment of linear logic (MLL).
The interested reader can find an introduction to the full linear logic for example in [12].)

1.1. Denotational semantics
A denotational model of a constructive logic is a category where one can interpret formulas as objects and proofs

as morphisms, preserving the internal categorical structure of the logic (connectives, rules, axioms etc ). Finding
denotational models is the problem of denotational semantics.

Intuitionistic logic, for example, can be interpreted simply in the category of sets and functions (although this is
not a best model). Thus intuitionistic proofs, seen as λ-terms, represent “general” functions in quite a literal sense. On
the other hand a functional explanation of linear logic is not completely obvious. Linear logic proofs are symmetric in
the input and the output, and general functions are not. Thus linear logic proofs may correspond only to very special
functions (such as linear operators) or to something more general than “general” functions. Thinking of relations as
natural generalizations of functions, one often interprets linear logic proofs as relations. (This tradition goes back to
Girard’s work on quantitative semantics [10]. In such a semantics sets play the role of bases of vector spaces, and
relations are analogous to matrices. In this paper we take somewhat more primitive view of relations, not anticipating
any analogies with linear algebra.)

We note that LL cannot be characterized as the “general” logic of relations, the relational interpretation being very
degenerate. Such an interpretation fails to capture much of the structure of LL, and perhaps this can be explained as
follows. Linear logic proofs mix inputs and outputs indefinitely, and, thus, hide the correspondence between them.
However such a correspondence is always present implicitly — for example in the form of identity links connecting
dual literals in a proof-net. On the other hand a general relation does not imply any dependence between the arguments.
A relation, coming from an actual LL-proof, always has the form of an implicit function — some of the arguments
can be expressed as functions of the remaining ones.

This observation suggests the idea of modeling LL by means of implicit functions, typically in the setting of
differential calculus, where a relevant theory is well developed. In differential geometry, relations, defining implicit
functions, are supported at smooth submanifolds. Motivated by the above arguments, we develop a special rela-
tional interpretation of (multiplicative) linear logic, where proofs are modeled by smooth relations, i.e. by smooth
submanifolds.

Such an interpretation however does not come for free from the usual relational semantics. One should specify
the target category for the interpretation, and this is not completely trivial. An important phenomenon arising in
the smooth setting is that smooth relations do not compose in general, i.e. the set-theoretic composition of smooth
relations may fail to be smooth. In other words, smooth relations themselves do not form a category.

In order to get a well-defined denotational model, we interpret formulas as spaces (vector spaces or differentiable
manifolds), equipped with a certain extra structure that we call the smooth coherence space structure, since, in some
sense, it looks like a “smoothing” of the familiar coherence space structure of Girard. The extra structure (technically,
two conic subsets of tangent/cotangent vectors) plays the role of a typing specification for morphisms. Morphisms
between smooth coherence spaces are smooth relations satisfying the corresponding specifications.

With this definition we get a true category, i.e. our typing specifications exclude all uncomposable pairs of smooth
relations. Furthermore the extra structure of “coherence” breaks the degeneracy of the usual relational interpretation,
and thus we get a non-degenerate model of (multiplicative) linear logic (with the Mix-rule, to be completely pedantic).
Yet more interesting, the resulting model is complete in a certain (unusually strong) sense. The completeness theorem
says, modulo technicalities, the following. If we fix an interpretation of formulas as “ordinary” (not coherence)
spaces, i.e. vector spaces or smooth manifolds, thus getting a typical relational model, and if there exists a relation
between these spaces, which remains a morphism for any lift of the model to a smooth coherence spaces model, i.e.
for any consistent choice of “coherences”, then the above relation is the denotation of a proof. This can be compared
with the coherence spaces semantics of Girard. We can formulate the analogous statement in the setting of usual
coherence spaces, and it turns out to be wrong.

Thus we can argue that the tentative understanding of linear logic as the logic of implicit functions has some
basis. The corresponding interpretation is not only consistent with the familiar relational interpretation, but is in fact
a natural refinement of the latter one, which is not only sound but also complete.
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Since our interpretation is based on differential calculus, let us mention some other on-going work, which has
somewhat similar flavor. Recently T. Ehrhard and L. Regnier [7], [8] introduced differential linear logic (and differen-
tial lambda-calculus), whereas R.Blute, R. Cockett and R.A.G. Seely [2] started developing a corresponding semantic
theory of differential categories. These developments, however, make crucial use of the exponential fragment of LL,
and so far we have not been able to find any convincing relation with our work.

To finish the Introduction we should say a few words about the origins of this work. In an earlier work [18, 19]
we developed a similar relational model of linear logic in the setting of symplectic manifolds and Lagrangian sub-
manifolds, while the motivating idea was to find some relations with physics, in particular with quantum mechanics.
The new model, which we present in this work, is more or less a generalization of the symplectic model to the
non-symplectic case.

2. Linear logic

Formulas of the multiplicative linear logic (MLL) are built from positive and negative literals, respectively,
p0, . . . , pn, . . . and p⊥0 , . . . , p⊥n , . . ., by means of the binary connectives ⊗ (times, also tensor) and ℘ (par, also coten-
sor). Tensor and cotensor of two formulas are called their multiplicative conjunction and multiplicative disjunction
respectively. Linear negation A⊥ of the formula A is defined inductively by

(p⊥)⊥ = p, (X ⊗ Y)⊥ = X⊥℘Y⊥, (X℘Y)⊥ = X⊥ ⊗ Y⊥. (1)

Thus linear negation is involutive and multiplicative connectives enjoy the De Morgan-like duality, just as in classical
logic.

