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1. INTRODUCTION

Edge waves relate to trapped waves. These are long
waves that propagate along shore, reach a maximum
amplitude at the boundary with land, and decay rapidly
as the distance from shore increases. In recent years,
such waves have been the subject of numerous studies
in hydrodynamics, hydraulic engineering, and offshore
engineering.

Edge waves were intensively studied within the
framework of a linear theory of long waves [1, 2].
Weakly nonlinear Stokes edge waves of invariant form
were examined in [3]. In [4], it was shown that the
results obtained in the shallow-water approximation are
in good agreement with those in the context of the com-
plete theory. The properties of nonlinear edge waves
were studied theoretically and experimentally in [5]
within the framework of a nonlinear Schrödinger equa-
tion.

Since the coefficients of intermode three-wave inter-
actions for edge waves propagating in one direction are
equal to zero [6], a multimode field of edge waves can
be represented as a superposition of the wave fields of
individual modes. Such an approach was employed in
[7, 8] to study the mechanisms of formation of anoma-
lous edge waves.

In this work, the asymptotic procedure described in
[3] is used to find the structure of weakly nonlinear
periodic Stokes edge waves of any mode and to derive
a nonlinear Schrödinger equation. It is shown that peri-
odic waves of any mode are modulationally unstable.

2. STRUCTURE AND DISPERSION RELATION
OF NONLINEAR PERIODIC STOKES EDGE 

WAVES

Nonlinear equations of shallow water for the case of
an inclined shore can be written as
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 is the velocity potential for the components of
the horizontal velocity, 
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 is time, 
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 is the alongshore
coordinate, 

 

y

 

 is the coordinate transverse to the shore, 

 

β

 

is the bottom slope, and 

 

g

 

 is the acceleration of gravity.
System (1), (2) is subject to the following boundary
conditions: 

 

ζ

 

 is limited on the shore and at infinity.

Following the procedure described in [3], we will
seek the solutions in the form of travelling waves of a
constant form by representing 

 

ζ

 

 and 

 

Φ

 

 as functions of
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. We take into account that the ampli-
tude is small and expand 
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 and 
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 as power series in the
amplitude 

 

a

 

:
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Secular terms are known to appear in such problems;
therefore, for the problem’s solvability, the expansion
of the frequency 

 

Ω

 

 in powers of 

 

a

 

 is also used:

 

(5)

 

Taking into consideration the change of variables and
expansions (3)–(5), we rewrite system (1), (2) to obtain
the following equation for 

 

ζ

 

1

 

 in the first order in 

 

‡

 

:

 

(6)

 

where

 

(7)

 

In this case, 

 

Φ

 

1

 

 is determined from linearized equation (2):
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In accordance with a linear theory of shallow water, we
choose

 

(9)

 

where 

 

f

 

(

 

y

 

)

 

 are the eigenfunctions of the homogeneous
boundary-value problem

 

(10)

 

It is well known [2] that boundary-value problem (10)
has an infinite set of eigenfunctions

 

(11)

 

and eigenvalues

 

(12)

 

where 

 

n

 

 is the number of the corresponding mode of
edge waves and 

 

L

 

n

 

 is the Laguerre polynomial.

If we choose Stokes wave (9) with an arbitrary but
fixed mode number as the solution of the first approxi-
mation, we obtain inhomogeneous equations for 

 

ζ

 

m

 

 in
each subsequent order in the amplitude 

 

a

 

. For example,
the second-order equation has the form

 

(13)

 

where
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and Φ2 is determined from the relation

(16)

In view of the fact that the right-hand side in (13) is
completely determined and the boundary-value prob-
lem is solvable (there are no internal resonances at the
zeroth and second harmonics), its solution is found in
the form

(17)

where the functions (y) and (y) are found as the
solutions of the boundary-value problems
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In the third order in the amplitude, we obtain the equa-
tion

(20)

The expressions for R(Û) and S(Û) are not presented
here because of their awkwardness.

The quantity Φ3 is determined from the relation
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It is logical to seek the solution to problem (20) in the
form
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for the function (y) is completely solvable. At the
same time, the boundary-value problem for the func-

tion (y) contains an indefinite correction to the dis-
persion relation. In view of internal resonance, the
inhomogeneous boundary-value problem
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is solvable only if the condition that the right-hand
side R(y) in (24) is orthogonal to the eigenfunction of
the linear operator determining boundary-value prob-
lem (10) is fulfilled. In view of the fact that this opera-
tor is self-conjugate, this condition has the form

(25)

and makes it possible to unambiguously determine the
nonlinear correction to the dispersion relation, i.e., the
coefficient γ.

