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Abstract 

The characteristics of nonlinear internal waves in a shallow stratified lake are considered on the 

example of the Sankhar Lake (Vladimir region, Russia). It is shown that natural variations of 

temperature in the lake affect the kinematic characteristics of internal waves, especially the 

coefficient of the quadratic nonlinearity. The theoretical model based on the extended Korteweg–

de Vries equation – the Gardner equation is used to estimate the characteristics of internal waves. 

It is shown that the first mode soliton is a wave of negative polarity. Its amplitude is less than 3 m 

(depth of the lake up to 15 m). Solitons of the second mode may be of any shape and polarity 

(compression or depression wave). 
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1. Introduction 

The internal waves in the seas and lakes are an integral part of the water dynamics. They impact on 

the ecological processes in the thermocline, which is rich in biomass, due to its vertical movement 

and mixing layers (Miropolsky, 1981; Morozov, 1985; Konyaev, Sabinin, 1992; Bulatov, 

Vladimirov, 2010; Hutter, 2012; Vlasenko et al, 2005). One can highlight the studies investigating 

these processes in the Russian lakes the Baikal (Ravenc, 2000) and the Shira (Semin et al, 2012). 

Oceanic internal waves can reach considerable heights of several tens of meters, so it is necessary 

to use nonlinear theory to describe their dynamics (Miropolsky, 1981; Vlasenko et al, 2005; 

Pelinovsky et al, 2002; Grimshaw et al, 2004, 2007; Talipova, Pelinovsky, 2013; Nakoulima et al, 

2004). As for the internal waves in the lakes, there are few observations of the intense internal 

waves (Hutter, 2012; Hunkins, Fliegel, 1973; Farmer, 1978; Antenucci, Imberger, 2001; Vlasenko, 

Hutter, 2002; Boegman et al, 2005; Terletskaya et al, 2010). The development of the nonlinear 

theory of such waves in relation to the processes in the lakes and inland waters is only beginning 

(Hutter, 2012).  

Institute of Applied Physics of the Russian Academy of Sciences has held a series of hydro-

acoustic experiments on the Sankhar Lake in 1997 - 1998 years (Vyaznikovsky District, Vladimir 

region). Geographical coordinates of the lake are N 56° 23' 38'' E 42° 24'. The map is shown in 

Figure 1. This is a deep lake of glacial origin with clear water and latest traces of karst phenomena. 

It has a blade shape with a lot of bays and stretches from the north to the south in the form of an 

irregular drop with the wider end in the north. An average depth of the lake is 10-15 meters, 

maximum length of the lake is 1.5 km, and its area is 3 km
2
. Today, the lake is a nature reserve 
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established for the preservation and restoration of lake ecosystems, rare species of plants and 

animals. 

The results of experiments are described in the study (Bredikhin et al, 1999). The experimental 

data analysis showed the presence of large-scale processes associated with the displacements of 

the thermocline in the internal waves. They are manifested in the low-frequency variations of the 

acoustic signals. This paper is devoted to the assessment of the possible parameters of internal 

waves in the Sankhar Lake. 

 

 

Figure 1. The geographical location of the Sankhar Lake in the Vladimir region (indicated by flag) 

 

2. Hydrology of the Sankhar Lake 

The temperature distribution with depth is typical for lakes in summer: upper layer is hot, and the 

temperature gradual declines to the bottom. The measured vertical profiles of temperature in 

summer are given in (Bredikhin et al, 1999). They are well approximated by a self-similar solution 

(Barenblatt, 1996) 

 

              (1) 

 

 

here Ts denotes a temperature of the upper layer of mixed fluid of thickness h0, Tb denotes water 

temperature at the bottom, and (h1 – h0) is thickness of the thermocline. In Ref. (Bredikhin et al, 

1999) the following parameters are used: Ts = 22
0
C, Tb = 4

0
C, h0 = 3 m and h1 = 12 m. The total 

depth of the lake at the measuring point is 15 m. The temperature profiles for different days of July 

1998 are shown in Figure 2a. Since the lake is freshwater basin, the water density variations are 

determined only by temperature. To simplify the calculations, one can use a simple formula 

proposed for the analysis of density stratification in the lagoon Burr (Etang de Berre) near 

Marseille (Alekseenko, 2013 a,b) 

 )(α1ρ)(ρ 00 TTT  ,                                                        (2) 

where 0 = 1015.27 kg/m
3
,  = 0.000068 1/

0
С is coefficient of thermal expansion and T0 = 10

0
С. 

Dependences of the water density on the depth for different days are shown in Figure 2b. Internal 

waves are determined not by the water density itself but by the buoyancy frequency (Brunt-Väisälä 

frequency): 
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Buoyancy frequency differs from zero only in the middle layer and is  

























01

0

01

1
)(α3

)(
hh

hz

hh

TTg
zN bs ,                                        (4) 

changing linearly with the depth within the thermocline. Plots of buoyancy frequency are shown in 

Figure 2c. The maximum value of the buoyancy frequency is  

01
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


                                                    (5) 

and is 0.012 Hz. It determines the upper limit of the internal waves’ frequency. 