Linear implication (denoted by (.) ( (.)) is also defined as in classical logic:

A ( B = A⊥℘B (2)

In particular the identity axiom ` A ( A of linear logic is written as ` A⊥℘A, i.e. linear logic derives the law of
excluded middle.

The most popular syntax of MLL-proofs is that of proof-nets, which can be found in [12, 5, 9]. The sequent
calculus formulation of MLL is as follows (see [12]). The standard format of the sequent is one-sided, the two-sided
formalism is obtained by rewriting ` A⊥, B as A ` B etc. As usual, the one-sided sequents eventually should be
understood as big disjunctions, i.e. the sequent ` A1, . . . , An stands for the formula A1℘ . . . ℘An. The rules are below.

` A, A⊥
(Identity),

` Γ, A ` A⊥,∆
Γ ` ∆

(Cut),

` Γ, A, B,∆
` Γ, B, A,∆

(Exchange),

` Γ, A ` B,∆
` Γ, A ⊗ B,∆

(Times),
` Γ, A, B,∆
` Γ, A℘B,∆

(Par).

The system MLL + Mix is obtained by adding to MLL the following Mix rule:

` Γ ` ∆

` Γ,∆
(Mix).

Despite sharing many attractive features of classical logic, linear logic is constructive, like the intuitionistic one, which
means the possibility of functional interpretation. This means the following. Linear logic enjoys Cut-elimination with
the property that the cut-free form of each proof is unique (up to inessential permutations of rules). This property
allows us to define the equivalence relation on proofs, by declaring two proofs equivalent, if they have the same
cut-free form. Then the set of linear logic formulas becomes a category whose morphisms are equivalence classes
of proofs (a morphism from A to B is a proof of A ` B, i.e. of ` A⊥, B), composition of morphisms being given by
the application of the Cut rule (or of some its analogue, depending on the chosen syntax). Thinking of morphisms
as generalizations of functions, this gives us a functional interpretation of proofs. The interpretation is non-trivial,
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because there exist hom-sets with more than one element. In other words there exist formulas with several non-
equivalent proofs.

A denotational model of linear logic, is a category where one can interpret formulas as objects and proofs as mor-
phisms, preserving the internal categorical structure of the logic. In more down-to-earth terms this means simply that
the interpretation of a proof with Cut (i.e. the composition of several proofs) should coincide with the interpretation
of its cut-free form.

Semantically, multiplicative linear logic can be characterized as the logic of ∗-autonomous categories (see [17, 4]).
An example of a of ∗-autonomous category is the category Rel of sets and relations. The tensor ⊗ is defined as the
Cartesian product, and the involution (.)⊥ is the contravariant functor that sends each object to itself, and flips the
input and the output of a morphism, i.e. a relation σ ⊂ A × B between sets A and B is sent to the relation σ⊥ ⊂ B × A
between B and A, defined by the permutation of factors in A×B. The category Rel is, in fact, an example of a compact
closed category. These are ∗-autonomous categories with self-dual tensor, i.e. such that (A ⊗ B)⊥ � A⊥ ⊗ B⊥ for all
objects A, B. They yield degenerate models of MLL, since, by definition, the tensor and the cotensor (conjunction
and disjunction) are identified. One readily checks that Rel yields a denotational model of MLL + Mix, and that
the model is terribly degenerate. Nevertheless this semantics is very basic, and we will call it the standard relational
interpretation.

In addition to being very degenerate, one can argue that the relational interpretation can be thought as a “func-
tional” interpretation of logic only in a very abstract sense. Relations can be said to be generalizations of functions,
but it is that level of generalization where most of the functional content is lost completely. A general relation does not
establish any functional dependence between the arguments. As we argued in the Introduction, it is probably desirable
to interpret proofs as something less general, typically as implicit functions. An adequate setting for implicit functions
is differential calculus, and we propose to restrict from arbitrary relations to smooth relations, which always have the
form of implicit functions. As we shall see below, this setting turns out to have much more structure. In fact it gives
us not only a non-degenerate, but a complete semantics.

3. Some notation and terminology

In this Section we recall some basic notation and terminology from differential calculus and manifolds in order to
fix the language and avoid possible confusion. For a systematic introduction into the topic see, for example, [15, 6].

For simplicity, all ambient manifolds considered in this paper will be just Euclidean vector spaces. This does not
change anything in our construction and results, which are equally well applicable to a more general case. We will
also assume for convenience that our vector spaces are equipped with the usual Euclidean inner product.

Given a Euclidean space M of dimension n, the tangent bundle T M of M formally is the space M × Rn together
with the natural projection π : T M → M on the first factor. It is the set of all vectors tangent to M at different points,
and the projection π maps a vector to its point of tangency. The fiber π−1(x) of the projection π over the point x ∈ M
is called the tangent space to M at x, and is denoted TxM. The fibers are Euclidean vector spaces, and their Euclidean
vector space structures are a part of the data defining T M. However the whole bundle does not have any intrinsic
vector space structure (vectors tangent at different points cannot be added). The set of zero-vectors of all tangent
spaces is called the zero section. Although there are as many zero-vectors in T M as points in M, we will use the loose
notation 0 for a zero-vector without specifying the point of tangency unless this leads to a confusion. However, it is
important to stress that two vectors tangent at different points cannot be equal.