Similarly, the higher-order corrections can be
obtained; however, technical difficulties in solving the
boundary-value problems increase dramatically. We
present several solutions describing the structure of
nonlinear periodic Stokes waves and dispersion rela-
tions for different modes.

First, we will briefly discuss the lowest mode of
edge waves, which was already analyzed in [5]. In par-
ticular, the modal structure and the linear dispersion
relation have the form

(26)

It is important to emphasize that, in the following
approximations, the terms with cos2θ and cos3θ do not
appear in the expressions for ζ2 and ζ3. This implies that
nonlinear Stokes waves of zeroth mode remain virtu-
ally sinusoidal. However, such a wave is accompanied
by an average lowering of the level, which is obtained
from (13):
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The third-order solution of Eq. (20) is expressed in the
form
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where Eq. (24) for (y) is determined by the expres-
sion
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For solvability, the right-hand side must be orthogonal

to f0(y) = Â–ky. Hence, it follows from (25) that γ = , so

that the dispersion equation has the form
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In this case, series (3) and (4) for ζ and Φ are written as
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Thus, the nonlinear Stokes edge wave of the first
mode has a nonzero second harmonic and is more non-
sinusoidal than the wave of the zeroth mode. We also
emphasize that the propagation of the first mode is also
accompanied by an average lowering of the level.

The expression for R(y) at n = 1 is written as

(37)

Then, from orthogonality condition (25), we obtain the
nonlinear correction to the dispersion equation γ =

, and the dispersion equation has the form

(38)

Series (3) and (4) for ζ and Φ are given by
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We do not present very cumbersome expressions for
higher-mode nonlinear waves and indicate only nonlin-
ear corrections to the dispersion relation, which play an
important role in understanding the processes of stabil-
ity of Stokes waves.

The nonlinear corrections determined for the first 18
modes of edge waves are listed in the table. The depen-
dence of γ on the mode number n, along with the regres-
sion curve, is shown in the figure. Thus, as the mode
number increases, the coefficient of the nonlinear cor-
rection in dispersion equation (5) decreases approxi-
mately as 1/(2 + 8n).

3. NONLINEAR SCHRÖDINGER EQUATION
FOR STOKES EDGE WAVES

In the preceding section, nonlinear corrections to the
dispersion relations for Stokes edge waves of any mode
were determined. Thus, the dispersion equation for
weakly nonlinear edge waves has the form

(41)

As is well known, knowledge of the nonlinear disper-
sion relation makes it possible to write the nonlinear
Schrödinger equation for the wave amplitude [9]. In the
most general form, this equation is written as

(42)

where cgr = ∂ωl/∂k is the linear group velocity and ωl is
the wave frequency in a linear approximation, which is
determined by formula (12) at different n. Based on
nonlinear dispersion relation for a Stokes wave (41), all
the coefficients are calculated in an explicit form, so
that the nonlinear Schrödinger equation can be speci-
fied as

(43)
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Eq. (43) has the form

(45)

It is significant that such signs in the nonlinear
Schrödinger equation correspond to the modulational
instability of wave packets with any modal structure.
Previously, this result was inferred for the lowest mode
[3, 5], and it remains valid for a wave of any mode.
Since the nonlinear coefficient decreases as the mode
number increases, it follows that high-mode waves are
more linear and more stable if their steepness and wave
number are identical.

4. CONCLUSIONS

The structure and nonlinear dispersion equation of
periodic Stokes edge waves of higher modes are found.
Previously, this was done for the lowest mode alone. It
is shown that, unlike the lowest mode, higher-mode
waves have a more nonsinusoidal form. The nonlinear
correction to the dispersion relation is positive for any

i Aτ'
1
2
---Aξ'+

1
8
---Aξξ'–

1
2
---γ n A' 2A'– 0.=

mode number, and it decreases as the mode number
increases. A dimensionless nonlinear Schrödinger
equation is derived for the wave amplitude. The coeffi-
cients of this equation depend on the mode number
alone. It is noted that edge waves of any modal structure
are modulationally unstable. It is found that the non-
linearity of higher-mode waves (at the same steep-
ness) decreases as the mode number increases, and,
consequently, higher-mode Stokes edge waves are
more stable.
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