 
             

a)    b)    c) 

Figure 2. Variation with depth of: a – the temperature, b – the density and c – the buoyancy 

frequency (  – July 2,  – July 8,  – July 10, – July 11,  

– July 14,  – July 15,  – July 16,  – July 17) 

  

3. The dispersion characteristics of the internal waves in the lake 

First of all, let us consider the dispersion characteristics of linear internal waves in the Sankhar 

Lake. It is generally known, that the dispersion characteristics are found by solving the boundary 

value problem of the Sturm-Liouville to determine eigenvalues. As usual in the analysis of the 

internal waves in lakes, Boussinesq approximation, that is specific for natural reservoirs because 

of small variation of the density with depth (Miropolsky, 1981; Bulatov, Vladimirov, 2007, 2012), 

is used: 
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Here (z, k) denotes the vertical structure of the isopycnals displacements field, ω – internal wave 

frequency, k – its wave number, and H = 15 m is a maximum depth of the lake. Because the lake is 

relatively small, authors neglect the effects of the Earth's rotation and its curvature. 

It is easy to show that the problem (6) has a discrete spectrum with different eigenvalues 

(Miropolsky, 1981). In the linear theory each internal waves mode propagates independently. 

The results of calculations of the dispersion characteristics of the first three modes for two days of 

observation are shown in Figure 3. Apparently, the dispersion characteristics for different days are 
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similar, although it is clear that the velocity of wave propagation changes (this will be discussed in 

the next section). It is important to emphasize the great difference in the characteristics of waves of 

different modes. Thus, velocities of the second and the third modes range between 8 and 4 cm/s. 

These values are comparable to the velocity of possible background flow and even to the velocity 

of the first mode waves. Such waves have to be unstable and unlikely propagate as free waves. 

The vertical structure of the displacement field in the internal waves in the longwave 

approximation is shown in Figure 4. 

 

 
Figure 3. The dispersion relations (a) and propagation velocities (b) for the first three modes (left 

column – July 8, right column – July 11):  the first mode,  the second mode, 

 the third mode 

 

Figure  4. The vertical structure of the displacement field of the first mode (solid) and second 

mode (dotted line) long internal waves for July 8 (black curves) and 11 July (gray curves) 
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It should be noted that the solution of the problem does not determine the internal waves’ 

amplitudes. For this purpose it is necessary to investigate their generation of atmospheric 

processes or baroclinic instability. In this case, authors can use these field observations, 

summarized in Ref. (Bredikhin et al, 1999). In this study three frequency bands (below 0.10 Hz, 

0.01-0.03 Hz and above 0.03 Hz) are identified, in which amplitude spectra ω
-1

, ω
-2

 и ω
-1 

are 

observed. Note that such laws are predicted for the nonlinear breaking waves (Ermakov, 

Pelinovsky, 1975; Ostrovsky, Helfrich, 2011; Kartashova et al, 2013; Pelinovsky D. et al, 2013) 

and for the so-called soliton turbulence (Costa et al, 2014). The above mentioned facts prove the 

non-linear character of the internal waves in the lake. The appropriate model is developed in the 

next section. 

 

4. The nonlinear model of the internal waves 

The nonlinear model of internal waves is based on the Korteweg–de Vries equation and its 

generalizations (Miropolsky, 1981; Vlasenko et al, 2005; Pelinovsky et al, 2002; Grimshaw et al, 

2004, 2007; Talipova, Pelinovsky, 2013). In general, the Korteweg–de Vries equation is enough 

for small-amplitude waves, but it is convenient to include cubic effects into consideration, because 

they allow us to estimate the internal waves limiting amplitudes in a stratified basin. Proper 

equation is called the Gardner equation. It has the following form (according (Grimshaw et al, 

2004, 2007; Talipova, Pelinovsky, 2013)) 

0
η

β
η

)ηααη(
η

3

3
2

1 














xxt
,                                                  (7) 

where (x, t) – the wave function, part of the isopycnals vertical displacement (surfaces of equal 

density) (x, y, t): 

)(),(η),,(ζ ztxtzx  .                                                               (8) 

Here x – the horizontal and z – vertical coordinates, t – time, (z) – mode function in the long-

wave approximation. It is found from the boundary value problem (6), which in the long-wave 

approximation is reduced to 
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where с is eigenvalue that determines the propagation velocity of long linear internal waves. 

Authors will consider each mode of internal waves independently, so in all equations the mode 

index is omitted. In fact, equation (7) is written in a reference frame moving with velocity с, so 

that the coordinate x is x – ct. Note that authors use the normalization condition for the function 

(z): max = 1, so that the function (x, t) describes the vertical isopycnal displacement at the 

mode maximum. 

Coefficients of equation (7) are called the coefficients of the quadratic and cubic nonlinearity and 

dispersion, respectively; they are defined by the vertical distribution of the water density 
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Here, the function T is a nonlinear correction to the mode function , defined by the equation 
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This model is used many times for the calculation of nonlinear internal waves in the ocean 

(Grimshaw et al, 2004, 2007; Holloway et al, 1997, 1999). It is implemented numerically as the 

IGWResearch package (Tyugin et al, 2011, 2012). 