Any smooth (i.e. differentiable) map f : M → N between spaces M and N lifts to the tangent or derivative map
T f : T M → T N between the respective tangent bundles, extended to tangent vectors by T f : (x, v) 7→ ( f (x),D f (x)v),
where D f (x) is the Jacobian of f at the point x, also denoted by Tx f . Note that the map Tx f maps TxM to T f (x)N.

A smooth submanifold of the space Rn can be defined as follows.

Definition 1. A subset σ ⊆ Rn is a smooth submanifold of dimension k, if for any x0 ∈ σ there exist a neighborhood
U of x0 and a function F : Rn → Rn−k, such that the Jacobian D f (x0) of f is non-degenerate at x0 and σ is defined
by the equation F(x) = 0, i.e. σ ∩ U = F−1(0) ∩ U.

By an immediate application of the Implicit Function Theorem (see [15] (I.5) for its formulation and proof) one
obtains an equivalent definition, which seems somewhat more instructive for our purposes.
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Definition 2. A subset σ ⊆ Rn is a smooth submanifold of dimension k, if for any x0 ∈ σ there exists a partition of
the set {1, . . . , n} into two sets {i1, . . . , ik} and { j1, . . . , jn−k} and a smooth function f : Rk → Rn−k, (xi1 , . . . , xik ) 7→
(x j1 , . . . , x jn−k ), such that in a neighborhood U of x0, the set σ coincides with the graph of f .

Thus a smooth submanifold locally defines an implicit function, namely the f in the above definition. Accordingly
we will understand smooth submanifolds as geometric representations of implicit functions. In the sequel the word
“submanifold” will always stand for “smooth submanifold”.

A standard example of a submanifold is the circle S 1 ⊂ R2, defined by the equation x2 + y2 = 1. The equation
has a locally unique solution at each point of S 1, for example x = (1 − y2)

1
2 , which defines the corresponding implicit

function.
A submanifold σ of the space M has as its tangent bundle the space Tσ that consists of all vectors in T M tangent

to smooth curves lying in σ. Again, the tangent bundle is equipped with the natural projection Tσ→ σ, whose fibers
(tangent spaces to σ) have intrinsic vector space structures. More precisely, the tangent space Txσ to σ at the point
x is a vector subspace of the tangent space TxM to the ambient space at the same point. If σ in some neighborhood
is given by the equation F(x) = 0, then its tangent vectors v at a point x in this neighborhood are those satisfying
DF(x)v = 0.

The vectors normal to σ at x are those that belong to the annihilator Ann(Txσ) of Txσ in TxM (remember that our
ambient spaces are assumed to be equipped with the standard Euclidean inner product). The annihilator Ann(L) of a
subspace L is defined as the set of vectors orthogonal to each vector in L.

An immersed submanifold σ of M is the manifold σ together with the immersion map iσ : σ → M which is
locally an isomorphism onto a submanifold of M. Two immersed submanifolds σ and σ′ of M are identified, if there
exists a smooth isomorphism φ : σ → σ′ connecting the immersion maps: iσ = iσ′ ◦ φ. To be completely pedantic,
for an immersed submanifold σ, we should accurately distinguish between points of the manifold σ and points of the
image iσ(σ) of the immersion map. We do not do that, because it never leads to confusion. In the sequel we use the
term “submanifold” as a shorthand for “immersed submanifold”.

4. Smooth submanifolds and relations

In this Section we discuss smooth relations and how to compose them.
Recall that a relation between sets M and N is a subset of the product M × N. A relation σ between sets M, N can

be composed with a relation τ between N and K yielding the relation τ ◦ σ by the formula

τ ◦ σ = {(x, z)|x ∈ M, z ∈ K s.t. ∃y ∈ N (x, y) ∈ σ, (y, z) ∈ τ}.

In this way sets and relations form a category (denoted Rel) with identities given by the diagonal subsets of the form
{(x, x)}.

Let us consider what happens with relations in the smooth setting.
A relation σ between the spaces M and N is smooth if it is supported at a smooth submanifold of M × N.
It turns out that smooth relations do not compose, and the standard example is as follows. We take the relations

x2 + y2 = 1 and y2 + z2 = 1. Their set-theoretic composition is easily seen to be the relation x2 = z2, |x| < 1, |z| < 1.
At the point (x, z) = (0, 0), the defining equation has two solutions x = z, x = −z, and thus the relation does not define
any single-valued function, hence it is not supported at any submanifold.

In fact, smooth relations are not closed under intersections (i.e. fiber products) and projections, and this is precisely
the reason why they do not compose. Indeed, for the relations σ ⊆ M × N and τ ⊆ N × K, their composition τ ◦ σ is
defined as the intersection of σ × τ with M × ∆N × K, where ∆N is the diagonal submanifold of N × N, followed by
the projection π : M × ∆N × K → M × K along ∆N , that is σ ∩ τ = π(σ × τ ∩ M × ∆N × K). If we want two smooth
relations to compose, it is sufficient to ensure that the above intersection and projection preserve smoothness. This
will be our strategy for building a well-defined category of smooth relations.

The two theorems below are standard results in differential geometry. See, for example [15] (II.3).
Recall that two submanifolds σ and τ of the space M are transversal at the point x ∈ σ ∩ τ if their tangent spaces

Txσ and Txτ at x span the whole tangent space of M: TxM = Txσ + Txτ. Equivalently, σ and τ are transversal at x if
their tangent spaces at this point have no common nonzero normal vector.
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Theorem 1. If smooth submanifolds σ and τ of the space M are transversal at each point of their intersection then
their intersection σ ∩ τ is a smooth submanifold of M.

This is a corollary of [15] (II.3), Prop. 4.

Having found a sufficient condition for the intersection of submanifolds to be a submanifold, we need a similar
condition for projections. Here it is.

Theorem 2. Let σ be a smooth submanifold of the space M, and let f be a smooth map from M to another space N.
If at any point x ∈ σ no nonzero tangent vector of σ belongs to the kernel of the derivative Tx f of f at x then f (σ) is
a submanifold of N.

This is a corollary of [15] (II.3), Prop. 2.

5. Smooth coherence spaces

In this Section we construct a category of smooth relations and show that it gives a sound model of MLL.
In the previous Section we discussed the problems with composing smooth relations, and saw that these problems

arise because the class of smooth submanifolds is not closed under intersections and projections. We also recalled
the sufficient conditions for, respectively, the intersection of two submanifolds and the projection of a submanifold to
be a submanifold. Observe that one of these conditions (Theorem 1) is formulated in terms of vectors normal to the
submanifolds involved, and the other (Theorem 2) is formulated in terms of tangent vectors. This suggests us what
kind of the extra structure on the ambient spaces is needed in order to ensure compositionality of submanifolds.

Definition 3. A smooth coherence space A is a triple (MA,CA,CCA), where MA is a Euclidean vector space, and
CA and CCA, respectively coherence and cocoherence, are subsets of the tangent bundle T MA closed under scalar
multiplication. A clique in the smooth coherence space A is a submanifold σ of MA, all of whose tangent vectors
belong to CA, and all of whose normal vectors belong to CCA.

Remark If we were considering general (not necessarily Euclidean) vector spaces, or even general manifolds,
we would define the cocoherence as a subset of the cotangent, rather than the tangent bundle. All constructions and
results of this paper apply to this more general definition without any complication.

We will build a category of smooth coherence spaces with cliques as morphisms, and interpret MLL in it. First of
all let us define the interpretation of connectives.

The dual A⊥ of the smooth coherence space A is defined as follows. The underlying space MA⊥ is just MA. The
coherence CA⊥ is the conic subset of T MA complementary to CA, i.e. CA⊥ = {v ∈ T MA|v < CA or v = 0}. The
cocoherence CCA⊥ is defined identically to CA⊥ with CA replaced with CCA, i.e. CCA⊥ is the complementary conic
subset to CCA. Note that CA and CA⊥ (CCA and CCA⊥ ) have all zero-vectors in the intersection.

Note also that, obviously, A⊥ = A⊥⊥.
The tensor A ⊗ B of the smooth coherence spaces A and B is defined by MA⊗B = MA × MB, CA⊗B = CA × CB,

CCA⊗B = CCA ×CCB.
All other connectives can be expressed in terms of the above, but let us spell out the definitions. The cotensor

A℘B and the internal hom-space A ( B of smooth coherence spaces A and B are defined as follows. On the level of
underlying spaces: MA℘B = MA(B = MA × MB. On the level of coherences: CA℘B = {(u, v)|0 , u ∈ CA or 0 , v ∈
CB, or (u, v) = 0}, CA(B = {(u, v)|u ∈ CA implies 0 , v ∈ CB, or (u, v) = 0}. On the level of cocoherences: similar to
coherences.

Now we say that a morphism between the smooth coherence spaces A and B is just any clique in A ( B.
Remark A reader familiar with the usual coherence spaces semantics (see [12]) can note that, if we agree that

a tangent vector is in fact a pair of “infinitely close” points, then as far as coherences are concerned, all operations
on smooth coherence spaces are literal translation from the language of ordinary coherence spaces. However, the
structure of cocoherence is a new ingredient. In some sense it plays the role of totality, see [16].
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Lemma 1. Given smooth coherence spaces A, B, C and cliques σ, τ in A ( B and B ( C respectively, the set-
theoretic composition τ ◦ σ is a clique in A ( C.

Proof One should check first of all that τ ◦ σ is a smooth submanifold.
The submanifold δ = MA ×∆B ×MC of MA ×MB ×MB ×MC , where ∆B is the diagonal submanifold of MB ×MB,

has normal vectors of the form (0, v,−v, 0), v ∈ T MB. One easily checks that none of the nonzero normal vectors of
σ × τ can be of such a form, because of the cocoherence conditions. Hence by Theorem 1, the intersection σ × τ ∩ δ
is a submanifold.

The kernel of the derivative of the projection π : δ → MA × MC along ∆B consists of the vectors of the form
(0, v, v, 0), v ∈ T MB. Again, none of the nonzero vectors tangent to σ× τ∩ δ, hence to σ× τ, has such a form because
of the coherence conditions. Hence by Theorem 2, the projection π(σ × τ ∩ δ) = τ ◦ σ is a submanifold.