 

5. The kinematic characteristics of internal waves 

It should be noted that the Gardner equation coefficients, determining the kinematic characteristics 

of internal waves, are set by the rather complicated expressions (10) – (13), which may be 

sensitive to the hydrology of the basin. Therefore, authors calculated these coefficients for the first 

mode internal waves for each day of the experiments. These results are summarized in Table 1. 

Variations of the wave propagation velocity is approximately 10%. It may affect the time 

propagation of internal waves over long distances. The coefficient of the quadratic nonlinearity 

varies considerably more than с (about 40%). At the same time, the cubic nonlinearity coefficient 

varies very little (about 6%). Dispersion parameter varies at about 13%. This sensitivity of the 

internal waves’ kinematic coefficients to the ever-present variability of hydrology should be taken 

into account in the analysis of experimental data, for which only averaged quantities are typically 

used. 

 

Table 1. Variation of the coefficients of the Gardner equation for the first mode internal solitary 

waves 

 c, m/s α, s
-1 

α1, m
-1

s
-1

 β, m
3
/s 

July 2 0.207 -0.037 -0.014 1.56 

July 8 0.21 -0.03 -0.014 1.64 

July 10 0.225 -0.041 -0.014 1.72 

July 11 0.225 -0.042 -0.014 1.73 

July 14 0.227 -0.042 -0.014 1.75 

July 15 0.22 -0.036 -0.014 1.71 

July 16 0.23 -0.04 -0.015 1.73 

July 17 0.23 -0.04 -0.014 1.77 

 

Below authors shall estimate the parameters of a solitary wave. In the framework of the Gardner 

equation (7) soliton is described by the expression (Grimshaw et al, 2007; Talipova, Pelinovsky, 

2013) 
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where  – arbitrary parameter characterizing the inverse width of the soliton. The height of the 

soliton is 

B
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Since the quadratic nonlinearity coefficient is always negative, the soliton has a negative polarity 

and has a form of a cavity (convex towards the bottom). Cubic nonlinearity coefficient is always 

negative, too. This leads to the height restrictions of the soliton by the limit value 

.
α
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Using the values of the coefficients of the quadratic and cubic nonlinearity, authors find that the 

maximum height of the soliton varies in the range between 2.5 and 3 m. In fact, the height of the 

wave is small compared with the maximum depth (15 m), so that the importance of a cubic 

nonlinearity even for the waves of relatively low amplitudes demonstrates in this example. 

The shape of the internal solitary wave is shown in Figure 5. Similar estimates are made for the 

second mode solitons. The calculated coefficients of the Gardner equation for the second mode for 

the two days are summarized in Table 2. 

 
Figure 5. The shape of the internal solitary waves of different amplitudes 

 

Table 2. Variation of the coefficients of the Gardner equation for the second mode internal solitary 

waves 

 c, m/s α, s
-1 

α1, m
-1

s
-1

 β, m
3
/s 

July 8 0.056 -0.036 0.178 0.122 

July 11 0.072 -0.058 0.306 0.126 

 

Authors have already noted that values of the second mode propagation velocities are small (a few 

cm/s), so that it is difficult for such waves to be free. If we even imagine that they exist in the lake 

as free waves, their nonlinear properties, apparently, will differ from those of the first mode. Since 

the quadratic nonlinearity coefficient is negative, the small-amplitude solitons formally have a 

negative polarity. However, the vertical structure of the second mode is alternated (Figure 4), so 

the second mode soliton represents itself as the "depression wave", see Figure 6a. As distinct from 

the first mode solitons such solitons may be of any amplitude (in the framework of this model), as 


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the cubic nonlinearity coefficient is positive. Furthermore, with the increasing of amplitude here 

can exist the second mode solitons of positive polarity. Spatially such a soliton represents itself as 

a "compression wave", see Figure 6b.  

 
                                                  a)                                               b) 

Figure 6. The vertical structure of the second mode internal solitary wave for July 11: a – the 

depression wave; b – the compression wave. The maximum amplitude is 0.95 m 

 

These solitons can exist under an amplitude greater than the amplitude of the so-called algebraic 

soliton (Grimshaw et al, 2007; Talipova, Pelinovsky, 2013) 
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This amplitude amounts only 30-40 cm, so that this limitation is not essential. Thus, the existence 

of the second mode solitary waves is possible in the form of a "wave of compression" and "wave 

of depression". Finally, authors would like to note that more breathers of the second mode 

(nonlinear wave packets (Lamb, 2007)) are possible here, so authors do not stop at these findings. 

 

6. Conclusion 

On the example of the Sankhar Lake (Vladimir region, Russian Federation) the properties of 

internal waves in lakes are considered. The effect of the stratification variability on kinematic 

characteristics of internal waves is studied, the coefficient of quadratic nonlinearity is the most 

sensitive parameter. The nonlinear theory is used to estimate the internal wave parameters. It is 

based on the Gardner equation – the extended Korteweg–de Vries equation. It is shown that there 

may exist the first mode internal solitons with amplitudes up to 3 m in this lake. In the second 

mode the existence of both two classes of solitons (waves of compression and depression) and 

breathers is possible. 
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