One should check that τ ∩ σ satisfies the corresponding coherence and cocoherence conditions. The case of
coherence being routine, let us check for cocoherence.

Let us denote X = MA × MB × MB × MC , ρ = σ × τ, X = MA × MC . We have the submanifold δ ∩ ρ ⊂ X, the
projection π : δ→ X, and the image ρ = π(δ ∩ ρ) = σ ◦ τ. Abusing the notation we will denote the derivative of π by
the same letter. Finally, let P = CCA⊗(B℘B⊥)⊗C⊥ , P = CCA⊗C⊥ . Pick a point x of δ∩ ρ, and let x = π(x) ∈ ρ. We need to
show that no non-zero vector v ∈ P is normal to ρ at x.

Let 0 , v = (v1, v2) ∈ TxX be in P. Then the subspace

V = {(tv1, a,−a, tv2)|t ∈ R, a ∈ TxMB}

of TxX lies in P. Hence no non-zero vector from V is normal to ρ. In particular the annihilator Ann(V) of V and
Txρ span the whole TxX. Now let u = (u1, u2) ∈ TxX. Then the vector u = (u1, 0, 0, u2) ∈ TxX has a representation
u = ξ + ν, where ξ ∈ Ann(V) and ν ∈ Txρ. Note that ξ necessarily is of the form ξ = (ξ1, a, a, ξ2), hence ν is of the
form ν = (ν1,−a,−a, ν2). In particular ν ∈ T (ρ ∩ δ), and π(ν) ∈ Tρ. On the other hand it is easy to see that π(Ann(V))
lies in (in fact, equals) the annihilator of v. Since u = π(ξ) + π(ν), we have shown that Ann(v) and Txρ span the whole
TxX. But this means that v is not normal to ρ.

Thus composition of cliques is well-defined, and smooth coherence spaces form a category. (The identities being
given by the diagonal submanifolds: δA = {(x, x)|x ∈ MA} ⊂ MA × MA. It is straightforward to check that they are
indeed cliques in A ( A = A⊥℘A.) One routinely checks that this category provides a sound model of MLL + Mix
with the above defined interpretation of connectives, in other words that the category is ∗-autonomous. In fact, it is an
empirical observation that a consistent refinement of the standard relational model, or, in general, of a compact closed
category yields a model of MLL, see [13]. So we conclude with the soundness theorem.

Theorem 3. The category of smooth coherence spaces and cliques is a denotational model of MLL + Mix.

In the next Section we are going to discuss the more interesting completeness questions. However, one can see
from the start that our model breaks the degeneracy of the standard relational model. It is easy to see that for any
smooth coherence space A , {0}, the diagonal submanifold ∆ ⊂ MA × MA is a clique in A⊥℘A (in fact, it is the
denotation of the corresponding axiom), but never in A⊥ ⊗ A.

6. Completeness

In this Section we discuss the completeness properties of the smooth coherence spaces model. In denotational
semantics we are interested in full completeness, some sort of completeness on the level of proofs (to the author’s
knowledge, the term and the first corresponding theorem were proposed by S. Abramsky and R. Jagadeesan [1]). In
the current literature, most often full completeness of a model means that all dinatural transformations in the category
under consideration are denotations of proofs (this sort of full completeness was introduced in [3]). We are going to
show, however, that the smooth coherence spaces model enjoys a somewhat stronger full completeness property.

Fix an interpretation M : p 7→ Mp of literals as Euclidean spaces and interpret the multiplicative connectives
as the Cartesian products of spaces. This extends to the interpretation A 7→ MA of all MLL-formulas, in fact to a
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relational model of MLL. Any choice of smooth coherence space structures (Cp,CCp) on the spaces Mp lifts the
above relational model to a smooth coherence space model. It is easy to see that the interpretation of proofs, in fact,
does not depend on the lift: if the relation σ between the spaces MA and MB is a denotation of a proof of the formula
MA ( MB then σ is a clique for any consistent choice of coherences and cocoherences. The completeness theorem
says that the converse is also true, provided that the spaces involved are not too degenerate.

Theorem 4 (Completeness). Assume that all literals are interpreted as spaces of dimension greater than 1. Let F be
an MLL-formula, and let σ be a closed, connected and nonempty submanifold of MF . If for any choice of coherences
and cocoherences for the literals the submanifold σ is a clique in the induced smooth coherence spaces model, then
σ is a denotation of a proof in MLL+Mix.

One can compare the stated result with the case of the ordinary coherence spaces model due to Girard (see [12]).
Given a set A, the subset σ = {(x, x, x)|x ∈ A} of A3 is easily seen to be a clique in the coherence space A ( A⊗ A for
any choice of the coherence structure on the set A. However σ, obviously, is not a denotation of any proof. Thus the
analogous theorem does not hold for the ordinary coherence spaces model. Which shows that the smooth coherence
spaces model is strictly “more complete” than the ordinary one. Note also that our completeness theorem is stronger
than the usual full completeness theorems saying that all dinatural transformations come from proofs, since in order
to establish dinaturality one has to vary the interpretation of literals over all objects in the category, whereas in our
case we vary only the coherence structures. The ordinary coherence spaces model, by the way, is known to be fully
complete in the sense of dinatural transformations [20].

Proof We assume that the reader is familiar with the formalism of proof-nets and with the Danos-Regnier criterion.
This machinery, specified for the case of MLL+Mix, is described in [9].

We start with two very simple algebraic observations.

Note 1. If a vector subspace K of the vector space V lies in the union of a finite collection of vector subspaces
K1, . . . ,Kk of V, then, for some i = 1, . . . , k the space K lies entirely in Ki.

Proof Exercise.

Lemma 2. Let V1, V2 be Euclidean vector spaces, V = V1 × V2 and πi : V → Vi be the natural projections, i = 1, 2.
Let L be a subspace of V. Then, if Ann(π1(L)) = π1(Ann(L)) then L = π1(L) × π2(L).

Proof Let N = Ann(L), Li = πi(L), Ni = πi(N), i = 1, 2. We know that Ann(L1) = N1. So L1 = Ann(N1), and
L1 × {0} ⊆ Ann(N) = L. The statement follows.

Now let us proceed to the proof of the Theorem.
Let a1, . . . , an be an enumeration of all occurrences of literals in F. For each i = 1, . . . , n let Mi = Mpi and let

πi be the natural projection MF → Mi. In general, for any (occurrence of a) subformula φ of F let πφ be the natural
projection MF → Mφ.

We will use the following notational conventions. If x is a point of σ, then V = TxMF , L = Txσ, N = Ann(L).
Abusing notation, we will denote the projection V → Vi by πi as well. We will write xi = πi(x), yi = πi(y) Vi = πi(V),
Vφ = πφ(V). Similarly, for any v ∈ L, u ∈ N we write vi = πi(v), ui = πi(u), vφ = πφ(v), uφ = πφ(u).

Note 2. For any point x ∈ σ, any i = 1, . . . , n the restrictions of πi to L and N are surjective.

Proof Assume that there exists an i, such that Li = πi(L) is not the whole Vi. Then there exists a non-zero vector ξ ∈ Vi

in the annihilator of Li, and the vector u, defined by ui = ξ, u j = 0 for j , i belongs to N. Let p = a⊥i , and choose the
cocoherence CCp = {tξ|t ∈ R}. By induction on F one establishes that u < CCF , which contradicts the hypothesis of
the Theorem. The argument for N is symmetric.

Now let us call any set S of unordered pairs (i, j), i, j = 1, . . . , n, such that ai = a⊥j , a linking. For x ∈ σ, let S (x)
be the linking consisting of all pairs (i, j) such that ai = a⊥j , and xi = x j. Let us call a point x ∈ σ generic if for all y
in a neighborhood of x, we have S (x) ⊆ S (y).

8
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Lemma 3. The set of generic points is dense in σ.

Proof Let x be a point in σ, U be a neighborhood of x in σ. Let us prove that there exists a generic point x′ ∈ U.
Assume that x is not generic, and let S 0 = S (x). Then there exists a sequence {yk} converging to x in U, such

that S 0 * S (yk) for all k. Since the set of linkings is finite, it follows that there exists a subsequence {x1
k} of {yk},

such that S (x1
k) = S 1 is constant. It is easy to see that S 0 ⊃ S 1: any equation from S 1 is satisfied at x by continuity,

since x = lim
k→∞

x1
k . If x1 = x1

1 is generic, we are done. Otherwise, by the same argument, there exists a sequence {x2
k}

converging to x1 in U, with S (x2
k) = S 2 constant and S 1 ⊇ S 2.

Repeating the argument we obtain a family of points x, x1, . . . , xi, . . . in U, with the corresponding chain of linkings
S 1 ⊇ S 2 ⊇ . . . ⊃ S i ⊇ . . ., where S i = S (xi). Since the set of linkings is finite, the chain must stop at some i, and the
corresponding point xi is generic.

Note 3. For any point x ∈ σ, any non-zero u ∈ N there exists a linking {(i, j)}, such that 0 , ui = tu j (hence xi = x j)
for some non-zero scalar t. In particular (i, j) ∈ S (x).

Proof Assume that the statement does not hold.
Then there exist non-zero u ∈ N such that for any linking {(i, j)} either ui = 0 or u j = 0 or ui and u j are linearly

independent.
For each positive literal p define the cocoherence CCp by

CCp = {λξ|ξ = u j for some j s.t. a j = p⊥, λ ∈ R}. (3)

By induction on F, one establishes u < CCF .

Lemma 4. At a generic point x, for any non-zero u ∈ N there exists a pair (i, j) ∈ S (x), such that vi = v j for all v ∈ L
(hence xi = x j), and 0 , ui = −u j (where, as usual, L = Txσ, N = Ann(L)).

Proof Let S = S (x). First of all, note that if (i, j) ∈ S , then automatically vi = v j for all v ∈ L, since for all y in a
neighborhood of x it holds that yi = y j.

Now assume the statement does not hold, i.e. there exists u ∈ N, such that (i, j) ∈ S implies ui , −u j or
ui = u j = 0. On the other hand we know that there exists (i, j) ∈ S , such that 0 , ui = tu j for some non-zero t.
We want to pick out of S a certain maximal collection of disjoint pairs. For that purpose we partition S into disjoint
clusters by the following rule: (i, j) and (i′, j′) belong to the same cluster, if xi = xi′ , and ai = ai′ or ai = a⊥i′ . To each
cluster C corresponds a collection C̃ of occurrences of literals in F - namely those which occur in pairs belonging to
C, and all literals corresponding to a given cluster are either equal or dual to each other. Therefore we can associate to
each cluster C an ordered pair (pC , p⊥C), such that every occurrence in C̃ is an occurrence of either pC or p⊥C , and the
number of occurrences of pC in C̃ is greater or equal than the number of occurrences of p⊥C . Now, for a given C we
pick a maximal collection {(i1, j1), . . . , (isC , jsC )} ⊆ C of disjoint pairs with the convention that ik’s correspond to pC ,
and jk’s correspond to p⊥C (i.e. aik = pC , and a jk = p⊥C). It is easy to see that our choice of pC and the maximality of
the collection guarantees that for any (i, j) ∈ C if a j = p⊥C then j = jk for some k = 1, . . . , sC . Taking the union over
all clusters, we get a maximal collection {(i1, j1), . . . , (is, js)} of disjoint pairs in S .

As we noted above, for any v ∈ L it holds that vik = v jk . It follows that the vector ξk defined by (ξk)ik = uik ,(ξk) jk =

−u jk , (ξk)i = 0 for all i , ik, jk, belongs to N = Ann(L). Also, we deduce from the Note 3 that for each k there exists

some tk , 0,−1, such that 0 , u jk = tkuik . Then the non-zero vector ψ = u +
s∑

k=1
tkξk belongs to N. But ψ does not

satisfy the statement of Note 3.
Indeed, let (i, j) ∈ S . Then the pair (i, j) belongs to some cluster C. There are three possibilities.
First: (i, j) = (ik, jk) for some k = 1, . . . , s. Then ψi = (1 + tk)ui , 0 (since tk , −1), ψ j = 0.
Second: (i, j) = ( jk, ik) for some k = 1, . . . , s. By a similar argument, ψi = 0, ψ j , 0.
Third: the pair (i, j) does not belong to our maximal family. But (i, j) ∈ S , hence (i, j) belongs to some cluster

C. Then either ai = pC or a j = pC . For definiteness assume ai = pC , a j = p⊥C . It follows then that j = jk for some
k = 1, . . . , sC . Hence ψi = ui , 0, u j = 0.

9



S. Slavnov / Annals of Pure and Applied Logic 00 (2013) 1–12 10

Lemma 5. For a generic point x, the set S (x) is a partition of {1, . . . , n} into disjoint pairs {i1, j1}, . . . , {ik, jk} (where
k = n

2 ).

Proof Let S = S (x). The proof is by induction.
The induction step is as follows.
For any integer l, 0 ≤ l ≤ k there exist l disjoint pairs {i1, j1}, . . . , {il, jl} in S , such that the tangent space L is

isomorphic to the product
L � L′ × Li1 j1 × . . . × Lil jl , (4)

where L′ is a subspace of V ′ =
∏

i,i1, j1,...,il, jl
Li, the subspaces Lis js ⊂ Vis × V js are defined by the respective equations

vis = v js , and the above isomorphism is induced by a permutation of factors.
Note that the above statement implies that xis = x js for s = 1, . . . , l, since two tangent vectors may be equal only

if they are tangent at the same point.
Let us prove the statement.
For l = 0 there is nothing to prove.
Assume that the statement is proven for a given l < k, and let us prove it for l + 1.
For the given l, we have the factorization (4). Let N′ = Ann(L′). Note that N′ is a direct factor in N.
Now N′ can be identified with a subspace of N = Ann(L) by means of the natural injection V ′ → V . Then, it

follows from Lemma 4 that for each non-zero u ∈ N′, there exists a pair (i, j) ∈ S (x), such that vi = v j for all v ∈ L,
and ui = −u j. So the subspace N′ lies in the union of a finite collection of vector subspaces of V ′, defined by equations
of the form ui = −u j, corresponding to different choices of the above (i, j). By Note 1 there exists a pair (i, j) ∈ S ,
such that N′ lies entirely in the corresponding subspace, i.e. such that ui = −u j for all u ∈ N′. Since N′ is a direct
factor in N, it follows that the projection Ni j of N to Vi × V j lies in the subspace defined by the equation ui = −u j.
Moreover, since the projections from N to Vi and V j are surjective, we deduce that Ni j coincides with this subspace.
Similarly, the projection Li j of L to Vi × V j is the subspace defined by vi = v j. We are in the situation of Lemma 2,
and it follows that Li j is a direct factor in L (up to an isomorphism induced by a permutation of indices).

Since for a generic x it holds that S (x) ⊂ S (y) for all y in a neighborhood of x, it follows that the partition
{i1, j1}, . . . , {ik, jk}, constructed in the previous Lemma for a given generic x, works for all y in a neighborhood of x,
i.e. for all such y’s it holds that yis = y js , s = 1, . . . , k. Then, since generic points are dense, and σ is connected, we
deduce by continuity that this partition works, in fact, for any point of σ. It follows that σ is an open subset of the
submanifold σ′ defined by the equations xis = x js , s = 1, . . . , k. But since σ is closed it must be that σ = σ′.

The above partition establishes a bijection between the sets of positive and negative occurrences of literals in F,
and it is clear how to construct a proof-structure from it — connect each ais and a js by an axiom link. Let ρ be the
constructed proof-structure.

Lemma 6. The proof-structure ρ is a proof-net.

Proof Assume this is not the case. Recall that a switching of the proof-structure ρ is any graph obtained from ρ by
deleting for every ℘-link of ρ one of the two edges forming the link. By the Danos-Regnier criterion there exists a
cyclic switching α of ρ. So there exists a closed path z in α, which can be represented as a closed path, which traverses
each of its vertices except the starting one exactly once. Let s be the number of the axiom links traversed by z. It is
easy to see that, in terms of the formulas labeling its consecutive vertices, z must necessarily have a presentation of the
form z = (a1, b1 . . . , ai, bi, . . . , as, bs, . . . , a1), where all ai’s and bi’s are literals, ai = b⊥i , and ai and bi are connected
by an axiom link, i = 1, . . . , s, and dots stand for compound formulas.

Let us say that the above ai’s and bi’s are, respectively, false and true occurrences of literals in F. Let us say
that all other occurrences of literals in F are inessential. Note that, if F̄ is the tree of subformulas of F considered
as a subgraph of ρ, then the connected components of z ∩ F̄ are paths starting at true occurrences and ending at false
occurrences.

Now pick a point x ∈ σ, and let V = Txσ. It follows from the factorization (4) that there exists a vector v ∈ V ,
such that for any occurrence a of a literal in F it holds that va = 0 iff the occurrence a is inessential. Moreover, since
the dimensions of all spaces involved are greater than 1, it follows that v can be chosen such that for any two distinct
occurrences a1 and a2 of the same literal a, the projections va1 and va2 are linearly independent in Va.

10
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For each positive literal p let us define the coherence Cp ⊆ Vp by

Cp = {tva|a is a true occurrence of p in F, t ∈ R} ∪ {0}, (5)

and extend the definition to compound formulas inductively. We claim that v < CF .
This follows from the following observation.

Lemma 7. Let A be (an occurrence of) a subformula in F. Let Ā be the tree of subformulas of A, considered as a
subgraph of ρ. Then the following statements hold.

If vA = 0 then z does not meet Ā.
If 0 , vA ∈ CA then there exists a true occurrence a in A, such that the connected component of z∩ Ā starting at a

has the endpoints a and A.

Proof The first statement of the Lemma is straightforward. The second is proven by induction on the formula.
Let A be a positive literal. If the occurrence is inessential, then vA = 0. If the occurrence is false, then vA can be

CA only if there exists a true occurrence A′ of the same literal, such that vA = tvA′ for some t. But by our choice of v
the projections vA and vA′ are linearly independent. So A must be a true occurrence.

Let A be a negative literal, A = p⊥. Again, the occurrence A cannot be inessential. If the occurrence A is false
then the dual occurrence B of p, connected to A by an axiom link is true. Therefore vA = vB is in Cp and not in Cp⊥ ,
since vA , 0. So A must be a true occurrence again.

Let A = A1℘A2. If 0 , vA ∈ CA then at least for some i = 1, 2 it holds that 0 , vAi ∈ CAi . Assume for
definiteness that the i in question equals 1. By the induction hypothesis there exists a true occurrence a in A1 such
that the connected component z1 of z ∩ Ā1 starting at a has the endpoints a and A1. That means that the connected
component zA of z ∩ Ā leaves the tree Ā1 after traversing A1, and the only way for zA to leave Ā1 is along the edge
(A1, A). It follows that in the switching α it is the edge (A2, A) and not (A1, A), which was erased. But if the edge
(A2, A) was erased, the path zA has no way to continue after getting to A, hence A is its endpoint.

Let A = A1 ⊗ A2. If 0 , vA ∈ CA, then 0 , vAi ∈ CAi , i = 1, 2, and at least for some i = 1, 2 it holds that vAi , 0.
Assume for definiteness that the i in question equals 1. By the induction hypothesis there exists a true occurrence a
in A1 such that the connected component z1 of z ∩ Ā1 starting at a has the endpoints a and A1. If vA2 = 0, then z does
not meet Ā2, hence the connected component zA of z ∩ Ā has no way to continue after getting to A, hence A is its
endpoint. Assume that vA2 , 0. Again, by the induction hypothesis there exists a true occurrence a′ in A2 such that
the connected component z2 of z ∩ Ā2 starting at a′ has the endpoints a and A2. Then the path zA after traversing A
goes up along the edge (A, A2) and continues to traverse z2 in the reverse order, ending at a′. Then the path zA is a
connected component of z∩ F̄, with the endpoints a and a′. But then one of these occurrences must be false, which is
a contradiction. Thus vA2 = 0, and the statement holds.

The previous Lemma implies that if v ∈ CF then there exists a connected component of z ∩ F̄, one of whose
endpoints is F. But this is impossible, since all connected components of z ∩ F̄ start and end at literals. This finishes
the proof of the Theorem.

Note that the restriction that the interpretations of literals must be of dimension greater than one is essential. If
we set Mp = R then the submanifold σ = {(x, y, x, y)|x, y ∈ Mp} of M4

p is a clique in the smooth coherence space
F = (p ⊗ p)℘(p⊥ ⊗ p⊥) for any consistent choice of coherences and cocoherences, but the formula F is not derivable.
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